Simple groups of finite Morley rank Even Type Oct. 27, 2003 Algebraic groups Defined by polynomial equations " $SL_n(F)$ "

Chevalley groups Given explicitly (after 50 years)

 A_n, B_n, \ldots, G_2 New finite simple groups

Finite simple groups

 \mathbb{Z}_p Alternating Chevalley "Twisted" Chevalley Sporadic (26)

Uncountably categorical (FMR)

¿Algebraic (i.e., Chevalley)?

Toward

In any counterexample, the

(*) connected component of a Sylow2-subgroup is divisible abelian.

possibly = 1, however!

• Altinel, *Habilitation*, June 2001.

ABC/J: True, if *degenerate* infinite simple sections are excluded.

> Tame K* K* L*

What do we need now?

Various characterizations of SL₂, and notably:

Strong Embedding

$$M:\begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \qquad S:\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$$

M is the stabilizer of ∞ under the natural action on the complex projective line $\widehat{\mathbb{C}}$ by *frac*-tional linear transformations $\frac{az+b}{cz+d}$

So G/M "is" the projective line.

And the stabilizer of two points (e.g., $0,\infty)$ looks like

$$T = \begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$$

(!)
$$S \cap M \cap M^g = \begin{cases} S & g \in M \\ 1 & \text{else} \end{cases}$$

4

Hypotheses

Strong Embedding: (i) $S \leq M < G$; (ii) $S \cap (M \cap M^g) = 1$ for $g \notin M$.

Induction: Any definable section of even type is a Chevalley group

Target: $G \simeq SL_2$

Method: Action of G on G/M (then: *Nesin*)

The Case Division

Does G properly contain SL_2 ? Or, more precisely:

Is there a subgroup $L \simeq SL_2$ containing A, with $H = C^{\circ}(L) > 1$?

"A" is the subgroup of ${\cal S}$ generated by its elements of order 2

No: Then it should be SL₂; *Yes:* Then it should not exist.

The hard case is (and always has been) the *Yes* side.

In fact, this is probably what earned the Sacks prize for Jaligot.

Tools and Strategy

The strategy has evolved considerably, from Altinel to Jaligot to the current iteration.

Strategy

Data: G, M, A, T $AT \leq M$; T looks like F^{\times} and A looks like F_{+}

And we consider the family of tori which lie in M:

$$\mathcal{T} = \{T^g : g \in G, T^g \le M\}$$

M acts on $\mathcal{T};$ we may speak of "orbits" (or conjugacy classes) with respect to this action.

Steps:

	Jaligot	Revised
1.	${\cal T}$ is <i>one</i> orbit	finitely many orbits
2.	$C(T) \leq M$, all T	$C(T) \leq M$, generically
÷	Various	About the same
5.	Weird calculation	Weird calculation

1. \mathcal{T} has *finitely many* orbits.

How to do Step 1: Tools

Conjugacy theorems: Algebraic Groups

Borel subgroups (maximal solvable connected) Maximal tori (maximal diagonalizable connected)

Conjugacy theorems: Finite Groups

Sylow Hall Carter: *nilpotent, self-normalizing*

Conjugacy theorems: FMR

2-Sylow Hall Carter

What's wrong:

Not enough solvable subgroups (*degenerate sections*)

The story so far

HL < G

 $H = C^{\circ}(L)$ is connected, degenerate, and an abomination upon the face of the earth. (Or else a Hrushovski monster.)

 $T \leq L.$

HT is very interesting

In Altinel's thesis it is nilpotent and self-normalizing. In Jaligot's thesis it is only solvable at first, and self-normalizing, but eventually it becomes abelian.

In either case it is a **Carter subgroup** of any group containing it.

In our case it is *degenerate* \times abelian, and self-normalizing.

So: we have a problem.

Genericity and conjugacy

Concepts:

Almost self-normalizing: $N^{\circ}(H) = H;$ Generically disjoint from its conjugates: $H \cap \left(\bigcup_{g}' H^{g}\right)$ non-generic

Example: maximal tori in simple algebraic groups!

G1. If H has both these properties, then $\bigcup_g H^g$ is generic in G. G2. If H_1 and H_2 have both these properties, then the union of the conjugates of either

generically covers the other.

But what good is that?

Rigid Abelian Groups

Algebraic tori also have *few definable subgroups*, e.g.:

 $T_1 \times \ldots \times T_n$; $t_1^{d_1} \cdots t_n^{d_n} = 1$

No infinite parametrized families (uniformly definable).

Terminology: Rigid abelian group; rigid torus (connected).

R1. Algebraic tori in positive characteristic are rigid. (Wagner)

R2. A rigid torus is generically disjoint from its conjugates.

R3. A generic covering by rigid tori always involves a maximal rigid torus T.

Theorem Self-normalizing rigid tori are conjugate.

Proof:

Let T, T_1 be two such. They are generically disjoint from their conjugates (R2). So the conjugates of T_1 generically cover T (G2).

Then some intersection $T \cap T_1^g$ is a maximal torus in T (R3). This means $T \leq T_1^g$.

And similarly, vice versa.

The real thingTM

 $T \leq M$; $H \times T \leq G$; T looks like F^{\times} , H looks mysterious.

How many conjugacy classes of T? Let's suppose $HT \leq M$. Then we show:

- HT contains an almost self-normalizing subgroup generically disjoint from its conjugates;
- (2) All the groups of the form HT in M form a single M-orbit; (another conjugacy argument)
- (3) The set of T_1 such that $H_1T_1 = HT$ (some H_1) is *finite*.

This will do it . . .

(3) The set of T_1 such that $H_1T_1 = HT$ (some H_1) is *finite*.

Checking (3): Let \hat{T} be the maximal rigid torus in Z(HT). Since $T_1 \leq \hat{T}$, and since T_1 varies over a *uniformly definable* family, there are only finitely many of these—rigidity.

Slogan

If you have enough elements of order 2, you don't need the Feit-Thompson Theorem.

This isn't exactly what finite group theory teaches us . . .

Speculations next week, with Borovik.