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Algebraic groups Chevalley groups
Defined by Given explicitly
polynomial equations (after 50 years)
“SLn(F)” An, Bn, . . . , G2

New finite simple groups

Finite simple groups

Zp

Alternating

Chevalley

“Twisted” Chevalley

Sporadic (26)

Uncountably categorical (FMR)

¿Algebraic (i.e., Chevalley)?
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Toward

(*)

In any counterexample, the

connected component of a Sylow

2-subgroup is divisible abelian.

possibly = 1, however!

• Altınel, Habilitation, June 2001.

ABC/J: True, if degenerate infinite simple sec-

tions are excluded.

Tame K∗

K∗

L∗
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What do we need now?

Various characterizations of SL2, and notably:

Strong Embedding

M :

[

∗ ∗

0 ∗

]

S :

[

1 ∗

0 1

]

M is the stabilizer of ∞ under the natural

action on the complex projective line Ĉ by frac-

tional linear transformations az+b
cz+d

So G/M “is” the projective line.

And the stabilizer of two points (e.g., 0,∞)

looks like

T =

[

∗ 0

0 ∗

]

(!) S ∩M ∩Mg =

{

S g ∈ M

1 else

4



Hypotheses

Strong Embedding:

(i) S ≤ M < G;

(ii)S ∩ (M ∩Mg) = 1 for g /∈ M .

Induction:

Any definable section of even type is a Cheval-

ley group

Target: G ≃ SL2

Method: Action of G on G/M (then: Nesin)
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The Case Division

Does G properly contain SL2? Or, more pre-

cisely:

Is there a subgroup L ≃ SL2 containing A, with

H = C◦(L) > 1?

“A” is the subgroup of S generated by its ele-

ments of order 2

No: Then it should be SL2;

Yes: Then it should not exist.

The hard case is (and always has been) the

Yes side.

In fact, this is probably what earned the Sacks

prize for Jaligot.
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Tools and Strategy

The strategy has evolved considerably, from

Altınel to Jaligot to the current iteration.

Strategy

Data: G,M,A, T

AT ≤ M ; T looks like F× and A looks like F+

And we consider the family of tori which lie in

M :

T = {T g : g ∈ G, T g ≤ M}

M acts on T ; we may speak of “orbits” (or

conjugacy classes) with respect to this action.

Steps:
Jaligot Revised

1. T is one orbit . . . finitely many orbits
2. C(T) ≤ M , all T C(T) ≤ M , generically
... Various About the same
5. Weird calculation Weird calculation
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1. T has finitely many orbits.

How to do Step 1: Tools

Conjugacy theorems: Algebraic Groups

Borel subgroups (maximal solvable connected)

Maximal tori (maximal diagonalizable connected)

Conjugacy theorems: Finite Groups

Sylow

Hall

Carter: nilpotent, self-normalizing

Conjugacy theorems: FMR

2-Sylow

Hall

Carter

What’s wrong:

Not enough solvable subgroups

(degenerate sections)
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The story so far

HL < G

H = C◦(L) is connected, degenerate, and an

abomination upon the face of the earth.

(Or else a Hrushovski monster.)

T ≤ L.

HT is very interesting

In Altınel’s thesis it is nilpotent and self-normalizing.

In Jaligot’s thesis it is only solvable at first,

and self-normalizing, but eventually it becomes

abelian.

In either case it is a Carter subgroup of any

group containing it.

In our case it is degenerate × abelian, and self-

normalizing.

So: we have a problem.
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Genericity and conjugacy

Concepts:

Almost self-normalizing:

N◦(H) = H;

Generically disjoint from its conjugates:

H ∩
(

⋃′
g H

g
)

non-generic

Example: maximal tori in simple algebraic groups!

G1. If H has both these properties, then
⋃

g H
g

is generic in G.

G2. If H1 and H2 have both these proper-

ties, then the union of the conjugates of either

generically covers the other.

But what good is that?
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Rigid Abelian Groups

Algebraic tori also have few definable subgroups,

e.g.:

T1 × . . .× Tn; t
d1
1 · · · · · tdnn = 1

No infinite parametrized families (uniformly de-

finable).

Terminology: Rigid abelian group; rigid torus

(connected).

R1. Algebraic tori in positive characteristic are

rigid. (Wagner)

R2. A rigid torus is generically disjoint from

its conjugates.

R3. A generic covering by rigid tori always

involves a maximal rigid torus T .
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Theorem Self-normalizing rigid tori are con-

jugate.

Proof:

Let T, T1 be two such. They are generically

disjoint from their conjugates (R2). So the

conjugates of T1 generically cover T (G2).

Then some intersection T ∩ T
g
1 is a maximal

torus in T (R3). This means T ≤ T
g
1.

And similarly, vice versa.
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The real thingTM

T ≤ M ; H × T ≤ G; T looks like F×, H looks

mysterious.

How many conjugacy classes of T?

Let’s suppose HT ≤ M . Then we show:

(1) HT contains an almost self-normalizing sub-

group generically disjoint from its conju-

gates;

(2) All the groups of the form HT in M form

a single M-orbit;

(another conjugacy argument)

(3) The set of T1 such that H1T1 = HT (some

H1) is finite.

This will do it . . .

13



(3) The set of T1 such that H1T1 = HT (some

H1) is finite.

Checking (3): Let T̂ be the maximal rigid torus

in Z(HT). Since T1 ≤ T̂ , and since T1 varies

over a uniformly definable family, there are only

finitely many of these—rigidity.
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Slogan

If you have enough elements of order 2, you

don’t need the Feit-Thompson Theorem.

This isn’t exactly what finite group theory teaches

us . . .

Speculations next week, with Borovik.
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