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Algebraicity Conjecture

An infinite simple group

of finite Morley rank

is

an algebraic group.

I. Ancient History

II. Borovik’s program: The 4 types

III. Mixed and Even Type

IV. Odd type
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Part I. Ancient History

Lindstrøm

Categoricity ⇒ model-completeness for ∀∃.

Morley, Baldwin, Zilber

Categoricity and (finite) Morley rank.
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Macintyre

An infinite ℵ0-stable field is

algebraically closed.

Kegel & Wehrfritz

loc. finite Mc-groups satisfying min-p

(all p)

(centralizer)-connected

Baldwin-Saxl

Intersections of uniformly definable groups

are uniformly definable.
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Uncountable Categoricity: Fine Structure

Zilber If M is uncountably categorical and not

almost strongly minimal then M interprets an

infinite group G which is either:

(a) abelian; or

(b) simple.

Algebraicity Conjecture: A simple group of

finite Morley rank is algebraic.
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Two theorems of Zilber

I. If G is a simple group then the following are
equivalent:
A. G is uncountably categorical
B. G has finite Morley rank.

II. If G is a solvable and centerless connected
group then G has two sections K,T such that:

1. K carries the structure of
the additive group of a field F ;

2. T carries the structure of
a multiplicative subgroup of F

3. T acts on K by conjugation,
via multiplication
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A broader view

Zilber Conjecture All structures of dimension

1 occur in nature.

With a little work (Weil, van den Dries, Hrushovski)

this conjecture implies the algebraicity conjec-

ture. However . . .
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Hrushovski It’s false. There are:

1. A 1-dimensional set on which two incom-

patible field structures coexist.

2. A 1-dimensional set of nonlinear type which

does not involve any infinite group (much

less field!).

(On the other hand . . . )
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Part II. Borovik’s program: The Four

Types

Determine the possible 2-Sylow structures in

a minimal counterexample.

Sporadics?

K∗: ℵ0-stable, and every proper definable con-

nected simple section is algebraic.

• 2-Sylow◦ subgroups

• The four types

• Bad fields
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p-Sylow◦ structure in algebraic groups

Characteristic p:

unipotent – [bounded exponent, definable]

Model: Strictly upper triangular matrices.

Other characteristics:

semisimple – [divisible abelian]

Model: Diagonal matrices with entries suitable

roots of unity.
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2-Sylow◦ structure in groups of FMR

S = U ∗ T :

2-Unipotent × 2-torus

with finite intersection

Types

T
U 6= 1 = 1

6= 1 Mixed Odd
= 1 Even Degenerate
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Bad fields

(K;T ) T ≤ K× proper, infinite.

Poizat

They “appear” to exist in characteristic 0.

Wagner

They appear not to exist in characteristic p,

because:

a) The algebraic elements must form an ele-

mentary substructure.

b) There must be only finitely many p-Mersenne

primes.
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Consequences:

1. A simple group definable in a “pure” bad

field of positive characteristic is algebraic.

2. The multiplicative group of a field of

finite Morley rank and positive characteristic is

a good torus in the sense that each subgroup

is the definable closure of its torsion.
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Part III. Mixed Type and Even Type

Theorem [ABC, Jaligot, Altinel]

G simple, FMR, with every definable section

of even type algebraic

Then G is not of mixed type.

Quasi-Theorem

[. . . , punch-lines by Berkman and Tent]:

G simple, FMR, even type, with no degen-

erate simple sections

Then G is algebraic.

Reference:

http://www.math.rutgers.edu/cherlin/Eventype
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Altinel’s Jugendtraum

Can we treat even type absolutely?

Theorem [Weak Solvability]

G simple, FMR, even type, with a weakly
embedded subgroup M .

Then M/O2(M) is of degenerate type.

Remark [Borovik]

X solvable connected 2⊥, faithful on U a
connected abelian 2-group

Then X is a torus.

Proof:

F (UX) = U .

Remark [Altinel]

This X is a good torus.
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Part IV. Odd Type

Borovik Trichotomy: Tame Case

(a) pr2 ≤ 2; or

(b) proper 2-generated core; or

(c) Classical involution, and B-conjecture

Berkman: Case (c) is algebraic.

Borovik-Nesin (?): Case (b) is algebraic.

Issues:

Remove, or reduce, the dependence on tame-

ness.

Handle the “small” cases of (a).



Elimination of Tameness

B-Conjecture: O(C(i)) = 1.

Tame

⇒
O(C(i)) is a nilpotent signalizer functor

⇒
B-conjecture

O(C(i)) ∩ C(j) = O(C(j)) ∩ C(i)

Idea: U(C(i)) = unipotent part.

E.g. Up(C(i)).

“U0”
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U0

Root subgroups

A is abelian and indecomposable

r̄(A) = rk (A/radA), maximal

A/radA is torsion free

U0(H) = 〈root subgroups of H〉

Properties of U0

1. If H is solvable, then U0(H) is nilpotent.

2. U0(H) is a signalizer functor.

3. If all Up(H) = 1, then H is a good torus.
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Tame minimal simple groups of odd type

Theorem [CJ]

G tame minimal simple group FMR, of odd
type, S Sylow 2-subgroup of G, A = ω1(S◦),
T = CG

◦(S◦), C = CG
◦(A), W = N(T )/T ,

(Weyl group). Then pr2(G) ≤ 2 and one of:

1. pr2(G) = 1:

1a. C not a Borel: then G is PSL2(K)

1b. C a Borel: If W 6= 1, then C = T is 2-
divisible abelian, |W | = 2, W acts by inversion
on T , and NG(T ) splits as ToZ2. All involutions
in G are conjugate.

2. pr2(G) = 2:

T = C = CG(A) is nilpotent, |W | = 3, all in-
volutions of G are conjugate, and G interprets
an algebraically closed field of characteristic 3.
Furthermore . . .
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