Chapter 1
Pairs of separably closed fields and exotic groups

Zoé Chatzidakist and Gregory Cherlin

We look at simple groups associated primarily with the general theory of Moufang buildings,
and analyze their relation to stability theory in the model theoretic sense. As the details become
quite technical, a lengthy introduction surveys the developments at a less detailed level.

Beginning from the second section, the text first deals with some model theoretic algebra
of fields, followed by an extended study of three associated families of simple groups coming
from the theory of Tits buildings, the theory of Moufang polygons, and Timmesfeld’s theory of
exotic analogs of SL;.

The field theoretic part is fundamental (§ 2). The rest of the paper relates this to group
theoretic constructions, with two sections surveying the consequences for the original Tits and
Timmesfeld theory before concentrating on the more exotic groups associated with Moufang
polygons.

A good deal of the group theoretical material is expository, aimed to make the relevant
structural information meaningful to those coming from the direction of model theory.

1.1 Introduction

Our aim here is to construct some simple stable groups which are not algebraic (hence,
“exotic”). These are not, strictly speaking, “new” groups, but instances of a phe-
nomenon discovered by Tits long ago, in connection with the classification of buildings
of spherical type [17]. He called them groups of “mixed type”. We became aware of
this much later, while looking into the classification of Moufang polygons given in
[18] and discussed below in § 1.5. Moufang polygons can be classified broadly speak-
ing into algebraic (associated with algebraic groups), classical (in a historical sense),
and mixed, reusing the term introduced by Tits to reflect both their similarities to the
algebraic case, and the use of two fields rather than one in their construction; but in
the case of Moufang polygons the meaning of the term becomes a bit broader.

So we have on the one hand the groups identified by Tits, which are analogs of
algebraic groups in Lie rank at least 3, but with a coordinatization involving two fields
k < K, and we have also various groups associated with Moufang polygons which are
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analogs of algebraic groups in Lie rank 2, but associated with a considerably more
intricate collection of coordinatizing structures (including some of Tits’ original type,
constructed from a pair of fields). There is also a rank 1 analog of SL,(K) due to
Timmesfeld, which we will consider as well.

A very natural program is then the following:

(a) Construct some stable algebraic structures of the sorts used by Tits, Tits/Weiss,
or Timmesfeld.

(b) Deduce the existence of the corresponding stable simple groups.

This turns out to be more subtle than appears at first. So we aim not only to carry this
through in some cases, but also to point out some issues that others might want to
explore further.

In the Tits setting, things work out neatly but with more delicacy than one might
expect. An ample supply of coordinatizing structures for Tits’ purposes is afforded by
Theorem 1.2.1, and in a generalized form, by Theorem 1.2.2. We cover some cases
relevant to the Timmesfeld construction and an interesting case from the Tits/Weiss
classification. However, while this is satisfactory as far as (a) is concerned, one is not
quite done at this point.

One might expect that a general interpretability result would allow for the system-
atic treatment of step (b) above. This seems not to be the case (see Question 1.4.12).
On the other hand, in the context of the groups of Tits’ type associated to a pair of
fields £ < K, this is the case.

The problem in general is that when one moves beyond Tits’ original setting, the
groups are defined as those generated by a collection of subgroups. This is perhaps
clearest in the rank 1 case (the Timmesfeld construction), which is given explicitly
as a subgroup of SL,(K) whose diagonal subgroup is generated by elements whose
coordinates lie in an additive subgroup of K. The situation in rank 2 turns out to be
much the same, but the notation involved is a good deal more complicated.

In fact, one may take a slightly different point of view on all of this, one that
emerges most clearly in the rank 2 setting (Tits/Weiss). This becomes more technical.
We describe this now, but the reader might prefer to look first at the more concrete rank
1 setting of § 1.4 where everything can be worked out in detail, from first principles,
and only then return to a consideration of rank 2.

In any case, in the rank 2 setting, there are at least two groups naturally associ-
ated with a given Moufang polygon, and it becomes important to distinguish them,
and to consider more generally the groups lying between them. The first group is the
full automorphism group of the Moufang polygon. The second group, called the little
projective group, is defined (by analogy with Chevalley groups) as the subgroup gen-
erated by the so-called root groups, which are the fundamental building blocks of the
group from the point of view of either the Chevalley theory or the theory of Moufang
polygons, and in the classical cases are copies of the additive group of the field. These
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groups appear in the Moufang theory as subgroups of the automorphism group of the
Moufang polygon, and then the group they generate is one of the main groups of inter-
est within the automorphism group, and is certainly the smallest group of interest, for
our purposes.

In most cases the latter group is simple, and is the socle of the full automorphism
group (its unique minimal normal subgroup). Between this group and the full auto-
morphism group there are some other groups which are interpretable in the coordinate
system for the group, and whose commutator subgroup is our simple group. So if we
start with a stable coordinate system then we can associate a stable group with a simple
socle to it, but in passing to the commutator subgroup, while we gain simplicity, we
may lose definability.

Accordingly, our exposition becomes more elaborate than we had expected, as we
sort through these issues. To complicate matters, our sources for the three cases take
varying points of view, from the explicit matrix theoretic point of view of Timmesfeld,
to the style of Chevalley (and Steinberg) in terms of generators and relations in the
Tits/Weiss setting, and (for the part that concerns us) much more directly in terms of
the structure of algebraic groups in the Tits setting. So we have the choice of unifying
our perspective or staying close to our sources as we go along. We try to unify the
description, but at the same time we do need to quote specific material from each
source.

The paper is aimed at model theorists with an interest in a variety of related topics.
We have arranged it as follows:

In § 1.2, Theorems 1.2.1 and 1.2.2 give the supply of stable “coordinate systems”
with which we work. This is self-contained and is closely related to well-known work
on the model theory of separably closed fields. Here the first theorem serves as warm-
up to the second, and provides enough information to deal with the groups of mixed
type as originally considered by Tits. We describe such groups in § 1.3 and prove
that we do indeed get stable simple groups of this type by passing to the context of
separably closed fields and applying Theorem 1.2.1.

Now Theorem 1.2.2 is of interest because the algebraic systems considered are the
natural parametrizing systems for the groups which interest us. At the same time, the
groups themselves cannot always be defined in a first order way from these structures.
A point of considerable technical interest is that in certain cases, enriching the original
parametrizing structures to slightly richer structures of the same kind may make the
group first order definable over the expanded coordinate system.

After considering Tits’ groups of mixed type in §1.3, we pass to the opposite
extreme—rank 1—in the following section, working out the details of Timmesfeld’s
construction and the consequences for the issues of definability and interpretability
that concern us here. Everything can be seen very simply by repeating standard com-
putations (either from the point of view of Chevalley theory, or from the point of view
of elementary linear algebra in two dimensions). The unsettling phenomenon of a con-
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flict between the desired simplicity and the desired interpretability, mentioned above,
is encountered at this stage. One can say more precisely how the initial coordinate
system should be expanded to make the simple group definable, but then the issue of
stability has to be approached afresh, and the situation becomes much more complex.
Much remains unclear, and perhaps someone will investigate this further.

The last three sections discuss the related groups of automorphisms of Moufang
polygons at some length. Here we are in rank 2. At this point, the notation becomes
noticeably more burdensome. Here we encounter everything that we have seen in the
original Tits construction together with the complications that became visible in rank
I—but not much else, fortunately, other than some rather specific notation. At this
point one needs to work rather concretely in the notation of root systems in order to
sort out the details. Readers will probably find our presentation either excessively terse
or excessively detailed, depending on their degree of familiarity with the notation used.
The ultimate result, which is a theme throughout much of the latter part of Tits/Weiss—
though not put in these terms—is that in rank 2 one has to deal with two separate
instances of the rank 1 theory, and otherwise things are rather similar to the case of
algebraic groups.

In more detail, the content of the last three sections runs as follows.

In § 1.5 we give an overview of what is done by Tits and Weiss in [18], and the
notation used. Their goal is to give a classification theorem in terms of concrete coordi-
natizations by algebraic systems. This background material discusses what is common
across all cases prior to the introduction of coordinates.

The next two sections then look into two particular cases of the classification of
Moufang polygons as given by Tits and Weiss. The first concerns Moufang hexagons,
where we encounter examples already noticed by Tits as rank 2 analogues of the
algebraic group of exceptional type G, (so, G2(k, K) in his notation). The second,
more subtle example, treated in the last section, concerns the Moufang quadrangles of
so-called “indifferent type,” which are those most closely related to the Timmesfeld
construction in rank 1. Our summary of the situation, above, focuses on this case: this
is the setting which inherits the specific difficulties associated with the rank 1 case.

The classification of Moufang polygons involves further families which could be
investigated model theoretically; they tend to involve structure incompatible with sta-
bility, but compatible, in principle, with model theoretic simplicity. The interested
reader may want to look further in that direction, and in particular investigate the
problem of building coordinate systems of the various types which are simple in the
model theoretic sense.

We imagine that most readers will be interested either in looking into § 1.2 and
taking much of the rest on faith (particularly from § 1.5 onward), or else taking § 1.2 on
faith and looking into the following group theoretic issues (including the definability
issues that arise). Either approach should be perfectly feasible. Most of what we have
to say in the group theoretic part is intended to be expository, but it was not always
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evident where to find clear statements in the literature of the facts most directly relevant
to the model theoretic issues.

Up to this point, we have been very vague about the details, in order not to become
lost in them. In the remainder of this introduction we give a more precise account of
the main points (and the key definitions) concerning the original construction of Tits,
the lower rank constructions of Timmesfeld and Tits/Weiss, and the role of the model
theory of separably closed fields in the construction of stable coordinate systems of
the appropriate types.

Remarks by the second author, added in revision

The story we take up here begins with [8] (see also [13]) and in a sense the present
paper comments on that one.

Not long after this paper was submitted for publication (July 2024), we became
aware of the paper [10], which uses the definability of centralizers as we do here, and
distinctly more systematically, though not quite in the same cases. Accordingly, we
had intended to return to this point, and perhaps adjust our exposition in light of it, but
the first author died on January 22, 2025, and we did not get an opportunity to discuss
that point further. Accordingly, the relevance of the cited paper will simply be noted
in the text. But the reader who is interested in the details relating to definability would
do well to consult that text.

It was a pleasure to work with Zoé on this paper, although (or possibly even
because) we yelled at each other a bit in the process.

1.1.1 The Tits construction: G (k, K)

In [17, 10.3.2], Tits constructs analogs of (abstractly) simple algebraic groups over
algebraically closed fields, in certain very special cases, defined from a suitable pair
of fields (k, K) with k < K. The point of view taken is that of Chevalley, with a small
twist. This relies on the description of these groups in terms of root systems and their
Dynkin diagrams, which may be summarized very rapidly as follows. This is either a
reminder, or a few points of reference for the discussion afterward.

We begin with the algebraic group G (K), which in algebraic terms is a K-split
simple algebraic group of adjoint type. The 1-dimensional subgroups are isomorphic
to the additive or multiplicative group of K. A maximal torus 7 is a product of a
certain number of copies of the multiplicative group of K; that number is the Lie rank.
The copies of the additive group of K invariant under the action of T are the root
groups (with respect to T); these are permuted by the group W = N(T')/T; the action
of W on the set of root groups can be identified with the action of a finite reflection
group acting on real Euclidean space (a Coxeter group) and these are classified by
the Dynkin diagrams of types A—G. The root groups then correspond to a finite set
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of vectors invariant under the action of W (these vectors encode the homomorphisms
from T to K* which give the actions of T on the corresponding root groups).

From the Dynkin diagram, or the root system and the action of W, one can recover
the construction of the group from the field K; this is the description of G(K) as a
Chevalley group. We will see this concretely in the case of rank 2 in §§ 1.6, 1.7, where
in the second case the construction is a generalization of the one described by Tits,
and additional complications arise.

For our purposes it is important that the roots will always have either one or two
root lengths. The setting for the Tits construction involves a simple split algebraic
group of adjoint type over a field k associated with a root system in which, in fact, two
root lengths occur. Furthermore we require the characteristic to be “exceptional” in a
certain sense (in a familiar sense from the point of view of finite group theory, and
explained by Tits in terms of special isogenies, [17, (5.7.3)]). The restriction on root
lengths means concretely that the Dynkin diagram is of type B,,, Cp, F4, or G, and
the restriction on the characteristic then means that the characteristic is 2 unless we
have type G», in which case the characteristic will be 3.!

In this setting, one fixes a second field K with

K? <k <K.

With G (k) the original algebraic group, one builds a group G (k, K) containing G (k),
and contained in G (K), much as one might construct G(K) as a Chevalley group.

Namely, we consider a Borel subgroup B = TU with T k-split, we extend the
groups T (k) and U(k) to groups T(k, K) and U(k, K) in a manner to be described
momentarily, and then we set N(k, K) = N(k)T(k, K), so that N(k, K)/T(k,K) is
isomorphic to the usual Weyl group W = N(k)/T (k). The group G(k, K) is then
defined as the group generated by B(k,K) = T(k,K)U(k,K) and N (k, K).

The group U (k, K) is an exact analog of the maximal unipotent subgroup of a Borel
subgroup from the point of view of Chevalley. Namely, U(K) is generated by the root
subgroups, which are copies of K, subject to the Chevalley commutator relations
determined by the root system. To get U(k, K), one adjusts this construction by taking
the root groups for long roots to be copies of the additive group of the smaller field
k, and the root groups for the short roots to correspond to the larger field K. One may
then check that the Chevalley commutator formula still makes sense (using the precise
data in that formula, and the particular value of the characteristic).

Here the classification by Dynkin diagrams can be treated simply as a set of labels for the
cases of interest, until we come down to the rank 2 case. Tits mainly deals with the case of Fy4 in
[17]; he is able to identify types B,,, C;, with groups he has treated from another point of view
[17, (2), p- 204], and G, is mentioned in passing but lies outside the scope of that monograph.
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At this point, one could reasonably proceed as follows: using the same modified
notion of root group based on a pair of fields (k, K), take the group inside G(K)
generated by all the long root groups over k and the short root groups over K. However,
Tits proceeds in a different way. which connects up directly with his theory of BN-pairs.
Before following him on this path, we discuss why one might do that.

1.1.1.1 BN-pairs and the Bruhat decomposition. In the first place, Tits’ BN-pair
theory gives a direct route toward connecting the new groups with the subject of his
monograph [17]. In the second place, the data B(k, K) and N(k, K) are explicitly
given direct analogs of the usual groups B(K) and N(K). On the other hand the group
generated by them is potentially obscure; a priori it might very well be G(K), for
example. But the BN-pair theory implies a so-called Bruhat decomposition

G=|_|BwB
w

which is the double coset decomposition of G = G (k, K) with respectto B = B(k, K).
(More properly, w is replaced by a representative in G, but the corresponding double
coset is well-defined.) Comparing this decomposition to the corresponding decom-
position of G(K), we see that B(K) N G(k, K) is B(k, K), which is reassuring. And
more generally, the Bruhat decomposition can be read as saying that G (k, K) is built
from B(k, K) in exactly the way that G (K) is built from B(K).

1.1.1.2 The groups. The groups obtained in this manner are (in the Dynkin notation)
the families B, (k, K), C,,(k, K), and the exceptional groups F4(k, K), G2(k, K). The
groups C,(k, K) are variations on the algebraic group PSp, (K). Further variations are
possible: these correspond to Moufang quadrangles of indifferent type in the sense of
Tits and Weiss, discussed in § 1.1.2. Rather than taking a pair of fields k, K, we take
a large field K of characteristic 2 and two additive subgroups Ky, Lo, with

K*<Ly<Ky<K

where now Ly is a vector space over K> and Kj is a vector space over the field gen-
erated by Lo. We then proceed to build a group PSp, (Lo, Ko) in the manner of Tits,
using L¢ to parametrize long root groups, Ky for short root groups. This is not the
description used by Tits and Weiss however; they build its associated Moufang poly-
gon and then compute the subgroup of its automorphism group which is generated by
the corresponding root subgroups (again, parametrized by Lo and Ky rather than k and
K).

We have some unfinished business to attend to. On the one hand, we need to com-
plete the definition of the groups G (k, K). On the other hand, we should say a bit more
as to how one actually obtains the BN-pair properties, or at least the Bruhat decom-
position; this is the only way we will have of seeing that these groups are in fact new
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groups. Tits refers a little vaguely to Chevalley for this point, in [17], though elsewhere
he gave the argument explicitly (in the Chevalley context).

1.1.1.3 G (k, K) (definition, concluded). We have described U(k, K) as the sub-
group of U(K) generated by modified root subgroups. Tits defines the torus 7'(k, K),
as the subgroup of T(K) whose elements act sensibly on the root groups: that is, the
elements of 7'(K) which leave the root groups of U(k, K) invariant. In other words,
these are the elements which act via multiplication by an element of k on the long root
groups.

In particular the group T (k, K) normalizes the group U (k, K), and so we can define
a “Borel subgroup” B(k,K) =T (k,K)U(k,K).Here T'(k, K) is the is the largest such
torus available inside G(K). One could consider similar constructions in which the
toral part varies. In the rank 2 case this last point is the subject of extended calcula-
tions in [18]; however the full automorphism group also contains elements inducing
automorphisms of the coordinate system”. In the cases of interest to us, these auto-
morphisms are induced by certain field automorphisms, and they will not appear in an
algebraic group.

It is reasonably clear that the “Borel subgroup” B(k, K) is interpretable in the
pair (K, k); more concretely, its underlying set is definable in G(K) if we take K
to be equipped with a predicate for the subfield k. It then follows from the Bruhat
decomposition that the same applies to G (k, K), and thus stability of the coordinate
system will give rise to stability of the group; the converse also holds. Indeed (%, K)
is interpretable in U(k, K) (see Theorem 1.6.4 for G, and Theorem 1.7.2 for some
more exotic cases in rank 2).

1.1.1.4 Band N. Now we come back to the point that the groups B(k, K) and N (k, K)
give a Bruhat decomposition for G (k, K), indicating how this goes in the setting of
Chevalley groups, and how it relates to the theory of BN-pairs. For brevity we will now
write G, B, N, U, and T for the various groups involved in the definition of G (k, K).
So G is generated by B and N, by definition, and the desired Bruhat decomposition is

G = I_IBwB.
w

As Tits mentions in [17, 10.3.2], a key ingredient is the fact that the nilpotent group
U can be written as the product of its root subgroups, taken in any order. Another
ingredient is the fact that the Bruhat decomposition holds in rank one (in SL;(k),
SL;(K), or the projective versions of these groups). To this one adds some observations
about the operation of the reflections corresponding to a simple root on the set of
positive roots, and the fact that two opposite root groups generate a rank one subgroup.

2Here that system is (k, K) with natural structure.
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We run over some of the more formal aspects of this argument, taking as our
initial goal the Bruhat decomposition. As G is generated by N and B, and W = N/T
with T contained in B, the double coset decomposition exhibited is well-defined and
contained in G. In order to show that this subset exhausts G, it suffices to show that it is
closed under multiplication by (representatives for) W and under multiplication by B,
the latter point being evident. Also, as W is generated by reflections w, corresponding
to simple roots «, it suffices to check that sets of the form w, BwB are contained again
in the double cosets exhibited. What is claimed, in fact, is the following:

woeBwB C Bw,wB U BwB.

This is one of the fundamental axioms in the theory of BN-pairs, in fact, so the question
is how to verify it.

This can be further reduced by similar formal manipulations, since B = TU and
W normalizes T, to a consideration of w,Uw, and then even further by consideration
of the structure of U. Namely, U may be written as U*U, where U,, is the root group
corresponding to @, and where U™ is the product of the remaining root groups, which
is itself invariant under w,. One reduces quickly to a consideration of w,U,w. Then
either w or wyw carries U, into another root group contained in U. In the first case
wqUqw C wewU and one finds that w, BwB = Bw,wB. In the second case one applies
the same reasoning to w,w in place of w, but one also uses the Bruhat decomposition
for the rank one group generated by U, and U_,,.

The last details are found in the proofs of [ 12, Lemma 25, § 3; (b) p. 34] or [ 16, (16),
p- 323].

1.1.2 Tits-Weiss and Timmesfeld: subtleties

So far, everything proceeds according to plan. Now complications arise as we encoun-
ter some variations corresponding to Lie ranks 1 or 2, where the underlying algebraic
systems are of a more general type.

For us, the most interesting case concerns Moufang quadrangles of “indifferent”
type, similar to the buildings associated with Tits’ groups C,(k, K), but more general.
Most of the complexity of this case, as far as the model theory is concerned, can be
traced back to the rank 1 groups associated with simple roots in this setting, which turn
out to be the groups Timmesfeld calls SL,(Lg) and SL;(Ky) (we are in characteristic
2, so we do not need to distinguish SL, and PSL5).

Interesting comments about the history and the differing emphases of the various
approaches taken to this subject by [15, 17, 18] are found in the review of [15] in the
AMS Bulletin by Richard Weiss [19]. The following has considerable relevance here:

In a spherical building, groups of rank one appear as groups generated
by pairs of “opposite” root groups, .... In the classification of Moufang
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buildings, in fact, these subgroups are avoided to the maximal extent pos-
sible. The philosophy of abstract root groups is just the opposite—groups
of rank one are enshrined in the hypothesis themselves and play a central
role in the whole theory.

We will approach the rank 2 case via the rank 1 case, in order to encounter the model
theoretic issues in their simplest “pure” state. This means in particular that we will be
crossing over between two rather different points of view.

We are again in characteristic 2 with an imperfect field K, and we begin inrank 1. In
the Timmesfeld setting—or rather, the special case of interest to us here—we will have
an additive subgroup L of K containing K2 and invariant under multiplication by K2.
Timmesfeld’s description of his group involves generation by two “root subgroups”
parametrized by L, but as we will check later, we can give a description similar to the
one given by Tits above.

We begin with a single root group U(L) (where L is not necessarily a subfield)
which we may take to be the upper unitriangular matrices with coeflicients in the
additive group L. If we followed Tits’ construction we would also define a torus 7'(L)
at this point. In fact we will take the root group U(L) and its opposite, and the group
they generate, and then compute the torus T (L) generated as a subgroup of T'(K). This
turns out to be parametrized by the multiplicative subgroup of K which is generated
by the nonzero elements of L. This is the point at which nondefinability enters into the
picture.

On other hand, after this detour we could start afresh and define T'(L) as the par-
ticular group of diagonal matrices just mentioned, then define B(L) =T (L)U(L), and
let SL,(L) be the group generated by B(L) and a suitable Weyl group element. The
usual Weyl group element

0 1
5 o

will do (and we can omit the minus sign, as the characteristic is 2). This preserves the
connection with the Tits construction; but we will in fact take Timmesfeld’s definition
as our point of departure.

As there is only one pair of roots, the field K does not play much of a role here,
and it could be replaced by the subfield k generated by L.

On the other hand, the torus 7'(L) is not the strict analog of the one considered by
Tits. The direct analog of Tits’ T'(k, K) in this context would be the subgroup of the
diagonal group 7' (K) which normalizes U. But this is T'(K), since L is a vector space
over K2. So that torus would depend on the choice of K.

Notice that it is the small torus 7' (L) which is a maximal torus in the simple group
SL,(L).Butin general itis the larger torus 7'(K), defined in the manner of Tits, which is
definable from the coordinate system, so here we have a definable group T (K) SL,(L)
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with simple socle, stable if (K, L) is, and the commutator subgroup of this group is
simple, but not necessarily stable.

All of this can be checked by direct computations—computations which we will
make, and which are the usual computations made over a field in the context of Cheval-
ley groups. In particular one verifies the Bruhat decomposition in this context, and that
leads to a proof of the BN-pair axioms also in rank 2 (carried out in a different way in
[18D).

Turning to this rank 2 case, let us denote by G (Lo, Ko) the group associated by Tits
and Weiss to the coordinate system (K; Lo, Ko). Namely, one first defines U(Lg, Ko)
by strict analogy with the case of Chevalley groups, as in the algebraic group PSp, (K),
with Ly and Ky parametrizing the long and short root groups respectively, using the
Chevalley commutator relation to define the group law.

In an algebraic group setting one may then take the opposite group and the group
they generate. In the setting of Moufang polygons, one may define the corresponding
Moufang polygon (with some effort) and then consider the subgroup of the full auto-
morphism group which is generated by its root subgroups (in the sense of Moufang
polygons). From this point of view one also computes the torus (with considerable
effort in this setting). This gives a simple group which is not necessarily first order
definable, because the torus itself is not necessarily definable, and in fact rank one
groups of type SLa(Lo) and SL,(Kj) are involved. The analysis of Tits and Weiss
determines both the minimal torus (splitting the normalizer of the group U as T - U
in the corresponding simple group) and the maximal torus (giving a similar splitting,
but in the full automorphism group of the Moufang polygon)>.

The result is that inside the automorphism group of the Moufang polygon, and
above the group generated by root subgroups, we have a family of groups, correspond-
ing to a family of “tori” (in a very broad sense, allowing actions by field automorphisms
on the coordinate system).

The smallest of these groups is simple but not necessarily definable over the coor-
dinate system (in the first order sense), while the largest is rather too large for any of
our purposes; but in between one can find a definable group whose commutator sub-
group is the corresponding simple group (i.e., the associated torus is abelian). Here,
definability refers to definability in the structure (K; Lo, Ko).

In particular when the coordinate system is stable, the closest we come, in general,
to building a stable simple group is to build a stable group with simple commutator
subgroup.

3Tits and Weiss give in [18, § 37] a complete description of the automorphism group of the
polygon for the various Moufang examples, which involves an “algebraic part” and a subgroup
coming from automorphisms of the field K; here, by full automorphism group we will mean the
“algebraic part”.
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On the other hand, as yet we have no negative results in the more challenging
cases. In particular we do not know whether some of the simple groups which are not
interpretable in the associated algebraic systems might themselves be stable, for other
reasons.

This last is not intrinsically a group theoretic question, since the simple group of
interest is definable from a coordinatizing structure expanding (Lg, Ko) by the torus
T of the group and its action on the root subgroups (and conversely, this structure can
be recovered from the group, if one is careful about the formulation). The torus can be
made a little more concrete as it is a product of 1-dimensional tori which can be taken
separately and come from rank 1 subgroups of Timmesfeld’s type.

So stability of the simple group is equivalent to stability of the structure (Lg, Ko)
together with the two 1-dimensional tori associated with the rank 1 subgroups corre-
sponding to simple roots, and their actions on all the root groups. In this sense, one
can set aside the simple group and work with an expanded language of fields instead.

1.1.3 Some model theory of fields

A few introductory remarks about the model theory of fields are also in order, just to set
the scene properly. From our perspective, what was intriguing was the central role of
imperfect fields in all of these constructions, and the known fact that separably closed
fields have stable theories. This is what suggested the current line of investigation, and,
in particular, our interest in the case of Moufang quadrangles of indifferent type.

The question as to whether every stable field is in fact separably closed is of long
standing (see for example [9]). This question has been placed in a broader frame-
work by Shelah and others, and occurs now in a number of formulations generally all
going by the name of Shelah’s conjecture for (e.g.) dependent fields [5]. This broader
question is being actively pursued at present and leads into very different issues out-
side stability theory. But certainly in the present state of knowledge the only definite
source of constructions of stable simple groups in which fields can be interpreted will
pass through the theory of separably closed fields. If one enlarges the scope to simple
unstable theories, then some other constructions from the theory of Moufang polygons
would come into play, involving automorphisms and various semilinear or quadratic
forms.

We turn now to the details, beginning with the model theoretic algebra that pro-
duces a good supply of stable structures suitable for use as coordinatizing structures,
with three cases: Timmesfeld’s rank one groups SL; (L), and the two families of rank
two groups Gy (k, K) and the indifferent type for PSp,.. With that in hand we will
take up the three sorts of groups of interest, starting with Tits’ theory over pairs of
fields, where matters are simplest in some fundamental sense (though with the usual
apparatus of algebraic groups, root systems, and also BN-pairs all in the mix). Then
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we pass to the rank 1 case as a relatively transparent context where real problems of
definability arise, before coming finally to the most interesting case, Moufang poly-
gons of indifferent type, where the groups to be constructed are stable, with simple
socle equal to the commutator subgroup, and nonalgebraic.

1.1.4 Main results of the paper

As explained before, our aim was to study examples of “exotic groups,” preferably
simple ones, from a model-theoretic point of view We concentrated on three cases:
SL,(L), G2 (k, K) and groups obtained as automorphism groups of the Moufang poly-
gons of [18] coordinatized by an indifferent set, and in particular the groups generated
in that setting by the root groups associated with the Moufang polygon (and a fixed
apartment).

The first point is that stable coordinatizing systems exist in all three cases (§ 1.2).
This is proved by fixing an imperfect separably closed field K of the appropriate char-
acteristic, and studying the model theory of various enrichments of K: by subfields
of K, or by K2-vector spaces lying between K2 and K. The field theoretic results are
valid, in part, in arbitrary characteristic p. The main result of § 1.2 is:

Theorem 1.2.2. Let K be a separably closed field in characteristic p, and
KP=Ko<Ki <Ky <+ <Ky < Kpu1 =K

a chain of subfields of K containing KP. Furthermore, for 1 <i < m let R; be an
additive subgroup of K; 1 which contains K; and is a vector space over K;, and which
satisfies, in addition, the following two conditions:

(1) Ki={a €K |aR; =R},

(2) Any subset of R; which is linearly independent over K; is p-independent over
K;.

Then the structure (K, Ky, ..., Ku, Ry, ..., Ry) is stable, and the complete the-

ory is given by the properties stated together with simple numerical invariants: the
dimensions of both R; and K;.| over K;, as finite values or the formal symbol co.

One also obtains a variation of this result by slightly modifying the vector spaces
R; (Theorem 1.2.6).

These results will be applied in characteristic 3 to a pair of fields and in character-
istic 2 to two fields and two additive subgroups meeting the additional requirements.

Let us first start with two results on the groups Go(k, K) (“a la Tits”).

Theorem 1.3.3. Suppose that G (k) is of adjoint type (centerless) and split over k
Then for K # Fy, Fs, the group Gy(k, K) is simple.

For the Tits groups, stability of the group is equivalent to stability of the coordi-
natizing pair of fields, and we have
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Theorem 1.3.5. Suppose G (K) is simple of type of type B, Cp, Fa, or Gy and (K, k)
is a pair of fields with
KP <k <K

and p the appropriate characteristic (3 for type Gy, and 2 otherwise).
Then the following hold:

(1) If the pair of fields (K, k) is a stable structure, then the groups Go(k, K) and
G (k,K) are stable.

(2) If K is separably closed then Go(k, K) and G (k, K) are stable groups.

(The converse of item (1) is proved separately for type G, and PSp,, see Theorem 1.6.4
for Gy, and Theorem 1.7.2 for G = PSp,.)

In particular for the case of groups of type G, we have a class of automorphism
groups of Moufang hexagons which are both stable and simple, and nonalgebraic.

We turn now to the rank one case, Timmesfeld’s exotic simple groups of type
SL,(L), defined in Definition 1.4.1 in terms of generalized root groups. Here we have
the following standard facts.

Theorem 1.4.2. Let K be an imperfect field of characteristic 2 and L an additive
subgroup satisfying
K*<L<K,

where L is a vector space over K*. Let T(L) < SLy(K) be the subgroup of SLy(K)
with coordinates in the multiplicative subgroup of K generated by L*. Let B =T (L)L
and N = T(L){w).

Then we have the Bruhat decomposition

SL,(L) = B U BwB.

In particular, L is the group of upper unitriangular matrices in SLy (L), and T (L) is
the diagonal subgroup.
Furthermore, SLy(L) is simple.

The definability theoretic properties of the group SL; (L) are more subtle and lead
us to consider a slight, more generally, groups of the form 7 SL,(L) where T is a
subgroup of the diagonal matrices in a larger group SL;(K) over a field. We take T to
contain the diagonal matrices of SL,(L).

Corollary 1.4.9. Given a (slightly generalized) Timmesfeld group T SL,(L), with
additive group L and torus T, there is a structure (K, L, T) with K a field and T a
subgroup of K such that the following are equivalent:

(1) The group T SL,(L) is stable.
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(2) The structure (K, L, T) with the field structure on K and the additive and
multiplicative subgroups L and T is stable.

In particular, when T is the subgroup of SL,(L) consisting of diagonal matrices (and
T SL,(L) is SLy(L)), the corresponding group T may be taken to be the subgroup of
K> generated by the nonzero elements of L.

This is the point at which one realizes that SL, (L) is likely to be undefinable in
first order terms relative to its natural coordinatization by (K, L), and examples falling
under Theorem 1.2.2 confirm this.

Turning to rank 2 and automorphism groups of Moufang polygons, we first con-
sider hexagonal systems of type 1/F, which turn out to coincide with Gy (k, K) =
Gao(k, K).

Theorem 1.6.3. Suppose (K, k) is a pair of fields of characteristic 3 with

K'<k<K
Then the following hold:
(1) The group Gy (k, K) is stable if and only if the pair of fields (K, k) is a stable
structure.

(2) If K is separably closed then G, (k, K) is a stable simple group.
Theorem 1.6.4. Let (K, k) be a pair of fields in characteristic 3 with
K*<k<K

and let U = U(k, K) in the sense of Gy (k, K). Then each of U and (K, k) is definable
in the other.

This immediately gives

Theorem 1.6.6. The group Gy (k, K) is stable (model-theoretically simple, NTP,
NSOP;, ...) if and only if the pair of fields (K, k) is stable (resp. model-theoretically
simple, ...).

Now we turn to our real interest: the rank two case, and specifically automorphism
groups of certain Moufang hexagons (§ 6) and Moufang quadrangles (§ 4). Here we
deal with weak indifferent sets in the sense of Definition 1.5.2.

Theorem 1.7.2. Let (K; Lo, Ko) be a weak indifferent set and let U be the group
U(Lo, Ko) in the sense of PSp4 (Lo, Ko). Then each of U and (Ko, Lo, +, *) is definable
in the other, where

axb=a’b

on Kj.
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Theorem 1.7.4. Let (K; Ly, Ky) be a weak indifferent set, T(K) a maximal torus of
PSp4(K), and T a subgroup of T(K) normalizing the group PSp,(Lo, Ko) and con-
taining T (K) N PSp, (Lo, Ko)-
Let M be the structure
(Ko; Lo, +, T, u)

consisting of the group Ko with the subset L, the abstract group T with its multipli-
cation, and the following additional structure:

(1) the map u : Ko x Ko — Ko defined by u(a,b) = a*b;
(2) actions of T on Ky and on Ly which correspond to the actions of T on two root

subgroups Uy, Ug with a, B the two simple roots, where « is short and (3 is
long.

Then the group G = T PSp, (Lo, Ko) is interdefinable with M.
In particular, G is stable if and only if M is stable.

1.2 Stable pairs of fields and related structures

Results

For our applications, we need to work with pairs of fields, or with more general struc-
tures (but again, in pairs), with one contained in the other. But what can be done with
a pair of nested fields can also be done, in the same way, with more than two nested
fields, and also with the more general coordinatizing systems called indifferent sets.
Our first result in this line will be the following, which we will need in characteristics
2 and 3, and with m = 1, so that we have two distinct fields at our disposal. And we
will see that in some particular cases even when we begin with such a pair, it may be
useful to pass to a related triple.

Theorem 1.2.1. Let K be a separably closed field of characteristic p > 0, and let
KP=Koy<K <Ky < <K, £K,,;1 =K

be a chain of subfields of K containing K, viewed as a structure with predicates for
the fields. Then the theory of this structure is stable.

Furthermore, this theory is axiomatized by the stated properties together with a
specification of the dimensions [K;+| : K;] (as finite values or the formal symbol ).

The method of proof will pass through an elimination of quantifiers in an appropri-
ate language—the language customarily used for quantifier elimination in separably
closed fields, reviewed below, together with the appropriate unary predicates.

This result already supports the Tits constructions, including some in rank 2,
notably in the case of G;, which was first described in [17, § 10.3, p. 205 (Remark)].
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But as we have explained, we need a more varied supply of coordinatizing struc-
tures, involving some additive subgroups as well as subfields—in characteristic 2. The
following will be sufficient for our current purposes, though as previously discussed,
the question of stability of the associated simple groups would require even more elab-
orate coordinatizing structures, at this greater level of generality.

The relevant value of m in the next theorem will usually be 2, as we will be working
mainly with the two additive groups R; and R».

Theorem 1.2.2. Let K be a separably closed field in characteristic p, and
KP=Ky<K <Ky <-- <K, <K,:1 =K

a chain of subfields of K containing KP. Furthermore, for 1 <i < m let R; be an
additive subgroup of K;.1 which contains K; and is a vector space over K;, and which
satisfies, in addition, the following two conditions:
() Ki ={a €K |aR; = Ri},
(2) Any subset of R; which is linearly independent over K; is p-independent over
K;.
Then the structure (K, K1, ..., Ky, Ry, ..., Ry) is stable, and its complete the-

ory is given by the properties stated, together with simple numerical invariants: the
dimensions of both R; and K;.1 over K;, as finite values or the formal symbol .

Algebraic preliminaries

Definition 1.2.3. Let F' D E be fields of characteristic p > 0.
(1) A subset B of F is p-independent in F if [FP[C] : FP] = pl€! for every
finite subset C of B; otherwise, it is said to be p-dependent. A maximal p-

independent subset B of F is called a p-basis of F, and one then has F?[B] =
F.

(2) A subset B of F is p-independent over E in F if [EFP[C] : EFP] = p!C|
whenever C is a finite subset of B. Note that if E > F?, we could equally say:
B is p-independent in E'/7.

(3) The degree of imperfection of the field E is e € N U {oo} such that [E : EP] =
p°. Equivalently, it is the cardinality of a p-basis if E has a finite p-basis, and
the symbol co otherwise.

Notation 1.2.4. Let K be a field of characteristic p > 0.

(1) For each n > 0, we fix an enumeration m; ,(xy,...,x,), 0 <i < p", of the
p-monomialsin xy,. . .,x,,1.e., of all monomials in xy, . . ., x,, where the expo-
nents are between 0 and p — 1. Without loss of generality, mg , (x1,...,x,) =1
for each n.
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(2) The A-functions A; , on K are defined in the following way:

 [Ifay,...,a, are p-independent, and b is p-dependent on a1, . . ., a,, then
the values of the A; , are uniquely defined by the condition

pt-1
b= Z Ain(ay,....an;0)Pm;p(ay, ..., ay,).
i=0

» otherwise, 4; ,(ai,...,an;b) =0

(3) Let L be the language of fields {+, —, -, -1,0,1}, and let the language £, be
LU{A; 5| neN,0<i< p"}. Observe that the inverse of the Frobenius map
is L -quantifier-free definable on K?: if b ¢ K?, then Ao 1 (b;x?) = x.

(4) Let B be a p-independent subset of K. For each n and i < p”", we denote by
/lfn : B" x K — K the corresponding restriction of 4; ,. If a € K, we will say
that the 18-functions are well-defined at a when a € KP[B)]. Similarly, the
iterates of the A% are said to (all) be well-defined at a if a € K?" [B] for all
n> 0.

(5) Suppose we have a nested sequence of fields
K< <Kp<Kn =K.
We define the language
L7 = LiUKL .. Kn} U4, | neN,0<i<p" j=1,....m},

where the K; are unary predicates for the subfields K;, and the function sym-
bols AXJ are interpreted as the usual A; ,, functions on the field K ;, and 0 out-
side. If B} is a p-basis of K;, then AKi-Bj denotes the A%/ -functions restricted
to B;.’ x K; (all n).

We now collect some useful results, mostly classical (and trivial if the degree of
imperfection of K is finite). We will give most of the proofs, though briefly. More
detailed proofs can be found at various points in [1], [2] or [11].

Remark 1.2.5.

(1) Let E be a subfield of K. Then the following are equivalent:
(a) K is a separable extension of E
(b) E is closed under the A-functions of K
(c) the elements of any (or, some) p-basis of E stay p-independent in K.

In this case, the A-functions of E and of K agree on E.



Pairs of separably closed fields and exotic groups 19

(2) Let B C K be p-independent. Assume that the iterates of the AZ-functions are
well-defined at the element a of K, and let Agdenote the set of these iterates.
Then F,, (B, Ao) is closed under the A8-functions. Hence F, (B, Ag) has p-
basis B, K is a separable extension of F, (B, Ao), and F, (B, Ag) is closed
under the A-functions of K.

(3) Let E be a subfield of K closed under the A-functions of K. Assume that B is
a p-basis of K such that £ N B is a p-basis of E. Let C C K be closed under
the A8-functions. Then E(C) is closed under the A-functions of K.
Note that in general it is not true that if A; and A, are L -substructures of K,
then so is the field A A,. For example, take a, a;, a3, a4 p-independent, and
consider Al = Fp(al, az), Ay = Pp(a3, ajay + af)

(4) Let E be a subfield of K closed under the A-functions of K, and let a € K.
If A is the closure of E(a) under the A-functions of K, then A is countably
generated over E.

(5) The A-functions of K extend uniquely to the separable closure K* of K.

(6) Suppose the subfield E of K is an L™-substructure of K, and let a € K. Then
the L™-substructure A of K generated by E(a) is countably generated over
E.

(7) Let KP < L < K. Let B; be a p-basis of L over K”, and B; a p-basis of K
over L. Then By U BY is a p-basis of L and

L= ﬂ K”" By, BY].
neN
(8) Let K and L be separably closed fields, and £ < K, L an L -substructure.
Suppose that K and L are both saturated of the same cardinality « with « >
|E| + No. Let B be a p-basis of K such that E N B is a p-basis of E, and let B’
be a p-basis of L containing E N B.If f : B\ E — B’ \ E is a bijection, then
f Uidg extends to an isomorphism K — L.

Proof.
(1) See [1] or a similar (general) text.

(2) If ¢ is a p-independent n-tuple in K and a, b are two elements of K”[c], then
Ain(c;a+b)and 4; ,,(c; ab) belong to the ring generated over F, [c] by the elements

Ain(c;a), 4in(c;b) for0 <i < p™.

Moreover, a~! = a™P(a?~') € KP[a]; this gives the first assertion, and the second
follows by (1).
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(3) By (2), E(C) is closed under the A2-functions, and the result follows by (1).

(4) Let A be as above, and extend a p-basis of E to a p-basis B of K. Let Ag be the
set of AB-iterates of a. As this set of functions is countable, the set A is countable,
and involves only countably many elements of B. That is, there is a countable subset
By of B such that all iterates of the 180-functions are well-defined at a.

Now by (3), E(ByAy) is closed under the A-functions of K, and contains A.

(5) We know that for a € K* and for each m, we have a € K[aP"'], so that there
are polynomials f;,, € K[X], depending only on the minimal polynomial of a over K,
such that a = f,,(a”") for all m. Given a p-basis B of K the polynomials f;,, determine
uniquely the values of the iterates of the /lfn(a).

(6) Foreach j =1,...,m + 1, select a p-basis B; of K; such that B; N E; is a
p-basis of E;. Then, using (4), we build an increasing sequence A; of subfields of K,
where Ag is the 187+ -closure of {a}, and for i > 0, with i = j mod(m + 1), A; is the
AKi-Bj_closure of A;_; N K. Since each A; is countable by (4), sois A" = U, c, Ans
and by (4), since E and A’ are closed under the functions A%/-8i sois E(A’).

(7) As B, is a p-basis of K over L, Bg is a p-basis of K? over L, and therefore
L = LP[By,BY] and By, B} is a p-basis of L.
Observe now that

L=(\L""[B),BY] <( \K""[Bi,B}] < KP[By,BY] = L.
n n

(8) This is a straightforward back-and-forth argument, using the stability of the
theory of separably closed fields of infinite degree of imperfection.
By (5), f Uidg extends to some f defined on E(B)*. Assume now that we have
an isomorphism
g :Ei(B)* — E|(B')’

extending f , with Ey, E| L,-substructures of K, L respectively, such that |E | < x and
E| N B a p-basis of E.

Leta € K \ E;. By (4), the A8-closure A of E(a) is countably generated over E|,
and adding countably many elements of B if necessary, we may assume that A N B is
a p-basis of A; let A| be countable, closed under the A8, and such that A = E; (Ay).

By saturation of L, there is some A} € L which realizes g(tp(A1/E1(A; N B)%)).
Then A is independent from B over A| N B and is separable over E| [A] N B], while the
type tp(A1/E1 (A1 N B)*) is stationary. It follows that A/ realizes g(tp(A1/E1(B)%)).
This proves one direction, and the other is symmetric. n



Pairs of separably closed fields and exotic groups 21

Proofs

We now give the proofs of Theorems 1.2.1 and 1.2.2. We restate Theorem 1.2.1 in a
more explicit form as follows:

Theorem 1.2.1. Let K be a separably closed field of characteristic p > 0, and let
Kp=K0SK1SK2S"'SKmSKm+I=K

be a chain of subfields of K containing KP?, viewed as a structure with predicates for
the fields. Then the theory of this structure is stable.

Furthermore, this theory is axiomatized by the stated properties together with a
specification of the dimensions [K;+| : K;] (as finite values or the formal symbol ),
and admits elimination of quantifiers in the associated language L™, with the predi-

cates K; and the functions A i’;l interpreted naturally.

Proof. Since all K; contain K? and are contained in K, the sequence
Ko<Ki £ <Kpy1 =K

is a series of purely inseparable extensions.

Let Tk be theory stating that the sequence of fields has the stated properties, and
which, in addition, specifies the degrees K, : K;]. We show first that this theory is
complete and allows quantifier elimination.

LetE = (E,Ey,...,E,)be an L™-substructure of (K, Ky, ..., K,,). Then K” N
E = EP C Ey, each extension K/E, K;/E; is separable, and for j > 0, K; and E
are linearly disjoint over E, since E ;1 /E is purely inseparable.

We may assume that (K, K1, ..., K,) is saturated of cardinality x > |E|, and we
fix another model (L, Ly, ..., L,,) of Tk containing & which is also saturated of car-
dinality «.

Let B; be a p-basis of E|/E?”, By a p-basis of E;/Eq, ..., By+1 a p-basis of
E/E,,; extend B to a p-basis C| of K|/KP?, B; to a p-basis C, of K»/K; (this is
possible because E; and K? are linearly disjoint over E?, so that KP < KPE; < K|
are purely inseparable extensions), ..., By,+] to a p-basis Cy,1 of K/K,, (again, use
that K /K, E purely inseparable).

Then € :=C; U---UCpy is a p-basis of K, and for each i = 1,...,m, C; =
UT:JEL C}U U U;‘:l Cj is a p-basis of K;. Do the same with L, Ly, ..., L, to obtain
corresponding p-bases Dy, ..., D41, and observe that necessarily, either |C;| = |D;|
is finite, or |C;| = |D;| = «, by saturation of K and L.

Thus, if f is a bijection between U;":ll (Cj\ Bj) and U;":ll (D; \ Bj) which sends
each C; \ Bjto D; \ Bj, then idg U f extends to an isomorphism of fields K — L,
which is the identity on E, and sends each K to L;: use (8) and (7) in Remark 1.2.5.

This shows that Tk is complete and eliminates quantifiers in L.
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Now we show stability of Tx. Let a € K, and let A be the £™-substructure of K
generated by (Ea) With A; defined as in the proof of Remark 1.2.5(6), we may assume
that the p-bases C; are chosen to contain a p-basis of A; over A;_; extending B;. By
Remark 1.2.5(6) (and (4)), there is a countable L™-substructure A’ of A containing
a and such that EA’ = A and C N A’ is a p-basis of A’. By elimination of quanti-
fiers, tpy, (a/E) is entirely determined by qftp ;m (A/E), and because A = EA” and
by Remark 1.2.5(2), there are at most |E|~0 such types. Thus the theory is stable. m

The proof of Theorem 1.2.2 is very similar. Again, we reformulate it in more pre-
cise terms:

Theorem 1.2.2 (in detail). Let K be a separably closed field in characteristic p, and
KP=Ky<K <Ky < <K, <K,;1 =K

a chain of subfields of K containing KP. Furthermore, for 1 <i < m let R; be an
additive subgroup of K;.| which contains K; and is a vector space over K;, and which
satisfies, in addition, the following two conditions:

(1) K; = {a ek I aR; = Ri},
(2) Any subset of R; which is linearly independent over K; is p-independent over
K;.
Then the structure (K, K1, ..., Ky, R1, ..., Ry,) is stable, and its complete theory is
given by the properties stated together with simple numerical invariants: the dimen-

sions of both R; and K1 over K;, as finite values or the formal symbol co. This theory
admits elimination of quantifiers in the associated language L}, with the predicates

K;, R; and the functions /llK:l interpreted naturally.
Proof. Let
E=(E,Ey,....Epn,F1,...,Fy) C(K,K1,....Kp,R1,....,Rp)
be a substructure. As in the proof of Theorem 1.2.1, the sequence
EP<E <---<E,<E

is purely inseparable, and each K;/E; is separable.

As usual, we suppose that the L¥-structure K is saturated, of cardinality « > |E| +
No, and that (L, Ly, ..., Ly, S, ..., Sy) is another such model containing €. By
saturation, any of the invariants which are not finite take on the value « in both of the
L™-structures K and L.

The only change in what follows, relative to the proof of Theorem 1.2.1, will lie
in the initial choice of p-bases B;, C; and D, so as to respect the additional structure.
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Let B be a p-basis of E| over EP and extend it to a p-basis C; of K| over KP.
Fori > 1, let B; be a p-basis of E;;| over E;, such that {1} U (B; N F;) is an E;-basis
of the E;-vector space F;. Extend B; to a p-basis C; of K, over K; in such a way
that {1} U (C; N R;) is a K;-basis of the K;-vector space R;; this is possible because
B; N F; = B; N R; is a p-basis of the purely inseparable extension E;[F;] of E;, so
that K; [ F;] < K;[R;] are also purely inseparable extensions of K;. Choose p-bases D;
within L similarly.

As in Theorem 1.2.1, if f; : C; \ B; — D; \ B; is a bijection fori = 1, ..., m,
thenidg U fj U - .- U f,, extends to an L -isomorphism g : K — L, which is an L-
isomorphism, and sends R; to S; for i = 1, ..., m. This gives completeness of the
theory and also quantifier elimination for this language because of the A-functions and
conditions (1) and (2) on (K;, R;).

The proof that the theory is stable goes much as before.

Let £ and K be as above, with E = E®, and let a € K. By Remark 1.2.5(4)(6),
we know that there is some countable Ag C K containing a, closed under the £%-
functions, containing a p-basis of Ao, and such that EAy is closed under the L}-
functions. By stability of (K, K, ..., K;,), there is some countable substructure Eq
of E, which is separably closed, and such that tp ;. (Ag/E) does not fork over Ey,
and enlarging Ay we may assume that Ay contains E( as an Lg-substructure. There
are 2™ possibilities for qftp o (Ao/Ep), and |E[N-many £™-formulas saying that
tp ym (Ag/E) does not fork over Ey, so that there are at most |E [Yo types over E. Thus
the theory is stable. |

As an easy corollary, we obtain

Theorem 1.2.6. Let K> = Ko < Kj < R| < -+ < K,y < R, < K satisfy the hypotheses
of Theorem 1.2.2, and let Sy, ..., S, be additive subgroups of K, with S; a finite-
dimensional K;-vector space contained in K. Then the .Ef{”—stmcture

K = (K,K],K][Rl +Sl],.. .,Km,Km[Rm +Sm],R1 + Sl,. . .,Rm +Sm)
is stable.

Proof. As the S; are finite dimensional over K;, both R; + S; and K;[R; + S;] are
definable (with parameters) in the .Elzem—structure XK. ]

Lemma 1.2.7. Let K be a field in characteristic p, and let

KP=Ry<RI<Ry<---<R, <K

be an increasing chain of additive subgroups of K. Suppose that for alli with 1 <i <m,
we have R;_| - R; = R;. Consider the structure

M = (Rm;R()’Rla' '-’Rm—l$+$ﬂ)
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where the R; are given as subgroups of R, and
U:RyXRy — Ry

is the function u(a, b) = a?b.
Then there are M-definable fields Ky, K1, . . . , K, K such that

KP =K <R <Ky<---<Kn,<R,<K<K

and each R; is a vector space over K;.

Proof. The element 1 in R,, is clearly definable, hence the p-th power map F : R, —
R, is definable. The restriction of multiplication to Ry, is a partial binary operation
a o b defined by setting a o b = ¢ whenever

u(a, F(b)) = F(c).
Define K,,, as the multiplicative stabilizer of R,, under o:
{a €Ry|aoR, =Ry}

This is a definable subfield of R,, which contains R,,_;.

Note that the structure on M induces the corresponding structure on all R; and
hence we have definable subfields K; < R; such that R; is a vector space over K;,
where in addition K; contains R;_; ifi > 1, and K; contains K?.Let K = K ]1 /P Then
K <K. ]

From a model theoretic point of view, the reduced structure just on the R; is more
convenient for interpretability results as the additional structure may then be treated
as coming for free. Normally it would seem prudent, model theoretically, not to add
undefinable structure to a given coordinate system. In practice, doing so can be either
highly undesirable, or extremely convenient, depending on the circumstances. In the
context of Theorem 1.2.2, adding undefinable fields is harmless, and also, at times,
extremely convenient. We will see instances of the latter eventually (notably in the
setting of rank 1 groups).

We conclude this section with some related questions. which concern the choice
of the vector spaces in Theorem 1.2.2. That result gives us a good understanding of
the most extreme case. Beyond that case, there may well be other natural theories of
similar kinds.



Pairs of separably closed fields and exotic groups 25

Problems 1.2.8.

(1) For p > 2 and K? < K| < K, choose (a;);en p-independent elements of K
over K1, and consider R; = ;e K1 [a;]. Is Th(K, K1, R;) stable? (The case
p = 21is covered by Theorem 1.2.2).
Note that the union A = | J;{K[a;] \ K | i € N} is definable in the specified
language via the formula R;(x) A Ry(x%) A =K;(x). This tends to suggest a
level of complexity that may be incompatible with stability. In the structure as
we have defined it, modulo K all elements of R; have a finite “support” in the
set A (and in any model, elements with arbitrary finite supports will occur).
Whether this translates concretely into definable complexity remains unclear.

(2) Let KP < K| < K be separably closed fields of infinite degree of imperfection,
with [K] : KP] = [K : K{] = c0. Let{a;, b; | i € N} be a subset of K consisting
of elements p-independent over K, and set

R = ZKl[ai, b;].
ieN
Is Th(K, K1, R) stable?
Note that a k-saturated model will not be of the same form, even if p = 2.

1.3 Groups of mixed type G (k, K) according to Tits [17]; or a variation

In the present section we will discuss the groups of mixed type over pairs of fields in
the spirit of [17] (with some slight variation), continuing on from the broad discussion
in the introduction, § 1.1.1. In this context, by applying Theorem 1.2.1, we can identify
some simple stable groups which are not algebraic but which one might reasonably
call “algebraic over two intimately connected fields.” In Tits’ monograph the focus
was on rank at least 3 as far as classification is concerned, but the constructions make
sense in rank 2, and in particular the case of G, was covered in [17, § 10.3, p. 205
(Remark)].

Definition 1.3.1. Let G(K) be a Chevalley group associated with a root system with
roots of two lengths: that is, type B,,, C,,, F4, or G,.
Fix a pair of fields (k, K) satisfying

KPP <k<K

where p = 3 if the type is Gy, and p = 2 otherwise.
For « in the root system, define U, (k, K) to be U, (K) if « is short and U, (k) if
a is long.
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Let Go(k, K) be the subgroup of G (K) generated by the root subgroups U, (k, K).
The G notation indicates that we follow Tits’ construction of G (k, K), but not exactly.
The question is what part of the torus to take from G (K) and as we will see in Lemma
1.7.1, there is some latitude in this respect in the case of C»(k, K), and more generally
PSp4(L0, K()).

Remark 1.3.2. The group Go(k, K) has a BN-pair
By(k,K) =To(k, K)U(k,K), No(k,K),

where U (k, K) is generated by root subgroups U, (k, K) for @ positive, and Ty (k, K)
is generated by the corresponding root tori; the latter can be defined as the groups
obtained by intersecting the rank 1 groups (U, (k,K),U_4(k,K)) with T(K), or
more directly as the groups /. [Uq(k, K)*] in the notation of [12, Lemma 19]. Then
No(k, K) may be defined as Ngx) (T (k))To(k, K) (which normalizes Ty (k, K) and
has as quotient the Weyl group of G (K)). That it constitutes a BN-pair can be proved
with the classical arguments, using the fact that U (k, K) can be written as a product of
the root groups taken in any order, and that the result holds for subgroups of the type
of SL, (k) and SL,(K) (treated more generally in § 1.1.1).

Theorem 1.3.3. Suppose that G (k) is of adjoint type (centerless) and split over k
Then for K # F,,Fs, the group Gy(k, K) is simple.

Proof. We use the Tits simplicity criterion for groups with a BN-pair, as can be found
in § 29 of [7]; see in particular Theorem 29.5.

Since our groups have BN-pairs, it suffices to check the following points, with
B = By(k,K) and G = Go(k, K).

(a) B is solvable and centerless.

(b) The set of generators of W corresponding to the simple roots does not decom-
pose into a union of disjoint, nontrivial, commuting subsets.

(c) B contains no nontrivial normal subgroup of the full group G.
(d) G is perfect.

Of these four points, the first is clear, and the second is a basic fact about the
classification of the associated root systems. In terms of the usual Dynkin diagram
representation it means the diagram is connected. (In the rank two case with which we
will be principally concerned, it means that the two simple roots are nonorthogonal—
so that the corresponding generators of the Weyl group do not commute.)

The third point may be argued as follows: The group B has a conjugate BY for
which BN B* =T, so any normal subgroup X of the full group contained in B would
be contained in 7. Then [X,U] < X N U =1 and X centralizes U, forcing X =1 as
the torus acts faithfully on U. This last point depends on the fact that the group has no
center.
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The proof that the group is perfect reduces to the condition U, < [U,, T] for the
roots a, since the root groups generate the full group. This computation can take place
in the rank 1 group (U, U-4), which is SL; or PSL, over one of the fields k or K. Here
we may work concretely with U, the group of upper triangular unipotent matrices in
SL, (I + A with A strictly upper triangular) and 7 the group of diagonal matrices.

Writing x(a) for
1 a
0 1

and A(¢) for the diagonal matrix with entries (¢,7~'), we have the commutator law
[h(1), x(a)] = x(a(1 —17%))

Now we have only to choose  so that  is nonzero and 1> # 1 to get the general element
of U, as a commutator. [ ]

We gave the final computation explicitly as it will serve again in the more general
setting of Timmesfeld’s rank one groups, below.

Remark 1.3.4. There are no exceptions over Fs, in fact, though for what one might
call accidental reasons. Over F3, our definitions only allow one group, the Chevalley
group G (F3), and it is simple, for reasons like the ones we give, but more delicate
[12, Lemma 32].

Of these, types G, and C, recur below in the context of Moufang polygons (Mou-
fang hexagons and Moufang quadrangles, respectively). Type C, is a particular case
of the class of Moufang quadrangles said to be of indifferent type. As we will see, in
a fairly precise sense, the class of groups associated to Moufang polygons of indiffer-
ent type is related to the narrower class of groups C; o (k, K) in exactly the way that
Timmesfeld’s groups SL, (L) are related to the usual groups SL, (k) over fields.

From our point of view the interest of these groups lies in the following:

Theorem 1.3.5. Suppose G (K) is simple of type of type By, Cy, Fa, or Gy and (K, k)
is a pair of fields with
KP <k <K

and p the appropriate characteristic (3 for type Gy, and 2 otherwise).
Then the following hold:

(1) If the pair of fields (K, k) is a stable structure, then the groups Go(k, K) and
G (k, K) are stable.

(2) If K is separably closed then Go(k, K) and G (k, K) are stable groups.

Here G (k, K) denotes the groups as originally defined by Tits in [17], where a
suitable torus 7'(k, K) acting on U(k, K) is defined explicitly.
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We will look into definability issues in a sharper form for the case of G; in § 1.6.
Clearly (1) relates to a couple of claims about interpretability and (2) then follows via
Theorem 1.2.1. But we give a proof of this form, in general.

Itis also important to note that we set out with the initial expectation that something
very similar would also occur in the analogous cases (at greater generality) in ranks
1 and 2, particularly in view of Theorem 1.2.2, but this is not necessarily the case: as
already explained in the introduction, things become more subtle in rank 1, and then
in rank 2 they remain equally subtle (but become no worse).

Proof. In view of Theorem 1.2.1 it suffices to prove the first point. For that we will use
some coarse definability arguments. One should perhaps prove a bi-interpretability
result characterizing definability exactly but it is not necessary for our purposes.

To show that the group is definable from the coordinate system (in first order terms)
we work inside the algebraic group G(K), which is certainly definable. It suffices
to show that the underlying sets of Go(k, K) and G (k, K) are also definable, in the
coordinate system (K, k), as the group multiplication is inherited.

In view of the Bruhat decompositions

Go(k,K) = |_| Bo(k, K)wBo(k,K) and G(k,K) = |_| B(k, K)wB(k,K)
w w

with w varying over a finite set of representatives, it suffices to show that By(k, K)
and B(k, K) are definable.

Relative to the extended coordinate system (K, k) the root groups are definable
(parametrized by one of the fields). The group U(k, K) is the product (in any order)
of its root subgroups, so it is definable.

The root tori that generate Ty (k, K) are root tori of G (K) or G (k), hence definable
in the coordinate system. So Ty(k, K) is definable and By (%, K) is definable. The torus
T(k, K) is a definable subgroup of T(K) (in the pair of fields (K, k)), so B(k, K) is
definable. ]

Remark 1.3.6. It turns out that the condition given in Theorem 1.3.5 (1) is also nec-
essary: one interprets the pair of fields (K, k) in Go(k, K) and in G(k, K), using the
commutator relations. We will give the precise computations in two cases, see Theo-
rem 1.6.4 for G, and Theorem 1.7.2 for G = PSp,. (In fact, in the case of PSp, (&, K)
we even prove outright definability.)

Theorem 1.3.5 sets out the model for what we try to do in this paper. This turns out
to be more demanding than we initially expected. Theorem 1.2.2 prepares the ground
by making an ample supply of some coordinate systems needed to generalize Tits’ con-
struction in rank 2, but the definability issues are more severe as well. Namely, when
one defines a group as “the group generated by” something, and the coordinate system
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defines the generators, then the algebraist may be reasonably happy with that (particu-
larly if a Bruhat decomposition results, and one can tell from that what group one has),
but the model theorist needs to worry about the definability of the constituents of the
Bruhat decomposition as well. One might reasonably object that if we had followed
Tits we would also have defined not only the subgroup U(k, K) but the torus 7'(k, K)
and the group N (k, K) as well, from the coordinate system, and the issue would disap-
pear. We will see next why this is clearly not the case when we take up Timmesfeld’s
construction in rank 1, and then we will see why the difficulties that appear in rank
1 reappear in rank 2. The only reason they do not appear in higher ranks is that the
coordinate systems that appear in higher rank are of a particularly simple type, and in
particular the only rank 1 groups that occur in that construction are SL;(k), SL;(K),
and PSL,(K).

1.4 The rank 1 case according to Timmesfeld [15]

Timmesfeld presents a very general theory of groups generated by abstract root groups
which includes the automorphism groups of most Moufang buildings, and starts off
in rank 1 in what amounts to the study of split BN-pairs of rank 1 from another point
of view. In particular, even the more exotic rank 1 groups arising as groups generated
by pairs of opposite root groups in the context of Moufang buildings are captured by
his theory. We are interested in the ones which arise in the specific case of Moufang
quadrangles of indifferent type, which we will come to in the next section. In that case,
we arrive at the particular rank 1 groups with which Timmesfeld begins his discussion
in [15], namely his Example 1.5, as specialized further in [15, Example 1.6 (2), p. 6].

In the presentation below, we begin with the explicit definition, but work out in
detail the standard calculations in the manner of Chevalley or [12], in their minimalist
form (2 x 2 matrices). These calculations are identical to the usual calculations in
SL,(K), but we must pay close attention to where the entries of the matrices lie—and,
in particular, which diagonal matrices are actually obtained in Timmesfeld’s setting,
and whether or not that set is first order definable from the initial data.

Definition 1.4.1 (SL, (L) according to Timmesfeld). We begin with an imperfect field
K of characteristic 2 and an additive subgroup L satisfying

K’ <L <K,

where L is a vector space over K2. We then define the group SL>(L) to be the sub-
group of SL,(K) generated by upper and lower unitriangular matrices in SL; (K) with
coeflicients in L.
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That is, we have the “root groups” A, A°P consisting of the elementary matrices

alt) = ((1) i) b(t) = (1 ?)

respectively, with ¢ € L. And we consider the group SLy(L) = (A, A°P).

There is a good deal to be said about the group SL;(L). Our main concern is with
a criterion for stability, which naturally leads us to consider related definability issues,
notably the definability of the subgroup of diagonal matrices. This last issue turns out
to recur substantially, afterward, in our discussion of rank 2 groups, as some of them
contain Timmesfeld’s groups. And for that matter, it is implicit in our treatment of Tits’
construction (where we avoided beginning with a description of the torus), though in
that construction the rank 1 tori involved were just the multiplicative groups of the two
fields k, K. Here things become more delicate.

We begin with the Bruhat decomposition. As a point of notation, we will denote
by L* the set of non-zero elements of the additive group L. We make elementary
calculations but keep track particularly of the diagonal matrices that appear.

Theorem 1.4.2. Let K be an imperfect field of characteristic 2 and L an additive
subgroup satisfying
K*<L<K,

where L is a vector space over K. Let T(L) < SL,(K) be the diagonal subgroup of
SL,(K) with coordinates in the multiplicative subgroup of K generated by L*. Let
B =T(L)A and N = T(L){w), with A and w as above.

Then we have the Bruhat decomposition

SL»(L) = BU BwB.

In particular, A is the group of upper unitriangular matrices in SLy(L), and T (L) is
the diagonal subgroup.
Furthermore, SL,(L) is simple.

Proof. Givenany a # 1in A, there is a unique b € A° such that A” = (A°?)¢, and we
write b = f(a); then f(a(t)) = b(=t~'). (Even though we are in characteristic 2, we
use the minus sign since the computation works in any characteristic). With ag = a(1),
we find that

wi=anf(aao=( )

is an element of the Weyl group of SL,(K), and that the elements a(z) f (a(t))a(t)w
are diagonal matrices in SL, (L) of the form Diag(t,¢!), fort € L*.
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It follows that the subgroup of diagonal elements of SL,(L) contains all elements
of the group T'(L). From the formula a(¢) f (a(t))a(t) = Diag(t,t~")w, we deduce that

b(—-t7") = a(~t)Diag(z,t Ywa(-1),
so that A°? < (A, w, T (L)), and in fact,
AP C AT(L)wA U {1}.
Now we check that these calculations give
SL,(L) = BU BwB

by formal manipulations, as in the case of fields.

On the one hand, we know that both 7'(L) and the element w lie in SL, (L), so the
inclusion from right to left holds. In the opposite direction it suffices to check that the
right hand side is closed under multiplication by A and A°P, which is obvious for A.
Hence for A°? = wAuw it suffices to check closure under multiplication by w, which
reduces to the following relations:

wBwB = wT'(L)AwB = T(L)wAwB = T(L)A°°B
C T(L)(BwA U {1})B C B U BwB.

It now follows that 7'(L) is the full diagonal subgroup of SL; (L) and that A is the
full subgroup of upper unitriangular matrices of SL, (L), since both points are clear
in the context of the subgroup B, and the other double coset BwB is disjoint from B.

For the simplicity of the group we use the BN-pair and follow the line of [16, (16),
p- 323]. We first show that the group SL; (L) is perfect for |L| > 2. It suffices to show
that A is contained in the commutator subgroup, since then the conjugate AP is also
contained in the commutator subgroup, and these two groups generate SL,(L).

We claim in fact that [A, T(L)] = A. We have

[Diag(:~",1),a(s)] = a(s(1 - 1*))

which for ¢ fixed and not equal to O or 1 represents a general element of A. The claim
follows.

Now consider a normal subgroup X of SL,(L).

If X is contained in B then X is contained in the conjugate B” and hence in the
intersection, which is the group 7T'(L) of diagonal matrices in SL;(L). We then have
[X,A] € XNA=1,s0Xisin Cr)(A) = 1, that is, X is trivial.

So suppose now X is not contained in B. Then the group X B contains B properly,
and is a union of B double cosets, so by the Bruhat decomposition XB = SL,(L);
hence the quotient SL,(L)/X is isomorphic to a quotient of B, and in particular is
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solvable. On the other hand as SL;(L) is perfect the quotient is also perfect, and a
perfect solvable group is trivial. So in this case X = SL;(L).

Thus SL,(L) is simple. For a statement from a broader point of view see [15, I
(2.10)]. ]

One should notice at this point that the torus 7'(L) is likely to be undefinable in any
natural language (at least, a priori; this is an interesting question in itself). Accordingly,
even if the structure (K, L) is stable we run the risk that the group SL,(L) is not. But
there is a closely related group which is definable from the coordinate system, and has
SL, (L) as its commutator subgroup: namely, the normalizer of SL;(L) in SL,(K). So
we examine this.

1.4.3. The normalizer of SL,(L)

For the present we fix the notation K, L as in Timmesfeld’s setting and consider
SL, (L) within SL,(K).

Remark 1.4.4. The full diagonal subgroup 7' = T (K) of SL,(K) normalizes SL, (L),
and the group T SL;, (L) has the Bruhat decomposition

TSL,(L) = BU BwB

with B = T(K)A.

The point here is that diagonal matrices Diag(#,#~!) act on A and on A° by multi-
plication by r*2, so T(K) leaves A and A°P invariant. Then the Bruhat decomposition
for SL, (L) gives the Bruhat decomposition for 7'(K) SL; (K).

The interest of this group is that it is definable over (K, L) in view of the Bruhat
decomposition, and its commutator subgroup is SL,(L) since T(K) is abelian. Thus
we have a definable stable group with simple commutator subgroup associated to any
stable coordinate system (K, L); this depends intrinsically on K as well as L, though
it would be very natural to take for K the field generated by L to get a more canonical
construction (in similar settings in rank 2, this is actually part of the standard approach).

We note that in our definition of Tits’ groups we preferred to follow Timmesfeld,
and rather than defining a torus in advance, we let it be computed in the group generated
by root subgroups. As the coordinate system used was a pair of fields, the rank 1
subgroups SL; (k) and SL, (K) appearing there were not problematic. But we will need
to keep these extra complications—and the need in some cases to sacrifice simplicity
for definability—firmly in mind going forward.

Lemma 1.4.5. In Timmesfeld’s setting, the normalizer in SL,(K) of the subgroup
SLy (L) is the group T(K) SLy(L).
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Proof. We work firstin GL, (K). Let 7'(K) denote the full subgroup of diagonal matri-
ces. This also normalizes SL,(L). It suffices to check that the normalizer in GL,(K)
of SLy(L) is T(K) SLy(L). We have noticed that the normalizer contains this group.

Let n belong to the normalizer of SL,(L) in GL;(K). If n normalizes A then it
lies in the Borel subgroup 7(K)A(K) of GL,(K) (where A(K) is the full set of upper
triangular unipotent matrices). Hence after multiplying by an element of 7'(K) we may
suppose n € A(K), and write n = a(t) for t € K. In that case consider L; = (L, t). Since
a(Ly) and w lie in the normalizer of SL,(L), the group SL, (L) is also contained in
the normalizer of SL,(L). But SL, (L) is a simple group (Theorem 1.4.2), so we find
these two groups are equal and n € SL,(L).

If n normalizes A°P then wn normalizes A and we conclude similarly.

So suppose A" # A, A°P. As the torus T'(K) acts transitively on the root groups
of SL;(K) (which correspond to the points of the projective line other than 0, co) we
may adjust by 7(K) and suppose that A is conjugated into a root group of the form
A(K)? where b € SL,(L). But then adjusting by this element of 7(K) we may again
take n to normalize A, and conclude as before. n

Thus the family of groups normalizing SL,(L) in SL,(K) is parametrized by the
family of groups 77 lying between 7'(L) and T(K). We would like to take 7 to be
definable in (K, L), ideally, but we would be perfectly happy as long as (K, L, T}) is
stable. Here 71 may be viewed as an abstract multiplicative group with an action on L
(corresponding to the action on A in SL, (L)), or as the image of that action in Aut(L),
or more concretely as the multiplicative subgroup of K whose action on L is given
by multiplication. Note that in the second interpretation the action of Diag(z~!, t)
is multiplication by ¢ and in the third interpretation the multiplicative subgroup is
actually the corresponding subgroup of K?.

An attractive choice for the intermediate torus 77 is the multiplicative group of
the field K; generated by L*. This will often not be definable in (K, L), but we can
work equally well with (K, L). And there are good chances that 7 (L) will be equal
to T (K ) in concrete cases; this leads to interesting questions.

Again: the choice of T = T'(L) gives a simple group; the choice of T = T (K) gives a
group definable in the original structure (K, L) with SL, (L) as commutator subgroup;
and the choice 71 = K[ gives a group which in general is not definable in (K, L), but
is definable in (K, L); and if Theorem 1.2.2 applies to (K, L), it will also apply to
(KL, L). And as always, what we encounter here in rank 1 will recur in much the same
form in rank 2.

We formalize the foregoing discussion further as follows:

Theorem 1.4.6. Let K be an imperfect field K of characteristic 2 and L an additive
subgroup satisfying
K*<L<K,
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where L is a vector space over K*. Let T be a group lying between the group T(L) and
the group T(K). Let T be

{a € K | Multiplication by a is induced by some element of T acting on A}.

Let G =T SLy(L).
Then the following hold:

(1) The group G is definable in the structure (L, T, -, o), where - is the multipli-
cation map on L X T, and o is the squaring map.

(2) Conversely, this structure is definable in G.

Proof.
1. One builds the group B from T, A, and the action. One then builds the group G
as
BUBwB=TAUTAwA

since w normalizes 7. On the right side elements are uniquely represented either by
pairs in T X A or by triples in 7 X A X A (since A°® N B = 1). Multiplication on this
set is then determined by multiplication in B and multiplication by w on the right.
This is trivial for the map from T'A to T Aw and in the case of TAwAuw it reduces to
the expression of a(s)" in terms of the Bruhat decomposition, given in the proof of
Theorem 1.4.2 as

b(-t) = a(-t""Diag(t~", ywa(-t7").

We may set aside the minus signs as superfluous. We need the operation of multiplica-
tive inversion on L, which comes from squaring followed by the action of 7 on L, and
the coordinate of Diag(¢t~!,¢) in T, which is #2.

2. A andT are, respectively, the centralizers in G of any of their nontrivial elements.
So G gives A and T and the action of 7 on A. This gives T as a subset of A.

The element w allows us to define the function f used in the proof of Theorem 1.4.2
to compute the map from a(¢) in A to Diag(z,¢~") in T. Thus we have the map from
a(t) to multiplication by =2 on L. This then gives both the set T as a subset of L, and
its action on L by multiplication. That is, T is the image of a(1) under T, the image
of a(t) under the corresponding element Diag(z,7™") of T is a(¢~'), and the squaring
map is given by a(t~!) — Diag(r~!, 1) > %, ]

Corollary 1.4.7. A group of the form T SL, (L) in Timmesfeld’s setting is stable if and
only if the coordinatizing structure

(L, T’ ) 0-)

is stable.
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Now let us give a coordinatization that looks more normal from the algebraic point
of view.

Theorem 1.4.8. Let K be an imperfect field of characteristic 2, L an additive subgroup
of K, and T a multiplicative subgroup of K> which contains L?. Suppose thatT - L C L.
Then the structure

L=(LT, o)

in which - gives the multiplication on T and o gives the squaring map from L to T, is
bi-interpretable with a structure

K = (K, L,T)
where K is a field satisfying Timmesfeld’s conditions:
K} <L <K,
andT C Klz.

Proof. 1t suffices to recover a suitable field K| definably from L.

We have the multiplication on 7' and the squaring map to 7. We may view both as
extended to T U {0}. Then the restriction * of multiplication from K to L is given, as
a partial function, by a * b = c iff a® - b*> = ¢%.

Let K¢ be the multiplicative stabilizer of L in L:

Ky={aeL|aL <L}

This set is definable in L. Furthermore, it is a field containing 7" and contained, as a
set, in L.

The addition on K is inherited from L. The multiplication is inherited from %, and
is total. So K is a definable field.

Let K| be Ké/ % with its field structure, taken as an isomorphic copy of Ko with
an embedding L — K corresponding to the squaring map to Ky. We then have the
structure

T<Ki<L<K

with the field structure on K inducing the remaining structure. ]
Corollary 1.4.9. In the (slightly generalized) Timmesfeld setting, the following are
equivalent:

(1) T SL,(L) is stable.

(2) The structure (L, T,-, o) with T C L, - the multiplication on T, and o the
squaring map from L to T, is stable.

(3) The structure (K, L, T), with K as above is stable.
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In the last clause, note also that the group SL;(L) in the sense of K is also SL,(L) in
the sense of K.

One can do something quite similar in the rank 2 indifferent case, in principle;
namely there will be two rank 1 groups of Timmesfeld type—associated to the two
simple roots—and the condition is that both are stable (i.e., both exist within a single
stable structure).

Let us come back now to the case of SL,(L), and consider the problem of stabil-
ity. This raises interesting questions of model theoretic algebra. We are considering
structures

(K,L,T)

where T = T(L) is the subgroup of K* generated by L*, given as an additional element
of structure. By proper choice of K, the problem of stability for SL; (L) becomes the
problem of stability for structures of this kind. If T is definable in (K, L) there is no
difficulty (Theorem 1.2.2). If T happens to be the multiplicative group of the field K,
generated by L, then we may take the ambient field to be Ky, apply Theorem 1.2.2 to
that, and in this way force 7'(L) to be definable. It is not yet clear how often that is the
case.

So the questions are of two sorts: when is 7'(L) in fact the multiplicative group of
a field, and in general, when is the expanded structure stable?

Lemma 1.4.10. Let K be an imperfect field of characteristic 2, and L an additive
subgroup of K with
K*<L<K

and L a vector space over K2. Suppose in addition that L contains a subfield K, of
codimension 1 (as a vector space over K*). Then T (L) is the multiplicative group of
the field generated by L, and every element of T (L) is the product of two elements of
L.

Proof. We write L = K| & K?u for some u € L, with K, afield.
Then L generates the field K| (#) = K; @ Kju = K| - L C L - L. The claim follows.
n

Note therefore that we can always make 7' (L) definable, in this setting, by including
the field K in the coordinate system. In the context of Theorem 1.2.2, the theorem will
continue to apply.

In particular, we have the following:

Corollary 1.4.11. Let K be an imperfect field of characteristic 2, with [K : K*]| > 4.
Let a, b be 2-independent elements of K, and consider L = K* + aK?* + bK?. Then

every nonzero element of K*[a, b] is the product of 2 elements of L*, and therefore
T(L) = K*[a, b]* is definable in (K, L).
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Proof. As K| = K*(a) is a subfield of L of codimension 1, Lemma 1.4.10 applies. m

Issues of stability in the groups SL, (L) have led us to consider issues of definability
in the underlying coordinate systems. It is clear that the field K; generated by L plays
a special role here. One has in general the question of definability of K; in some
particular coordinate system, but when working in the context of separably closed
fields, which is the only concrete case known currently, we have observed that this
field should be added to the coordinate system and one should consider the issue of
definability of T(L) in the extended coordinate system, and in particular the question
as to whether T (L) always coincides with the multiplicative group of K, a question
which reduces to the case of T(L) finite dimensional over K2.

Question 1.4.12. Let K be an imperfect field of characteristic 2, and L an additive
subgroup of K containing K2 which is a vector space over K>.

(1) IsT(L) the multiplicative group of Ky ? Does this hold at least if K is separably
closed?

(2) Ifthisis not the case, and the field K is separably closed, is it possible for T'(L)
to be definable in (K, K; ) nonetheless?

(3) Can SL;(L) be stable when (K, Ky ) is not stable?

The first question, restricted to the case of K separably closed, is the main question
at present. In the event of a negative solution, the second question should be taken as the
natural refinement. Finally, in a situation in which 7'(L) is not definable in any structure
covered by Theorem 1.2.2, the third question remains. This is not strictly a group
theoretic question but a question about extending Theorem 1.2.2 to include certain
multiplicative subgroups as well as additive subgroups, which seems very difficult.

Since question (1) reduces to the finite dimensional case and one can in principle
make detailed computations in that case, it would be of interest to take up the minimal
open cases, in which L has dimension 4 over K2, or more generally, where L contains
a subfield of codimension 2. This seems accessible.

1.5 The rank 2 case: Automorphism groups of Moufang polygons

Our own introduction to this subject came via the elegant work of Tits and Weiss in
[18] concerning certain rank 2 groups (or rather, the geometries on which they act).
So now we come, finally, to what was our point of departure. In practice we will focus
on two of the cases which they consider, where the results of Theorem 1.2.2, or the
special case Theorem 1.2.1, are directly applicable. In one case the group considered
is the group G, (k, K) already considered by Tits (though we give it a slightly different
definition, one should bear in mind). In the other case it is a substantial generalization
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of the Tits group of type C, in which the pair of fields used by Tits is replaced by a
pair of suitably chosen abelian subgroups of fields in the manner of Timmesfeld.

In this section we will review the point of view of [ 18], though as we find the groups
easier to work with as subgroups of algebraic groups, we will adopt Tits’ point of view
for the more concrete discussions afterward. So we now discuss the way in which these
groups were originally identified, within the scope of a broad classification project (a
project initially proposed in [17] in a remark toward the end of the monograph).

The subject of [17] is the theory of buildings, the geometries on which simple
algebraic groups, classical groups, and some other groups act naturally; a classifica-
tion is given in dimension at least 3, which can be taken as a classification of the
corresponding groups. These geometries generalize projective geometry, and just as
high dimensional projective geometries satisfy the Desargues condition and can then
be classified, all the higher dimensional buildings satisfy a related Moufang condition,
and are thus called Moufang buildings. Tits proposed the problem of classifying all
Moufang buildings in dimension 2 or higher; or more specifically, classifying them
in dimension 2 specifically and then reducing the higher dimensional classification to
that one. The project is carried through in [18], with some surprises along the way.

In rank 2 the Moufang buildings are called Moufang polygons. They are combina-
torial point-line geometries which are naturally represented as bipartite graphs where
the parts are the points and lines, and the edge relation is incidence. One may also inter-
pret the same graph with the points taken as lines and the lines taken as points, which
would be treated as a dual geometry. Accordingly the automorphisms are taken to leave
the points and lines invariant, and any graph automorphism which switches the parts
would be called an anti-automorphism in the geometric terminology. Tits and Weiss
consider in great detail the structure of the geometric automorphism group Aut(I") of
a Moufang polygon I' and in particular a certain subgroup G which is almost always
simple and which includes the usual Chevalley groups along with many other groups
with a very similar structure. In particular, the theory begins with a definition of root
subgroups directly in terms of the action of the automorphism group on the graph, and
G is by definition the subgroup generated by a certain family of root groups (those
associated with the vertices of an“apartment”, which is a cycle of minimal length in
the graph).

As in the case of Chevalley groups, one may define a “maximal unipotent” sub-
group U generated by half of the root groups (taking a path which covers half of the
cycle), which turns out to be a nilpotent group with the root groups as generators and
with a generalized Chevalley commutator formula as a set of defining relations. We
will consider some cases in which these commutator relations are the ones associated
with certain rank two Chevalley groups.

Namely, we consider the Moufang hexagons, which correspond to type Gj, and
more specifically to the groups G, (k, K), and then the richer family of Moufang quad-
rangles of indifferent type, which correspond to type C,, and are realized in PSp, (or
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Spy, since we work in characteristic 2). In general, the polygon is called an n-gon if
the shortest cycle length is 2n: geometrically an n-gon has n points and n lines and
forms a cycle of length 2n in the incidence graph. In particular the group U is the
(noncommuting) product of n root groups in a Moufang n-gon.

The main result of [18] is a classification theorem for Moufang polygons. Accord-
ingly the various things known about Chevalley groups must not only be generalized,
but proved in detail from first principles in a combinatorial setting. This complicates
matters relative to the theory of Chevalley groups or algebraic groups, where the main
facts are proved algebraically and may even be taken as belonging in part to the initial
definition of the group (as in [12]).

But in addition to this, [18] contains detailed studies of the automorphism groups
in all of the cases identified in the classification theorem, including that of the (mostly)
simple group G, as well as the full automorphism group and the quotient Aut(I') /G,
which can be viewed as a group of automorphisms of U. One of the main results of
this analysis is the BN-pair structure for all of the groups between G and Aut(T"). As
we have seen in the case of Timmesfeld’s groups SL, (L), we have reasons to consider
larger groups than G from the point of view of definability—though we will set aside
the portion of Aut(I") which corresponds to nontrivial automorphisms of the coordi-
nate system, which is not useful from the point of view of first order definability, and
which does not appear in the corresponding algebraic group (when there is one).

Remark 1.5.1. A very general lemma of [18, (7.5)] states that a Moufang polygon
is uniquely determined by the associated automorphism group U and its sequence
of root subgroups Uy, ..., U,. In particular the Chevalley commutator formula in U
determines the group G'.

We now describe the groups corresponding to the coordinate systems of indifferent
type, which generalize Timmesfeld’s systems (K, L).

Definition 1.5.2. A weak indifferent set is a triple (K, Ky, Lg), where K is a field of
characteristic 2, and Ky, L¢ are additive subgroups of K for which

K?><Ly<Ky<K,

Ly is a vector space over K2, and Ky is a vector space over the field generated by L.
If a weak indifferent set satisfies the additional constraint that the field K is gen-
erated by the set Ky then it is called an indifferent set.

It is customary to use indifferent sets in the strong sense in the literature, and we
are introducing the terminology weak indifferent set here to emphasize the variation.
The distinction is not very significant from an algebraic perspective as there would be
no harm in replacing the large field K in a weak indifferent set by the field generated
by K. However, from a model theoretic point of view, the notion of weak indifferent
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set is axiomatizable, and the notion of indifferent set is not, so there is some advantage
to allowing the broader notion into the formalism. It does not create any new examples
of groups, however.

It is tempting to call a weak indifferent set an indifferent pair (even though it is a
triple) because the groups Lo, Ko play the roles previously played by the pair of fields
k, K in mixed type groups.

Definition 1.5.3. Let (K, Ky, L) be a weak indifferent set. Then
PSp, (Lo, Ko)

is the subgroup of PSp, (K) generated by the subgroups U, (Ky) for @ a short root, and
by Uy (Lo) for e along root. We call these groups the root subgroups of PSp4(Lo, Ko)
(which will require a little justification).

Remark 1.5.4. The group PSp, (Lo, Kp) is defined by analogy with the group of mixed
type PSp, (k, K), replacing the pair of fields &, K by an indifferent set. As such it should
more properly be denoted

PSp, o (Lo, Ko)

and we may make use of that heavier notation if the point requires emphasis.

We have also identified a suitable torus in the verification of the BN-pair condition
and the Bruhat property, and so we could also have followed the route taken by Tits in
defining G (k, K). But in any case it is important to us (and to [18]) that this group is
generated by its root subgroups.

There is some pathology in this construction, inherited from the rank 1 case, which
will require close attention to the torus that appears in PSp, (Lo, Ko), and to other tori
that normalize this group.

The definition of weak indifferent pair ensures that this group has more or less the
same properties as Go(k, K) where G = PSp, and k = Ly, K = K| are fields. We recall
the relevant properties now.

First, the Chevalley commutator formula continues to make sense in our context.
For positive roots a, §, writing U, Ug for the root groups relative to Ly or Ky (as
specified), this formula gives the decomposition of elements of [U,, Ug] as products of
elements lying in the root groups of the ambient group PSp, (K). The point is that these
particular elements do in fact lie in the corresponding root subgroups of PSp, (Lo, Ko).
However, this only holds because in the special characteristics we consider, some terms
in the general Chevalley commutator formula vanish, and the corresponding entries
do not occur. So this is actually what makes everything work, in algebraic terms.

At the same time, the rank 1 groups L, = (Uq, U— o) become SLy (L) or SL;(Kp)
in the sense of Timmesfeld.

One gets the BN-pair property, the corresponding Bruhat decomposition, and sim-
plicity as previously. The computations we made in rank 1 close the gap between the
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usual SL,(K) and the Timmesfeld variations, and the rest of the argument for the
BN-pair is formal, modulo the rank 1 case.
Notice also that PSp, (Lo, Ko) lies between PSp,(K?) and PSp, (K).

Lemma 1.5.5. The groups G,(k, K) and PSp,(Lo, Ko) are simple (for K, Ko # F).

Proof. We use the Tits simplicity criterion for groups with a BN-pair, as can be found
in § 29 of [7], see in particular Theorem 29.5. Since our groups have BN-pairs, it
suffices to check the following points: (a) B is solvable and centerless; (b) the set of
generators of W corresponding to the simple roots does not decompose into a union of
disjoint, nontrivial, commuting subsets; (c) B contains no nontrivial normal subgroup
of the full group G; and (d) G is perfect.

Of these four points, the first two are clear since there are only two simple roots
and the corresponding reflections do not commute (W is a dihedral group of order
greater than 4). The other two points were noticed in the proof of the rank 1 case
(Theorem 1.4.2), and the proofs given there continue to work. We repeat the main
points. The group B has a conjugate B” for which B N B =T, so any normal subgroup
of the full group contained in B would be contained in 7, after which it follows easily
that it centralizes U, hence lies in U, hence is trivial. The proof that the group is perfect
reduces to the condition A < [A, T] for the root subgroups A, which is already shown
in the rank 1 case. ]

Lemma 1.5.6. The groups Ga(k, K) and PSp,(Lo, Ko) are the groups G' of [18]
corresponding to the Moufang hexagons of type (1/F) and the Moufang quadrangles
of indifferent type in the sense of [18].

Proof. We suppose the field K # F,. By [3, Thm. 6.1], if G is the universal Steinberg
group with the same presentation as G then G/Z(G) is simple.

Since G and the groups of type G, or indifferent type are generated by root groups
satisfying the same relations, both are homomorphic images of G. Furthermore both
groups are simple by Theorem 1.3.3, Remark 1.3.4, Lemma 1.6.2 and [18, (37.3)]. So
the kernel in both cases is Z(G) and the two quotients are isomorphic. |

1.6 Some Moufang hexagons

1.6.1. The hexagonal case

We return to a discussion of the groups of type G (k, K), which are among the
tamer examples of slightly exotic automorphism groups of Moufang polygons. There
are also the groups PSp,(k, K), which fall under the indifferent case treated in the next
section, but we will not single them out for attention. So G, (k, K) will serve as our
model for the discussion when the definability issues important to model theory are not
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severe, and Theorem 1.2.1 (rather than the more general Theorem 1.2.2) is adequate
for our purposes.

Before going into details, we remind the reader that our definition of G;(k, K)
is not literally the same as Tits’. On the other hand, as we are in characteristic 3 it
becomes quite clear that the torus Tits introduces in his definition is part of our group
as well, and the two coincide. In fact there is only one possible torus in this case (as
opposed to the situation encountered above in rank 1 and characteristic 2).

Lemma 1.6.2. Working in G,(K), the normalizer of the group U(k, K) in the torus
T(K) is the torus
T(k,K) :=T(K)NGy(k,K).

Proof. The torus of G, (k, K) contains the root tori H, (k) for a long and H,(K) for
a short. The torus 7'(K) is the product of the two root tori for the simple roots a and
B with a short and 8 long. So it suffices to check that the normalizer of Ug in Hg(K)
is ng(k)

This is a rank 1 computation which would not work in characteristic 2, but we
are in characteristic 3. The action of the root group element /() (corresponding to
Diag(z,¢™") in our rank 1 computations) is via multiplication by #~2. We also have
K3 C k so for any ¢ in Hpg(K) normalizing Ug(k), both t~2 and 73 lie in k, and thus
tek. ]

One can make similar computations in other cases—in fact, whenever there are
two long roots—but working with rank 2 subgroups. On the other hand, this does not
apply to PSp,(k, K) and we will return to that point.

At this point we may use the notation G, (k, K) with a clear conscience to refer to
the group either as defined by Tits or as defined here.

Now we recall Theorem 1.3.5, specialized to our context.

Theorem 1.6.3. Suppose (K, k) is a pair of fields of characteristic 3 with

K*<k<K
Then the following hold:
(1) The group Gy (k, K) is stable if and only if the pair of fields (K, k) is a stable
structure.

(2) If K is separably closed then G, (k, K) is a stable simple group.

This goes beyond Theorem 1.3.5, as part (1) has been strengthened to “if and only
if.” So it remains to discuss the interpretability of the coordinate system (K, k) in the
group G = Gy (k, K). We will give a more precise statement in Theorem 1.6.4 below.

The interpretability of the coordinate system in the group G comes from its inter-
pretability in the Borel subgroup B; in fact most of it would come from the rank 1



Pairs of separably closed fields and exotic groups 43

case where B is just K* acting on K, which is simply the field disguised as a group.
However when two fields k, K are present one also has to embed k into K and for this
one uses commutation relations in U.

The question then arises as to whether the commutation relations in U are already
enough to recover the coordinate system. This is obviously false in rank 1 since U is just
an abelian group in that case. However it is to be expected (or hoped) in rank 2, and we
will make this analysis in the two cases of interest here. In G; life is greatly simplified
(relative to the indifferent case) by the fact that all the root groups are parametrized by
fields.

Theorem 1.6.4. Let (K, k) be a pair of fields in characteristic 3 with
K'<k<Kk

and let U = U(k, K) in the sense of Gy(k, K). Then each of U and (K, k) is definable
in the other.

One major question is the extent to which the root subgroups of U are defin-
able (without additional parameters). As homomorphisms from U to Z(U) produce
automorphisms of U that move the root groups, this is not literally the case. These
definability issues are more straightforward in B = TU since after defining 7 (from a
suitable parameter) one then can define the set of root subgroups without introducing
additional parameters, and without looking at the commutation formulas.

Proof. Definability of U(k, K) from the coordinate system is clear in all of the cases
we consider, since the original definition of U(k, K) is actually given in first order
terms relative to the coordinate system, and there is really nothing to prove. The one
point to notice is that the definition begins by specifying commutator relations relating
the root groups, and only afterward is it shown that the group U is itself a product of
the root groups, taken once each, in any order, so that the group law can be written out
on U relative to coordinates in the root groups.

In the particular case of G;, we have (positive) root groups Uy, Us, . . ., Ug, with
the roots alternately short and long, parametrized by K or k respectively. We form a
group generated by the six root groups with the following three commutator relations:

[x1(a),xs(b)] = x3(=ab);  [x2(1),x6(u)] = x4(tu); (11,515 [2,6])
[x1(a),x6(1)] = x2(=ta’)x3(1a*)x4 (@) xs(~ta), ({161

where a, b € K and t,u € k, and we also require that all other pairs of root groups U;, U ;
commute. (As the characteristic is 3, some terms of the usual Chevalley commutator
formula vanish in our case.) Now writing U = []; U; (in any order) one can write out
the group law equally explicitly on U.
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Now we want to define the coordinate system from the group U. We will fix some
additional parameters shortly. First we work in U purely algebraically.
The commutation formula shows that

Z(U) = Us x Uy; Z>(U) = (U, Z(U), Us).
Weset U = U/Z»(U),V = Z,(U)/Z(U), and Z = Z(U) and we have
Z=UsxUy;, V=UyxUs=UyxUs; U=U xUs=U xUs.
Furthermore commutation induces bilinear maps
y:UxU—V Y :VxU— Z.

These last maps and groups are definable in U without parameters; but the factor-
izations mentioned are not.

Now fix the parameters u; = x1(1) and ug = x6(1) in U; and Ug respectively, and
thus their images i1 and i in U, and consider the linear maps

/l,'lV—)Z

given by ¥’ (x, ;) fori = 1 or 6. The image of A is U3 and the kernel is U, (use the law
[1,5]). The image of A, is U4 and its kernel is Us (use the law [2,6]). So U,, U3, Uy, Us
are definable. Furthermore 1; gives an isomorphism As3 of Us with Us, and 1, gives
an isomorphism A4 of U, with Uy, given by

As3(X5(a)) = x3(a); A24(X2(1)) = x4(1).

We treat these maps as canonical definable identifications of U, with Uy, and of Us
with Us.

Now we consider the linear maps 7; : U — V fori = 1 or 6 defined by y(iiy, x)
and y(x, itg). The kernel of 7; is U; (by [1,6]) so these groups are definable. Since U
and V now split definably as U; x Us and U, x Us, the map y induces maps

Hj - U] X 06 e Uj
with j =2 or 5, given by
H2(X1(a), X6 (1)) = To(—ta’); us(x1(a),x6(1)) = ¥s(~ta).

So with a = —1 this gives a definable isomorphism of Us and U, respecting coor-
dinates, as well as an embedding of U into Us respecting coordinates. Furthermore
with t = —1 we get a definable isomorphism of U; with Us respecting coordinates, and
a definable embedding of U; into U, corresponding to the cubing map.
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To sum up: after fixing two parameters, we have found isomorphic copies of the
root groups U; which are definable subquotients of U. We have definable identifications
of the root groups with even index, respecting coordinates, and also of those with odd
index, again respecting coordinates. So it is not excessive now to change notation and
to refer to those with even index as k and to those with odd index as K, and to take the
map from k to K as an inclusion, letting £ : K — k be the map in the reverse direction,
which in coordinates would correspond to cubing.

Modulo these identifications we can simplify the notation (while recalling that the
field multiplication is not yet defined in U) and write m;(a, t) for u;(x;(a), xs(t))
(a € K, t € k), and obtain

my(a,t) = -a’t, ms(a,t) = —at, &(a) = a’.

with a € K and ¢ € k. From these maps we can define multiplication on K by the
condition mj(a, (b)) = —&£(ab). We now have K, k with the field structure on K and
an inclusion map from % to K.

This concludes the proof. |

Corollary 1.6.5. Let (K, k) be a pair of fields in characteristic 3 with
K'<k<K.

Let U be the group U (k, K) in the sense of Gy (k, K) and let U; be the root groups occur-
ring in U, with the usual numbering. Then the following structures are bi-interpretable:

(1) (K, k);
(2) (U;U1,Us, u1,ue);
(3) (U; (Ui)i<i<es Ut s).

Proof. This means that we can not only interpret each in the other, but if we apply
both interpretations to recover a copy of one of the structures in itself, the result is
definably isomorphic to the original structure, without parameters. As usual, if we
start with (K, k) we get an explicit coordinatization of the third structure, and then we
can simply trace the interpretation in coordinates.

The other direction is a bit less clear, in terms of what we have done so far. We
recovered (K, k) from considerably less information than is given in (2), but for bi-
interpretability we need the specified root groups, and not just U together with the
parameters that allow us to define isomorphic copies of the root groups as subquotients.
The point is that the root groups, represented explicitly as subgroups of U, are certainly
definable from the coordinate system (since U is defined as their product), so for bi-
definability we must have the actual root groups, and not just isomorphic subquotients.

]
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As a further corollary we obtain

Theorem 1.6.6. The group G;(k, K) is stable (model-theoretically simple, NTP;,
NSOP;, ...) if and only if the pair of fields (K, k) is stable (resp., model-theoretically
simple, ...).

1.7 Moufang polygons of indifferent type

Now we come to the case of particular interest, associated with Moufang polygons of
indifferent type, or, alternatively, mixing the terminology of Tits and Timmesfeld, the
groups PSp, (Lo, Kp) as in Definition 1.5.3.

There are some complications at the outset at this level of generality. The rank 1
subgroups of this group have the form SL;(Lg), SL,(Kjp), sitting inside SL;(K), but
there is a subtlety. One expects to see either SL,(K) or PSL,(K) here, depending on
the root chosen, but we are in characteristic 2 so we are free to call the group SL;(K),
and then recognize the subgroup generated by either L( or Ky as one of Timmesfeld’s
groups. Hence we don’t really need to concern ourselves with this point.

A more substantial concern is the nature of the torus in PSp, (Lo, Ko), and more
generally, the possible need to enlarge that torus to a larger group T so that the group
T PSp, (Lo, Ko) has better definability properties. The torus in PSp, (Lo, Ko) is gener-
ated by rank 1 root tori coming from SL,(Kp) and SL;(Lg), in each case parametrized
by the subgroup of K generated by the nonzero elements of Ky or L, respectively (or
by the values under the root map giving the multiplicative action on two root groups,
for a pair of simple roots).

We elaborate briefly. It is clear that these rank 1 tori appear in PSp, (Lo, Ko). It
is also clear that PSp, is generated by the two rank 1 subgroups associated to simple
roots, since they generate U and U°P. It follows that if we let T' be the torus generated by
the two rank 1 tori and we write out the Bruhat decomposition using TU as the group
B, then the resulting union of double cosets is in fact the full group, and in particular
the torus of PSp, (Lo, Ko) lies in B.

The question that needs to be addressed is, how much of the full torus T'(K) of
PSp,(K) normalizes the group PSp, (Lo, Ko).

Lemma 1.7.1. Given a weak indifferent set (K, Ly, Ko), the subgroup of the full torus
T(K) inPSp4(K) which normalizes PSp4 (Lo, Ko) is generated by H o (K) and Hg (K1),
where K is the subfield of K which stabilizes Ko multiplicatively. Here «, 3 are simple
roots with a short, and H,, Hg are the corresponding rank 1 tori in T (K).

Proof. We compute via [12, Lemma 19].
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The Cartan matrix of this root system is

2 -1
%2
where the first root is short and the second is long.

This means that the short root torus H, (K) operates by squaring (or its inverse)
on both root subgroups (for simple roots), and the long root torus Hg(K) operates by
squaring on Ug(K) and multiplication (after inversion) on the other root subgroup.

As K? < Ly < Ko, the only constraint on the torus is that the element /5(#) will
occur only if 1Ky = Kj. ]

Notice that K contains the field generated by L, which we know a priori given
the structure of the torus in PSp, (Lo, Ko)—but it is reassuring that it also follows from
the definition of K| and the hypotheses.

We mentioned earlier that PSp, (Lo, Ko) (see Definition 1.5.3 and Lemma 1.5.5) is
simple. For definability purposes we may want to consider the group 7 PSp, (Lo, Ko)
for some torus normalizing PSp, (Lo, Ko) with better definability properties. The goal
as always is to obtain simple groups with stable theory of the specified type, or, failing
that, at least to find a group T PSp, (Lo, Ko) with stable theory, and be content to have
a simple commutator subgroup.

Accordingly, it remains only to discuss definability issues in groups of the form
T PSp,4(Lo, Kp). We can more or less combine Theorems 1.3.5 and 1.4.6 to get a defin-
ability theorem for T PSp,(L¢, Ko), namely Theorem 1.7.4 below. But since we also
intend to look more narrowly at definability in U (k, K), we begin with that.

Theorem 1.7.2. Let (K; Lo, Ko) be a weak indifferent set and let U be the group
U(Lo, Ko) in the sense of PSp4 (Lo, Ko). Then each of U and (Ko, Lo, +, *) is definable
in the other, where

axb=a’b

on Kj.

Proof. To go from the coordinate system to the group, recall that we can find a defin-
able field K so that
(EZSL()SK()SI%)

(Theorem 1.4.8).
As usual U is constructed explicitly from root groups Uy, U, Uz, Uy which are
copies of Lg or Ky, most of which are taken to commute, while U, Uy satisfy

[x1(1), x4(@)] = x2(*a)x3 (1), (14D

where ¢ runs over Ky and a runs over Ly, and we use the vector space structure on L
and K.



48 Z. Chatzidakis and G. Cherlin

We illustrate the structure of this formula as follows, for reference.

U Uy - Us Uy
[x; (1), x4(a)]
x1(t) x2(12a) - x3(at) x4(a)

te Ky t2'a€L0,at€Ko ac€ly

This is clearly definable in our coordinate system, if we include K, to get the action of
L() on K().

In the converse direction, working in the group U, there is more to be done.

Let Z = Z(U), a definable subgroup. From the commutator formula and the fact
that all other pairs of root groups in U commute, we find that Z = U,U3 ~ U, X Us.

Claim 1. The subset U, U U3 of U is definable.

We may describe U, U Us as the set of elements x;(a)x3(¢) with a € Ly, t € Ky
and at least one coordinate equal to 0. For ¢t € Ky and a € Ly both nonzero, we have

[xi1(ar™"), xa(?a™")] = x2(a)x3 (1)

Thus elements of Z which are not in U, U Us are therefore commutators. On the other
hand, by inspection of the commutator formula [1,4], we see that the only elements of
U, U Uz which are commutators are those of the form [x(7), x4(a)] with at least one
of ¢ or a equal to 0; such an element must be the identity. This proves the claim.

We will now fix some additional parameters u; = x;(1) € U; fori = 1,2,3,4. We
let Uy, Uy denote the images of Uy, Us in U = U/Z, and note that U = U; x Uj.

Claim 2. Relative to the specified parameters, the groups Uy, U,, Us, U are definable.
By the commutator formula, the centralizer in U of u; is U Z, and the image of
this group in U is Uj. So U is definable, and similarly Uy is definable.

On the other hand, U, is the intersection of u, - (U U Us) with U, U U3 and so
the group U; is definable. The group Us is definable similarly.
This proves the claim.

Now the commutator induces a bilinear map
01XU4—>Z=U2XU3

and in view of Claim 2, we can interpret the commutation law as giving two defin-
able functions of two variables from U; x Uy to U, and Us. respectively. These two
functions, expressed in coordinates, are the maps

wa 2 (%1(2), %4(a)) > x2(¢%a) € Uy, (here t2a € Lo);
us : (x1(1),x4(a)) > x3(ta) € U3 (here ta € Kyp).

With ¢ = 1 the map u» gives an isomorphism Uy — U, respecting coordinates.
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With a = 1 the map p3 gives an isomorphism U; — Us respecting coordinates.

With these definable isomorphisms available, we identify U; with Us and with the
additive group of K. Likewise, we identify U, with U, and the additive group of Lj.
Now Kj, Lo are interpreted in U and the maps w3, 13 become definable maps my, m3
from Ky X Lo to Ly and Ky respectively, satisfying the following conditions:

my(t,a) = a;

ms3(t,a) = ta.

With ¢ = 1 the map m3 defines the embedding of L into Ky, so we now view Lo as a
subset of K, and both maps m; and m3 now have image in K (identified with Us). In
other words, the definable structure present is

(Ko; Lo, +,mp, m3).

With a = 1, m, defines the squaring map on K. Now for a, b € K, we have a’ e Ly,
and m3 (b, a*) = a®b. [

Corollary 1.7.3. Let (K; Lo, Ko) be a weak indifferent set and let U be the group
U(k,K) in the sense of PSp,(k, K), with root subgroups U; (1 < i < 4) numbered as
usual. Then the following structures are bi-interpretable:

(1) (Ko, Lg; +, *) where a x b = azbfor a,b € K.

2) (U;+, (Uy)i<i<4, U1, . ..,us) with U; the root groups and u; = x;(1) € Uj.

Proof. As in the proof of Corollary 1.6.5. u

Theorem 1.7.4. Let (K; Ly, Ko) be a weak indifferent set, T(K) a maximal torus of
PSp4(K), and T a subgroup of T (K) normalizing the group PSp,(Lo, Ko) and con-
taining T (K) N PSp, (Lo, Ko).
Let M be the structure
(Ko; Lo, T, +, )

consisting of the group Ko with the subset Ly, the abstract group T with its multipli-
cation, and the following additional structure:

(1) the map u : Ko x Ko — Ko defined by u(a,b) = a*b;

(2) actions of T on Ko and on Ly which correspond to the actions of T on two root
subgroups Uy, Ug with a, B the two simple roots, where « is short and § is
long.

Then the group G = T PSp, (Lo, Ko) is interdefinable with M.

In particular, G is stable if and only if M is stable.
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Note that by Lemma 1.2.7 we may also include fields K, L with
R*<Ly<L<Ky<K,

where K contains K, but to do so we need to choose fields which are definable in the
given structure.

Typically T is a product of “root tori” (intersections with root tori in 7(K)), and
this can be simplified further to just take the action of a given root torus on the corre-
sponding root group. But we prefer to give the statement in its general form.

Proof. We repeat the proof of Theorem 1.3.5 with minor adjustments.
1. First we show that G is definable from the coordinatizing structure M. We will
take a definable field K with

KR*<Ly<Ko<K<K

and work in the larger group G(K) as the “ambient” group.

We build the group U(k, K) as a subgroup of the group PSp,(K) using the coor-
dinate system (I? ; Lo, Ko). We use the action of T on Ly and Ky to define an action
of T on the root groups U, (Ko) and Ug(Ly) for a, 8 simple, a short, B long, which
determines the action on U by the commutator formula; that is, the two given root
groups generate U (k, K) in a bounded way. One can then find a unique embedding of
T into T(K) which respects that action. So now B is a definable subset (in an appropri-
ate language) in PSp, (K). The Bruhat decomposition therefore gives G as a definable
subset of PSp, (K), and the multiplication law is inherited, so the group G is definable.

2. For the converse, we first show that U and T are definable in G using parameters.
We exploit the definability of centralizers as follows*. Working in G(K%¢) for G an
algebraic group, we know that the descending chain condition on centralizers holds,
i.e., that given X c G(K“®), there is some finite Xy C X such that Co(kaiz)(X) =
Cg(kats)(Xo). But this property is preserved by going to subgroups: i.e., if X C G,
then Cg (X) is definable. In particular, as the torus Ty (k, K) is self-centralizing in the
group PSp,(k, K), the group T is self-centralizing in G, hence definable. Similarly,
the centralizer Z of U(k, K) in G is the center of U(k, K). So T and Z are definable
in G.
Claim. Each root subgroup U,, is equal to CC (U, ), hence definable.

Proof of the claim. First, we can suppose the root subgroup is in the center of U, because
root groups of the same length are conjugate (see Appendix I.15 in [12], or Lemma C,
section 10.4 in [6] in the classical case). Then its centralizer contains U, and contains
the rank 1 component Lg = (Ug, U_g), with +f3 the unique root orthogonal to @ so

4Cf. [10], as mentioned in the note on p. 5.
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that Lg < Cg (U, ). Hence the double centralizer of U,, is contained in the center of U

and commutes with Lg. Looking at Lemma 19(c) in [12], we see that the action of a

typical element /g (t) of the torus of Lg acts on a root subgroup U, as multiplication

by t%-7) where (8,y) denotes the inner product of the roots 3,y in R2. In our case a

is the only positive root which is orthogonal to 8, which proves our assertion. ]
Thus the group U is definable as the product of the U, with « positive.

If Ly = (U+q), we can also define the group TL,. Indeed, we have the group
B, =TU,, and then TL,, is definable via its Bruhat decomposition. If k = Ly or K
is the parametrizing group for Uy, this group gives us (k, T) with T represented via
its action on k.

As we have the group U, we have the remaining structure on the coordinate system,
by Theorem 1.7.2. ]

1.8 Concluding Remarks

While the paper is certainly not self-contained, we have developed some parts of the
group theoretic analysis in large detail, as it casts considerable light on the definability
issues and other important matters. Much of this is of the sort found in Steinberg’s
notes [12] or, from a radically different point of view, in the book of Tits and Weiss
[18].

Once again, Theorem 1.2.2 (as well as Theorem 1.2.6) applies to give a number of
stable simple groups acting as automorphism groups of Moufang polygons of indif-
ferent type, or in some cases stable groups with simple commutator subgroup acting
as automorphism groups of the same kind. In particular, in some cases adding a non-
definable field to the coordinatizing structure will provide additional examples which
are in fact simple.
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