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ABSTRACT

We discuss Lachlan’s classification theory for finite homogeneous structures and related problems

on finite permutation groups. Lachlan’s theory provides a hierarchy of classifications in which

structures which are “sporadic” in one context reappear as members of infinite families at later

stages. Every finite structure is accounted for at some level in this hierarchy, but for structures

associated with familiar primitive permutation groups the combinatorial problem of locating

that level precisely can be quite challenging.

. . . in most categories few objects have the Witt

property; those that do are very well behaved in-

deed. [As, p. 82]

Introduction

When classification results are enlivened by the appearance of uninvited guests in the form of

“sporadic” objects, those who take an interest in these interlopers may be tempted to account for

them in various ways, possibly by viewing them as coming from infinite (perhaps even continuous)

families of more general objects which may be natural from some broader point of view. In pure

model theory, Lachlan’s classification theory for finite homogeneous relational structures provides

a relatively well understood illustration (or “toy model”, if you will) of this sort of thing. This

theory, which will be reviewed below, provides an infinite number of classification theorems of a

general character for combinatorial structures with rich automorphism groups, parametrized by

certain bounds on the complexity of the structures. Any finite structure will actually appear at

some stage in one of these classifications, and may well occur as a sporadic structure initially; in

the long run, every sporadic structure winds up belonging to a family parametrized by numerical

invariants; at any given stage, only finitely many structures occur as sporadics; and finally, one

will never “move beyond” the sporadics: we will always encounter new structures making their

appearance as (temporarily) sporadic structures.

1 Supported in part by the Binational Science Foundation BSF 0377215
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That this sort of thing would occur on a regular basis is only natural, though it may be

surprising that this state of affairs would be described by a theorem in a natural and reasonably

general setting. The general theorem is actually a consequence of one single finiteness result – the

finiteness of the set of sporadic simple groups – and some permutation group theory. (See §2 for

an explanation of how we can view structures as a special case of groups, rather than the other

way around.) It should be said that whatever the motivation, in working out this theory one does

not need to think about the phenomenon of sporadicity as such, and what is really involved is

the finiteness theorem given below as a Coordinatization Theorem (§5), which is equivalent to the

Bounded-Rank Theorem mentioned briefly in §7.
The notion of homogeneity also leads one to associate a natural measure of complexity κ(G,X)

with any finite permutation group (G,X), which may be of interest in its own right; this can be

studied from a combinatorial point of view without reference to any theoretical background in

model theory. This invariant behaves somewhat like a dimension; for example, for a vector space

of dimension n (that is, for the group (GL(V ), V )) κ will be n+ 1. Determining the complexity of

specific permutation groups with precision can be quite challenging, and I have included a selection

of open problems in the final section, which can be read independently of the presentation of the

general theory, though it will no doubt be helpful to look over the background material in the first

three sections, which contain a number of specific examples.

In the last example of §3 we will see how one fairly rich family of examples divides into families

and sporadics at each level of analysis, with the number of families and sporadics finite at each

stage; but in this case, at least, the number of structures counted as sporadic is exponentially large

compared to the number of parametrized families encountered.

Pure model theory at the present time consists largely of ideas connected with Shelah’s “clas-

sification theory”, which attempts to provide a very general theory of classification of structures.

This comes in a number of variants, most of which emphasize the classification of infinite struc-

tures. For example, when these ideas are specialized to the case of modules over a ring, they

involve the classification of pure-injective indecomposable modules, with ideas very closely related

to representation theory. It was seen by Lachlan that the model theoretic approach also makes

sense for certain broad classes of finite structures: homogeneous structures (for a finite relational

language). These results have since been generalized (notably by Hrushovski) to cover reasonably

broad classes of finite permutation groups. I will say a little about this as well, mainly in §8.
The point of Lachlan’s theory is that it involves an infinite number of related classification

problems; for each type of structure, the homogeneous structures of that type can be rather thor-

oughly classified. In each instance, the structures involved fall naturally into a finite number of

families, and within each family the individual objects are parametrized by a finite number of nu-

merical invariants which may be varied independently. It is possible for the number of invariants

needed to describe an object to be zero, in which case the family degenerates to a single structure –

and these are the structures which may be considered sporadic. We have said that any finite object

will eventually be covered by one of these classification schemes; in other words, any structure can
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be viewed as homogeneous of some type (see the example in §1 and the general considerations

of §2). In passing from one classification problem to the next, what generally occurs is that (1)

new families arise; (2) in the old families, additional numerical invariants are acquired which may

be varied independently. In particular, the sporadic objects from one classification scheme are

eventually absorbed into parametrized families. So in this model, sporadic objects can always be

understood as part of some larger classification scheme, but sporadicity itself is not escaped.

In the next section I will give a concrete example of all of this: a 1-parameter family of graphs

which contains three homogeneous graphs but which enters as a family of homogeneous structures

of a slightly more complex type. We will see later that a slight generalization of this provides

simple and very uniform families of graphs, some of which will be considered sporadic at more

or less every level of Lachlan’s hierarchy. The analysis of these examples has been carried out

with extraordinary precision by Saracino, building on the rough analysis of [CMS]. The bulk of his

results are summarized at the end of §3.
Although Lachlan’s theory provides a classification of the homogeneous finite relational struc-

tures of any specified type (for definitions, see §2), the literature generally refers to the classification

of homogeneous stable relational structures, a broader class with a comparatively technical defini-

tion, which turns out to consist of the finite ones and their infinite limits. There are good reasons

for this generalization: to prove the theorems, it is very convenient to move back and forth be-

tween the large finite structures and their infinite limits. Shelah’s notion of stability is one of the

fundamental concepts of pure model theory; Lachlan realized that in the context of homogeneous

relational systems, it is equivalent to “smooth limit of finite” (cf. §4). This has led to a fruitful

interaction of model theory and the theory of permutation groups, which involves an interplay

between the group theoretic analysis of large finite structures, and the combinatorial analysis of

their infinite limits. All of this depends ultimately on the classification of the finite simple groups.

There are a number of expositions of this theory. The theory of (and some major open problems

concerning) homogeneous structures in general and finite or stable ones in particular is discussed in

Lachlan’s ICM lecture [La2]. A detailed account of the classification theory for finite homogeneous

structures is given in [KL]; this combines a detailed exposition with some major expositions and

an important advance (the form of the Stretching Theorem given in §6 below). It does assume

familiarity with the language and point of view of model theory, which to some extent the present

article is intended to provide (via examples, the general discussion in §2, and a handful of technical

definitions). The subject of homogeneity is also the final topic taken up in the text [DM], which

also discusses a number of other topics in permutation group theory which have been important to

its users in model theory, such as the O’Nan-Scott Theorem.

In the long run the most general form of this theory would be a structural analysis of large

k-closed permutation groups of bounded rank (with both k and the bound on rank taken as fixed).

This has not been carried out, but an intermediate stage, in which the bound on rank is sharpened

to a bound on the number of orbits on 4-tuples, is discussed in [Hr]. This depends on a thorough

analysis of the primitive case by group theoretic methods [KLM]; but the analysis of the general
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case requires a very heavy dose of model theory, and indeed traditional permutation group theory

has little to say about the imprimitive case. Technicalities aside, the final form of the theory is quite

similar to the theory we will encounter in Lachlan’s original case, with the main difference being

the appearance in [KLM] of structures conspicuous by their absence in Lachlan’s theory: vector

spaces with their classical adornments (inner products and quadratic forms), and – in characteristic

2 – also some less classical adornments (see §8).
I thank Saracino for keeping me apprised of his very delicate work, which contains the most

subtle analysis of the behavior of the parameter κ (§2) for any specific family of primitive permu-

tation groups.

Contents

§1 The graphs n2

§2 Structures and permutation groups

§3 κ(X ): examples

§4 Finite and smoothly approximable homogeneous graphs

§5 The Coordinatization Theorem

§6 Amalgamation

§7 Rank: stability, bounds

§8 Smoothly approximable algebraic systems

§9 κ(X ): problems

§1. The graphs n2.

In the next section we will present the general correspondence between finite permutation

groups and finite structures, which are essentially the same thing. Here we look at one example

of a family of structures or permutation groups whose properties illustrate some of the issues that

turn out to be central in the general theory. This example can be analyzed easily in complete

detail, but its natural generalization is still not thoroughly understood (§9, Problem 3).

Definition

The graph nd has as its vertex set the set of all d-sets taken from an n-element set, with edges

between d-tuples u and v if they differ at exactly one vertex.

Note that the automorphism group of nd is the wreath product Sym(n) ≀ Sym(d); for this

reason this graph may be referred to variously as a “power” or a “wreath product action”, according

as one pays more attention to the graph or permutation group; these two points of view are

equivalent for our purposes.

In the present section we consider only the graphs n2, which are also referred to as the line

graphs L(Kn,n), as they can be viewed as graphs derived from the complete bipartite graphs Kn,n

by taking the edges of Kn,n as vertices, with two edges adjacent if they have a vertex in common in

Kn,n. For n ≤ 3 these graphs are homogeneous in the following sense: any isomorphism between two
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induced subgraphs is the restriction of some automorphism. For n > 3 they are not homogeneous

as graphs, because they then contain two classes of graphs of the form 2 ·K2 (meaning, two disjoint

edges): “parallel” edges and “orthogonal” edges.

For n = 3 the graph obtained is considered sporadic (either informally, or as an instance of

Lachlan’s theory). For n = 1, 2 these graphs are not sporadic. For n = 2 the graph is complete

bipartite graphs and belongs to a family of homogeneous complete multipartite graphs parametrized

by two numerical parameters, while for n = 1 the graph belongs to the complementary family: the

complement of a complete multipartite graph is a disjoint union of complete graphs.

What matters here, though, is the fact that all the graphs n2 do in fact occur as one infinite

family of homogeneous structures – but not as graphs. We may instead consider these graphs

as coming equipped with a 4-place relation of parallelism, P (v1, v2, v3, v4). This may be defined

from the edge relation as follows: if two disjoint edges have the property that the four vertices

involved have no further edges between them, the edges are parallel if there is no vertex adjacent

to all four of the given vertices. In particular the automorphism group of the original graph

is also the automorphism group of the enriched structure. However, in the category of graphs-

with-parallelism, all of these structures are homogeneous, in the sense that parallelism-preserving

isomorphisms between subgraphs are induced by automorphisms.

An important point here is that we consider the two structures on n2 – the graph structure,

or the structure of a graph with parallelism – as identical structures, even though they are of

different types. We justified this by looking at them as permutation groups; logicians would have

expressed this directly, in terms of the structures, by stating that the relations in each structure

are definable from the relations in the other structure (definable over ∅, specifically). Most of the

notions coming from model theory can be translated into the language of permutation groups, and

it can be technically advantageous to do so on occasion (just as it can be equally advantageous,

on other occasions, to make the translation in the other direction). In particular the very rich

information contained in the classification of the finite simple groups is largely inaccessible from

the structural point of view, though it looms very large indeed in the analysis of the associated

permutation groups.

Thus if one traces through Lachlan’s classification theory for the case of graphs, the graph

32 will necessarily occur sporadically (while 12 and 22 can easily be absorbed into other infinite

families); once the classification is extended to a sufficiently rich class of 4-hypergraphs, the infinite

family n2 will occur as an infinite family indexed by the parameter n (this happens, so to speak,

automatically, on the basis of general principles).

For the graphs nd the situation is more complicated and as d increases the complexity of the

additional relations which must be considered goes to infinity, as does the number of exceptional

cases (with d large relative to n) which occur prematurely as sporadic examples. The place of these

structures in the hierarchy of homogeneous structures was determined with extraordinary precision

by Saracino. We will present this in §3 after setting up our point of view in general in the next

section.
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If one replaces the natural representation of Sym(n) on n elements by its representation on k-

sets (so the original representation corresponds to k = 1) then the analysis remains very incomplete,

though it is possible that Saracino’s analysis extends in some reasonable way to k > 1.

§2. Structures and permutation groups

The structures considered in Lachlan’s theory will be relational structures X = (X;R) with

R = (R1, . . . , Rr) a finite sequence of relations. If the relation Ri is an ni-ary relation, the signature

of the relational structure X is the sequence τ = (n1, . . . , nr). Thus a signature is a finite sequence

of natural numbers, and defines a certain type (or category) of relational structure. There are

good reasons to add some more data to the signature (for example, one could impose generalized

symmetry and irreflexivity properties on each relation) but laying this out in detail would be both

tedious and irrelevant to our present purpose.

There is a Galois connection between finite structures and finite permutation groups. We

assign to the structure (X ,R) the permutation group ( AutX ,X). In the other direction, given

a permutation group (G,X), a relation on X is called invariant (specifically, G-invariant, if the

context is not otherwise clear) if it is invariant under the action of G. We may associate to a finite

permutation group (G,X) the relational structure X whose relations are all the k-ary invariant

relations for k ≤ |X|.
This establishes a 1-1 correspondence between the image of the connection on both sides: in

other words, between the faithful finite permutation groups and some structures, called canonical

structures, not much encountered in nature, but much encountered in model theory: they are

essentially the structures in which every definable relation is given explicitly as part of the structure

(apart from the generous cut-off at complexity k; there is not, in any case, much use for (k + 1)-

ary relations on a set of size k). For many purposes finite structures that correspond to the

same permutation group should be identifed; this was illustrated in the previous example by our

observation that the parallelism relation is implicit in the graph structure on n2, and hence might

as well be added as an ingredient of the structure.

At any given moment one is likely to be working on one side or the other of this Galois

connection, but using notions that originate on both sides; so it is useful to build up a glossary

giving the meaning of concepts originating on one side in the language of the other. We will give

some examples.

As we have said, a relation R on the set X is said to be invariant – or alternativelydefinable –

in the structure X = (X,R) if it is ( AutX )-invariant. This coincides with first order definability

without parameters when X is finite – hence the alternative terminology.

A structure is primitive if it has no nontrivial invariant equivalence relation – this notion has

always been emphasized in permutation group theory, and the same terminology has been adopted

by model theorists.

A permutation group is k-closed if it is the image in the Galois connection of some structure all

of whose relations have at most k places, and the k-closure of a permutation group is the smallest
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k-closed group containing it. The intrinsic definition runs as follows: the k-closure of (G,X) is the

set of permutations σ with the property that for any k-tuple x in X, the image of x under σ lies

in the orbit of x under G; and (G,X) is k-closed if it equals its k-closure. This is an important

notion for us, as it recaptures some information about the original presentation of the structure

which one might have expected to see washed away by the Galois connection.

This may be refined as follows: the complexity of a permutation group (G,X) is the pair (k, r),

where k is minimal such that G is k-closed, and r is minimal number such that there are r (≤ k)-ary

invariant relations in a structure X for which AutX = G. The signature of a structure and the

complexity of the associated permutation group are closely related; the complexity of a permutation

group measures the size of the simplest signature σ such that some structure of signature σ has the

specified group as its automorphism group. In model theory, the signature is taken as given at the

outset; in permutation group theoretic terms, this amounts to bounding the complexity.

Another invariant of k-closed groups which is relevant here is the number rk of orbits of G on

Xk; these orbits are called k-types and may defined in structural terms as the atoms in the boolean

algebra of invariant (= definable) relations. We will have r ≤ rk and in the context of homogeneous

structures, rk ≤ 2k2
r

, so once k is bounded, bounding the complexity or bounding rk amounts to

the same thing.

A finite relational structure is homogeneous if every isomorphism between induced substruc-

tures is the restriction of an automorphism. We say that a finite relational structure is k-ary if

it is equivalent (or, with some abuse of language: isomorphic) to a homogeneous structure whose

relations are k-ary. On the permutation group theoretic side, we may translate this to the following

condition which is rather tricky to analyze in practice: (G,X) is k-ary if for any n ≤ |X|, if a, b
are two n-tuples with the property that all pairs of corresponding subsequences of a, b of length

at most k lie in the same G-orbit, then a and b lie in the same G-orbit. If a group is k-ary then

it is k-closed, but the converse is thoroughly false. The automorphism groups of the graphs n2 in

the preceding section are 2-closed by definition, but the main point made about them there was

that they are usually not binary in our sense (in other words, they are not homogeneous as binary

structures); they are 4-ary structures.

Aschbacher refers to homogeneity as the Witt property in the passage cited in our epigraph,

which continues: “If X is an object with the Witt property and G is its group of automorphisms,

then the representation of G on X is usually an excellent tool for studying G.” Indeed.

The notions of homogeneity and k-arity are the starting point for Lachlan’s theory, which

concerns the class of k-ary structures for k fixed, and with a bound on rk also fixed.

Notation

Let X be a structure. We write κ(X ) for the degree of homogeneity of X , which is the least k

for which X is k-ary.

While Lachlan’s theory provides a good classification of structures with κ(X ) and rκ(X )

bounded, and while every finite structure comes into this classification eventually, with κ(X) ≤ |X |,
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the theory does not provide any information directly about the point at which a given structure

of mathematical interest will occur, that is: how is κ(X ) computed for interesting structures (or

permutation groups) X ?

We have now introduced our basic vocabulary, but as we noted in passing above, something

odd happens with the notion of isomorphism, and this is worth dwelling on. Two permutation

groups (G,X) and (H,Y ) will be considered isomorphic if there is a bijection of X with Y carrying

G to H. This notion will be carried over to structures: X will considered isomorphic to Y (via the

map f : X ↔ Y ) if ( AutX ,X) is isomorphic to ( AutY, Y ) (via the same map). For example: a

graph is isomorphic to its complement via the identity map; the graphs n2 are isomorphic to their

enrichments by the parallelism relation; a finite set carrying a successor relation is isomorphic to the

same set equipped with the induced linear order. Graph theorists may well disagree with the first of

these examples, but from our point of view there are two nontrivial relations between vertices, and

it is not of much importance which one is called the edge relation; in the canonical structure, this

amounts to permuting the names by which various relations are known. This cavalier attitude is

appropriate in dealing with homogeneity, and more generally with any issues that can be understood

at the level of permutation groups. Once one is committed to this notion of isomorphism, one tends

to replace the terms “relational structure” and “permutation group” by “permutation structure”,

and to lose track of which side of the Galois connection one is actually working with at any given

moment.

In §1 we encountered an example of the wreath product construction. On the permutation

group side, one begins in general with two permutation groups (G,X) and (H, I), called, respec-

tively, the base group and the index group. One then forms the wreath product (G ≀H,XI) which

is set-theoretically a power on which GI acts coordinatewise, while H permutes the coordinates.

Thus G ≀H = GI>⊳H. The same construction applied to a base structure X and an index structre

I yields a canonical structure X I , which may be replaced in practice by some other structure with

the same automorphism group.

There are two extreme cases: let d represent the permutation group Sym(d) acting naturally

on {1, . . . , d} (as a structure this is a bare set, carrying only the equality relation), and let d̄ be the

trivial group acting on the same set, which in structural terms is a labeled set whose elements are

treated as distinguished constants. The power X d̄ is the traditional power which can be given by

lifting each of the relations on X (including the equality relation) to d relations operating in the d

possible “directions”. In particular the equality relation lifts to n equivalence relations. The power

X d is the symmetrized power in which the coordinates may be freely permuted. In particular nd

was presented concretely in §1: it is the wreath product of two sets with no additional structure.

These are among the simplest structures occurring in nature, though by no means the simplest

structures from the point of view of the computation of κ(X ).

Some useful permutation group theoretic notions have no apparent analog on the structural side

of the Galois connection: notably the socle, and more generally the notion of a normal subgroup.

In particular the structures corresponding to the natural representations of Sym(n) and Alt(n)
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on {1, . . . , n} have virtually nothing in common from the point of view that interests us: the former

is degenerate, and the latter has κ maximal. On the other hand, as we will see, there are excellent

reasons for returning to the structural side of the picture, particularly as we exploit the possibility

of taking infinite limits of our structures; though the Galois connection survives in the infinite

limit, with some modifications, still its group theoretic side becomes largely useless. To make the

connection work well with X infinite, one takes into account the natural topology on Sym (X),

and one restricts attention to closed groups having finitely many orbits on Xk for each k. For

some of this, see [DM] or [Ca2]. In any case we will not actually exploit this connection in infinite

structures.

There is one quite reasonable operation which can behave atrociously, regardless of which side

one operates on: formation of quotients. This is of some technical importance, and one of the

main theorems in the subject is concerned with the structure of such quotients (Proposition 1,

§3). In a permutation structure X , the invariant equivalence relations form a lattice with 0 and 1;

the structure is primitive if this is the whole lattice. If E1 and E2 are two invariant equivalence

relations with E1 ≥ E2 in this lattice, and if C is an E1-class, then the quotient C/E2 is naturally

a permutation structure: the group acting on C/E2 is the faithful version of the group induced on

C/E2 by the setwise stabilizer in AutX of C. When E1 covers E2 and E2 is nontrivial on C, this

quotient is primitive. Some properties are inherited, notably bounds on the number of k-types for

each k. The properties of k-closure and k-arity behave as badly as one could imagine. In fact:

Every finite structure is a quotient of a finite binary structure.

For example if the automorphism group is transitive, and (G,X) is the corresponding permutation

group, then the structure is naturally a quotient of the right regular representation of G, which is

binary homogeneous (equip the underlying set of G with one binary relation for each element g of

G, which encodes the action of g by right multiplication).

Another complication: the Jordan-Holder theorem fails badly in this context. Consider for

example the structure Xn consisting of ordered pairs from {1, . . . , n} with distinct entries, on which

Sym (n) acts naturally. If E is a nontrivial invariant equivalence relation on Xn, one can analyze

the structure as an extension of the quotient Xn/E by the structure on an E-class. If E is the

relation of having an identical first coordinate, this means Xn is treated as an extension of n by

n. If we consider instead the relation E′ of corresponding to the same unordered pair, then Xn

becomes a 2-fold cover of n2, which is a primitive structure; furthermore Xn is binary homogeneous,

and in just one of these two analyses the components are also binary homogeneous. In spite of this,

one can still get useful information using induction on the length of such (non-unique) composition

series.

The next section contains a variety of examples illustrating the behavior of κ(X ). This is a

digression as far as the general theory is concerned; we return to the main line in §4 with the

classification of the finite homogeneous graphs, in which the outlines of a general theory of finite

homogeneous structures are very dimly visible – sufficiently visible to Lachlan, in any case, to spark

the development of that theory.
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§3. κ(X ): examples.

Let us write k(X ) for the least k such that Aut (X ) is k-closed, and κ(X ), as in the previous

section, for the least κ such that X has a presentation as a κ-ary structure; equivalently, this

means that every Aut (X )-invariant relation is a boolean combination of Aut (X )-invariant κ-

place relations. The present section will offer a smørgasbord of examples illustrating the behavior

of κ(X ), and the reader is invited to consult his own appetite.

The computation of both k(X ) and κ(X ) present substantial difficulties, but the basic meaning

of the invariant k(X ) seems the more accessible. For example, for k = 2: a permutation group is

2-closed if it is the automorphism group of the directed graph with colored edges (some symmetric,

some asymmetric) obtained by taking the orbits of the group on ordered pairs, and giving each orbit

its own color. On the other hand, a permutation group G is binary if every G-invariant relation

is a boolean combination of G-invariant binary relations. In practice, this gets decoded as follows:

(G,X) is not binary if:

there are two ordered sequences a1, . . . , ar and b1, . . . , br of points of X

of length r > 2, not conjugate under the action of G, such that:

any ordered pair of elements from a is conjugate to the corresponding pair from b

under the action of G.

Note that if r > 2 is minimal with this property, then we will have a stronger condition: any

sequence of r − 1 elements of a is conjugate under G to the corresponding subsequence of b. In

this case we might as well take ai = bi for i ≤ r − 1 here. So we may change the to the following

notation: a1, . . . , ar−1, b and a1, . . . , ar−1, b
′ are the two sequences, and our condition becomes (for

some r > 2):

(∗)
b and b′ lie in distinct orbits over a1, . . . , ar−1,

but in the same orbit over any r − 2 of the elements ai

where the orbit “over” a set of points is the orbit under the pointwise stabilizer of that set in G.

An advantage of the last formulation is that with r fixed, it expresses: κ(X ) ≥ r; so it is no longer

tied to the case κ = 2.

Example 1

If X is a naked set (i.e. Aut (X ) = Sym (X)) then κ(X ) = 2.

This is intuitively obvious and can be read off of (∗) directly; the orbit of b over a1, . . . , ar−1

is determined by its orbit over each of the ai (which amounts to determining whether b is equal to

one of the ai).

Example 2

κ( Alt(n),X) = n− 1 where Alt(n) acts naturally on X = {1, . . . , n}.
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Just look at the sequences (1, . . . , n − 2, n − 1) and (1, . . . , n − 2, n). These demonstrate

that κ( Alt(n),X) ≥ n − 1. The reverse inequality is equally evident, by the same test. (And

κ(G,X) < |X| for any permutation group, for the same reason.)

Example 3

Let V be (GL(V ), V ) with the natural action. Then κ(V) = dimV + 1 if the base field has

more than 2 elements, and is dimV otherwise.

The relevant pair of sequences a, b; a, b′ is gotten by taking a to be a basis, b =
∑

i ai, and b′

some other linear combination with all coefficients nonzero, assuming the base field has more than

two elements. Otherwise one takes a to be a basis with one element removed; b =
∑

i ai; and b′

is an additional basis element. This provides the relevant lower bound for κ in each case, and the

upper bound is a triviality; in fact the upper bound dimV + 1 will hold for any group of linear

transformations on V (though not necessarily for a group of semilinear transformations).

This is a good example, because κ(X ) is a measure of complexity which is very like the

dimension of an arbitrary finite structure, but taking into account all invariant relations among

elements, and not just those provided in the original description of the structure X . The next

example continues this line of thought.

Example 4 [CMS]

Let
[

n
k

]

be the permutation group Sym (n) acting on the set of k-sets in a set X = {1, . . . , n},
with n ≥ 2k (or n > 2k if one insists on primitivity). Then κ(

[

n
k

]

) is [log2 k] + 2.

We may think of
[

n
k

]

also as a graph: two k-sets may be taken to be adjacent if they are

disjoint (e.g., for n = 5, k = 2: the Petersen graph). This is the same structure (has the same

group of automorphisms), so the group is 2-closed. According to the formula, though, κ(
[

n
k

]

) > 2

for k > 1. For example, k = 2: κ(
[

n
k

]

) = 3 in this case, and this is illustrated by the triples

{1, 2}; {1, 3}; {1, 4} and {1, 2}; {1, 3}; {2, 3}. It requires a little more care to check that κ ≤ 3 in

this case.

For the general case, one first gives a similar example showing κ(
[

n
k

]

) ≥ [log2 k]+ 2. The work

comes in the reverse inequality. One notes that the orbit of a sequence of k-sets is determined

by the cardinalities of the atoms in the boolean algebra they generate (we allow degenerate atoms

which are empty; they are really labelled by atoms in the free boolean algebra on the same number

of generators). One has to show that these numbers are determined by the corresponding data for

the subalgebras generated by [log2 k] + 1 elements; the main point is just that whenever a set is

split into two pieces, one of the pieces is at most half as large as the original.

These particular structures play a fundamental role in the general theory, where they occur as

“grassmannian” structures (motivated terminologically by the fact that they are the q = 1 versions

of grassmannians in vector spaces over Fq).

Example 5

Let
[

n
k

]◦
be the permutation group Alt(n) acting on the set of k-sets in a set X = {1, . . . , n},



Sporadic homogeneous structures June 24, 2003 12

with n ≥ 2k. Then κ(
[

n
k

]◦
) = max(n− k, n − 3), except for k = 2, n = 4, where the value is 3.

One gets lower bounds for κ from examples, and fortunately the values are high enough that

one can get matching upper bounds without getting too badly bogged down. We will give some

details, since this is not been documented elsewhere.

One may assume k ≥ 2, and the case k = 3, n = 6 is best inspected separately.

The lower bounds

For k = 2 it suffices to consider the induced action on {{i, n} : i < n}, which is equivalent to

Alt(n − 1) in its natural representation. This gives the lower bound κ ≥ n − 2 in this case, by

example 2. For n = 4 one examines the orbits of a specific pair of sequences: {1, 2}, {1, 3}, {1, 4}
and {1, 2}, {1, 3}, {2, 3}; the same ones which would be used for the full symmetric group.

For k ≥ 3 we need an explicit example. We set ai = {i} ∪ {k, k + 1, . . . , 2k − 2} for i ≤ k − 2,

and ai = {1, . . . , k − 1} ∪ {i + 2} for k − 1 ≤ i ≤ n − 4. Taking b = {1, . . . , k − 2} ∪ {n − 1}
and b′ = {1, . . . , k − 2} ∪ {n}, we claim that b and b′ lie in distinct orbits over a = (a1, . . . , an−4)

and in the same orbit over any proper subsequence. To see this one has to compute the pointwise

stabilizer in Alt(n) of a and of its subsequences; this amounts to computing the boolean algebra

generated by one of these subsequences, or at least getting sufficient information about the atoms.

The atoms of the algebra generated by a are {i} for i ≤ n−2 together with {n−1, n}; the pointwise
stabilizer of this algebra in Alt(n) is trivial. Over proper subsequences one identifies larger atoms

easily, and one then sees that b, b′ lie in the same orbit for their stabilizers in Alt(n). The case

k = 3, n = 6 should be treated separately from the general case.

This analysis shows that the value we have given for κ(
[

n
k

]◦
) is a valid lower bound.

The upper bounds

To get matching upper bounds is more troublesome. One considers any pair of sequences

a1, . . . , aκ, b1, . . . , bκ illustrating that κ ≥ κ(
[

n
k

]◦
), and one shows that κ ≤ n − 2, and κ ≤ n − 3

for k ≥ 3. Leaving aside the case k = 3, n = 6, this is done by looking closely at the sequence

a1, . . . , aκ, which has the following property, without loss of generality:

(∗) ai is not in the boolean algebra generated by (aj : j 6= i) for any i

Indeed, if this fails then ai is fixed over (aj : j 6= i) by the full symmetric group, and then

Example 4 applies to show κ ≤ [log2 k] + 2, a bound which yields κ ≤ n− 2 for k = 2, apart from

the known exception n = 4; and the same estimate yields κ ≤ n− 3 for k ≥ 3 and n ≥ 2k. So we

need only consider the case (∗).
As k ≥ 2, the ai are not all disjoint, so we may suppose a1 meets a2; then the boolean algebra

generated by a1, a2 will have 4 atoms, and applying (∗) the boolean algebra generated by the ai

will have at least κ+2 atoms, proving κ ≤ n− 2 and indicating that the case κ = n− 2 is extreme.

Suppose now that k ≥ 3. We must eliminate the possibility κ = n− 2. One finds a1, a2, a3, a4

generating 7 atoms, which suffices; in fact one finds a1, a2, a3 generating 6 atoms in many cases. A

useful observation is that the ai separate points as there are n − 2 of them and the algebra they

generate must have at least n atoms.
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One should dispose first of the case n = 2k, k ≥ 4, leaving the case n = 6, k = 3 to be dealt

with by inspection. The methods are much the same as those used in the main case: k ≥ 3, n > 2k.

Suppose first that one can choose a1, a2 so that |a1∩a2| = k−1. As the ai separate points, we

may take a3 splitting a1∩a2. Then ai cannot split (a1∪a2)
′ as otherwise we already have 6 atoms.

On the other hand |(a1 ∪ a2)
′| ≥ k so ai cannot contain (a1 ∪ a2)

′ either, and a3 ⊆ (a1 ∪ a2). Hence

ai consists of k− 2 elements of a1∩ a2 and the two elements of (a1 ∪ a2) \a1 ∩ a2. In particular this

analysis shows that a1 ∩ a2 is not contained in any other aj , as otherwise the same analysis would

apply with aj in place of a2.

Now one uses fully the fact that the ai separate points. Let A = a1 ∪ a2. We may suppose

that A = {1, . . . , k + 1}, and then after relabeling that ai = A − {i} for i ≤ k. Then if ai splits

A′, we find ai ∩A = ∅ as otherwise we can choose i1 < i2 ≤ k so that ai1 , ai2 , ai generate at least

6 atoms. If now follows just by counting that κ ≤ n − 3; in addition to the k elements ai already

determined above, there are at most n− k − 3 disjoint from A, using (∗).
The rest goes similarly and more quickly. Taking a1, a2 so that l = |a1 ∩ a2| > 0 is minimized,

one finds easily that l = 1 (distinguishing the cases l > k/2, l ≤ k/2 along the way). Then splitting

(a1∪a2)
′ and a1 \a2 by elements a3, a4, one either gets the desired subalgebra on 3 or 4 generators,

or in the remaining case one finds |a3 ∩ a4| = k − 1, the case treated at the outset.

We now consider the binary case further. An affine group of dimension d is a subgroup of

AΓL(V ) containing the translation subgroup V , with V d-dimensional; it is strictly linear if it is a

subgroup of AGL(V ). Here AGL(V ) = V >⊳GL(V ) and AΓL(V ) = V >⊳ΓL(V ).

Example 6

A primitive 1-dimensional strictly linear affine group G is binary if and only if it is cyclic or

dihedral; otherwise κ(G) = 3.

The structures in the cyclic or dihedral cases are directed or undirected cycles, respectively, of

prime order.

Note that the stabilizer of any two points is trivial in this case. This already forces κ(G) ≤ 3.

So the only point is to identify the binary cases. Since the group is 1-dimensional, we will denote

it F>⊳µ where F is the additive group of the base field and µ is a subgroup of the multiplicative

group. We assume |µ| > 2 and we show that G is not binary. Consider the triples (0,−1, g) and

(0,−1, g−1) with g ∈ µ, g 6= ±1. Since the stabilizer of two points is trivial and g 6= g−1, these

triples lie in distinct orbits. However the pairs (0, g) and (0, g−1) lie in the same orbit under µ,

and the pairs (−1, g) and (−1, g−1) lie in the same orbit under G – translate by +1 and multiply

by g−1. Thus we have an explicit violation of binarity.

We will push this a bit further because it will complete the list of currently known primitive

binary permutation groups; and the determination of all such would be very welcome.

Example 7

Let G be a primitive 1-dimensional affine group, not strictly linear. Then κ(G) ≤ 4 and G is

binary if and only if G has the form Fq2>⊳µq+1>⊳〈σ〉 with σ of order 2.
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Proof :

For the upper bound, one shows that the permutation group given by the stabilizer of two

points is binary. (Any action of a cyclic group is binary.) The typical value is probably 4 and one

may be able to identify all the exceptions, but this has not been done. For our purposes, it suffices

to identify the binary ones. We leave to the reader the computation that the the groups listed are

binary; we will analyse these examples a little more below. The main point is that no other binary

examples are to be found in this class.

Suppose G is binary, G = F>⊳H with H ≤ F×>⊳Γ, Γ = AutF. Then the argument given in

the linear case applies, but shows only that for h = aσ ∈ H, 1h = 1h
−1

, i.e. aσ = a−1. Let µ be the

projection of H on F× and let Γ◦ be the projection of H on Γ; then for σ ∈ Γ◦, we have just seen

that σ2 fixes µ. However the field generated by µΓ◦ is F, by primitivity, so σ2 = 1. Thus |Γ◦| ≤ 2

and, since G is not strictly linear, Γ◦ = 〈σ〉 with σ of order 2. Thus F = Fq2 for some prime power

q, and aσ = a−1 for a ∈ µ.

Thus H is a subgroup of the desired group H1 = µq+1>⊳〈σ〉. Take aσ ∈ H. Then aσ = a−1

so a = b/bσ, some b, and conjugating G by b (as an element of F×), we may take σ ∈ H. Thus

H = µ◦>⊳〈σ〉 with µ◦ ≤ µq+1. We will show µ◦ = µq+1.

As G is primitive, µ◦ contains some r 6= ±1. Let s ∈ µq+1 be arbitrary. Solve bσ/b = s for b.

Consider the triples (0, b, b/(r+1)) and (0, bs, bs/(r+1)). Any pair from the first triple is carried to

the corresponding pair of the second triple by one of the maps σ, σr, or σr−1. By binarity there is

a transformation g ∈ G taking (0, b, b/(r +1)) to (0, bs, bs/(r+1)). Then g ∈ H, and since bg = bs

it follows that g = σ or g = s. As [b/(r + 1)]g = bs/(r + 1) we can exclude the former possibility

and thus g = s. So s ∈ G, for any such s.

Remark

Let Γq be the binary structure corresponding to the binary 1-dimensional affine group Fq2>⊳

µq+1>⊳〈σ〉. Then Γq is a symmetric graph with an edge coloring by q − 1 colors.

The symmetry means that we can solve the equation aσr = −a with r ∈ µq+1 for any a. This

just means −aσ/a ∈ µq+1, which is the case. This also shows that the orbit over 0 of any point has

order q + 1 and thus there are q − 1 such orbits.

In particular we have an ordinary uncolored graph only for q ≤ 3. The case q = 2 is degenerate

and for q = 3 the associated graph is the sporadic homogeneous graph K2
3 . This is a second way

of accounting for this example, quite different from that of §1. In the case q = 4 one has three

colors, and again this example turns up as one of a small number of sporadics in the classification

corresponding to that case, which was carried out long ago by Lachlan. This particular example is

also used to show that the Ramsey number r(3, 3, 3) ≥ 17, as it provides a graph of order 16 with

a 3-edge coloring without chromatic triangles (an example given by Andrew Gleason).

We do not know of any other finite primitive binary homogeneous structures, apart from those

we have seen: cyclic, dihedral, Γq, and of course Sym (n) acting naturally.
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Example 8: nd

Our final example is considerably more subtle. Recall that nd is the wreath product (acting

on a power) of the natural representations of Sym(n) and Sym(d). The value of κ(nd) has been

worked out by Saracino [Sa]. [CMS] contains estimates of arities of wreath products XY in general,

and shows that the upper bound given there provides the exact value for “most” values of n and

d, specifically: for n ≥ 2[log2 d] + 2.

The upper bound is given in general by

κ(XY) ≤ κ(X ) · κ(P(Y))

where P(Y) is the power set of Y (with automorphism group Aut (Y), acting naturally). We have

κ(n) = 2 and κ(P({1, . . . , d})) = [log2 d]+1 [CMS], and thus κ(nd) ≤ 2([log2 d]+1); and this turns

out to be the exact value for n ≥ 2[log2 d] + 2.

The value of κ(nd) for relatively small values of n follows a more complicated rule, which takes

on a distinctly simpler form if we look instead for a formula which computes, in terms of given n

and κ, the minimum value of d for which κ(nd) ≥ κ. For technical reasons it is better to define a

very similar function δ(κ, n) as the least value of d such that there are two sequences of length κ in

nd of length κ which witness that κ(nd) ≥ κ, in the sense of (∗) above, and which are not conjugate

to sequences occurring in (n− 1)d. The most important point here is that we choose to express d

in terms of n and κ, getting a moderately complex set of conditions which can be explicitly but

more awkwardly solved for κ in terms of n and d.

The main formulas that result are:

δ(κ, n) =











2κ−n/2−1 for κ > n even
3 · 2r−n+5

2 for n ≥ 5 odd and κ > n even
9 · 2r−n+7

2 for κ > n ≥ 5 with κ and n odd
27 · 2r−n/2−5 for κ > n ≥ 8 with κ odd and n even

with similar formulas, and some exceptional values, covering the remaining cases.

The method used is to attach a clearcut combinatorial invariant to the orbit of an r-tuple

in a wreath product. This can be done quite generally, though it is rather messy in general. In

the case of nd the type of an r-tuple can be encoded by a multiset consisting whose elements are

equivalence relations on the set {1, . . . , r} having at most n classes (and the final, technical part of

the definition of δ corresponds to the condition that at least one of these relations should actually

have n classes). The data referred to in condition (∗) above would then be two such multisets

which coincide whenever a single index i (with 1 ≤ i ≤ r) is deleted from all the relations in both

multisets). The parameter δ which is sought is the number of relations occurring in each of these

multisets; examples show that the stated values are valid upper bounds, and one must then prove

matching lower bounds for the sizes of such multisets. This is what Saracino has done.
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All of this yields:

For n ≤ 2[log2 d] + 2,

κ(nd) = 2[log4 αn2
n/2+1d] + ǫ

with ǫ = 0 or 1 unless n = d = 3,

and with αn = 1 for n even and 4/3
√
2 for n odd.

For n ≥ 2[log2 d] + 2,

κ(nd) = 2[log2 d] + 2

Thus a bound on κ, as specified at the outset in one of Lachlan’s classification problems, will

pick out: (1) the families nd for which n is arbitrary and d < 2κ/2; and (2) the structures nd for

which n ≤ 2[log2 d] + 2 and 2[log4 αn2
n/2+1d] + ǫ ≤ κ, i.e. roughly speaking n/2 + 1+ [log2 d] ≤ κ.

E.g. for κ ≤ 10, the infinite families are nd for d ≤ 31, and the last sporadic structure would be

2511; so here the number of sporadics is exponentially greater than the number of well-behaved

families. (Note that a bound on rκ is not of great importance in this particular context.)

Other examples which one would naturally consider include multiply transitive groups, and

the action of Sym (n) or Alt(n) on partitions of {1, . . . , n} of a fixed type. The multiply transitive

representations do not generally present any particular difficulties: the sharply transitive ones of

degree t have κ = t + 1, apart from the natural representation of Sym (n), and in non-sharply

transitive cases the value is at least t+ 1 and not much greater. Actions on partitions are not well

understood at all, and to round out this collection one would like to have decent estimates for this

case (at least under the full symmetric group) and for corresponding wreath products. A few such

problems are discussed further in §9.

§4. Finite and smoothly approximable homogeneous graphs

We will now present the classification of the finite and countably infinite homogeneous graphs,

beginning with the finite ones. It will then be obvious that the list of finite homogeneous graphs

can be completed by adjoining their natural infinite limits, and we will need to give a precise

definition which describes this completion process in a general setting, in terms of a notion of

smooth approximability. For homogeneous structures this property is equivalent to one of the

fundamental notions of pure model theory: stability. There are other infinite homogeneous graphs

that fall outside the smoothly approximable scheme; though these have also been classified explicitly,

this part of the classification has not been subsumed by any more general theory.

The finite homogeneous graphs

1. m ·Kn: the disjoint sum of m complete graphs, each of order n.

1 ′. (m ·Kn)
′: the complementary graphs, complete m-partite graphs with parts of order n.

2. The pentagon C5.

3. 32 = K2
3 = L(K3,3) = Γ3. This has been described at various points above as a wreath

product of degenerate structures, the line graph of a complete bipartite graph K3,3, or an
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unusual binary structure associated with a 1-dimensional affine but not strictly linear group

over F3.

Actually in the language of §2, the graphs of types 1 and 1′ are isomorphic structures; we

view antiisomorphisms as a permutation of the language. But this still does not entitle us to view

them as isomorphic graphs, so one often carries the complementary family along. Each of the

sporadic examples (2) and (3) is self-dual. These two graphs can be viewed as degenerate members

of families occurring naturally with κ > 2, in a way which is interesting in the case of 32 but much

less so for C5, where the natural family to consider would be one in which the points of C5 are

replaced by equivalence classes of arbitrary size. Viewing C5 as part of the family {Cn} and 32 as

part of the family {Γq} is also very reasonable, but this does not correspond to the hierarchy by

degree of homogeneity in the form it to which Lachlan’s finiteness theorems apply: in the families

{Cn} and {Γq}, we have κ = 2, but rκ is unbounded.

One rounds out this list by allowing m and n to become countably infinite in families 1 and 1′.

(However we require them to be countable.) This process needs to be described more intrinsically,

and the following definition expresses what we will mean by the infinite version of a family of finite

structures, in general.

Definition

Let X be a structure such that rk(X ) is finite for all k.

1 The structure X is said to be a smooth limit of finite structures if every finite subset X◦ of the

universe X is contained in a set X1 for which the induced structure X1 is “smoothly embedded”

in X , where the latter condition is defined as follows.

2 X1 is smoothly embedded in X if any two finite sequences of elements of X1 which lie in the

same orbit under Aut (X ) also lie in the same orbit under Aut (X1), where Aut (X1) is the

group induced on the underlying set X1 by its setwise stabilizer in Aut (X ). (X1 is an induced

substructure of X ).

The finiteness assumption on all rk is harmless in the context of homogeneous structures

with κ and rκ bounded; any smooth limit of such structures will inherit the same bound on κ

and rκ, and homogeneity then implies that rk is bounded for all k. Smooth approximability is

a key condition which is of interest outside the homogeneous context as well; other examples are

provided by infinite-dimensional vector spaces over finite fields, which may be decorated with the

inner products or quadratic forms which define the various classical groups.

The consideration of these infinite analogs of the finite structures is quite helpful. For example

we can reduce list (1) above to the finite smoothly embedded substructures of one structure: ∞·K∞.

It can be convenient to replace infinite families of finite structures by a single infinite limit.

We have mentioned that there are other countably infinite homogeneous infinite graphs, and

that these have also been classified. One such is Rado’s graph, or “the” random graph, which may

be described as follows: if a graph G is constructed by putting in edges randomly and independently,

with constant probability p (0 < p < 1), then there is a single graph G∞ such that with probability
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1 the random graph G is isomorphic to G∞. For each n there is a similar graph Gn, called the

generic countable graph which contains no clique of order n; this cannot be defined probabilistically,

but can be defined using topology in place of measure theory. One views the collection Gn of Kn-free

graphs as a compact topological space, and one looks for a graph Gn such that the set of graphs in

Gn which are not isomorphic to Gn is topologically meager. There is a better description of these

graphs in terms of amalgamation classes (§6) but this will certainly do for the moment.

The full classification of the homogenous graphs is then:

I. The homogeneous graphs which are smoothly approximated by finite graphs;

II. The generic graph omitting the n-clique Kn, for fixed n ≥ 3;

II′. The complements of the graphs of type II;

III. The Rado graph (self-dual).

If the Rado graph is an unfamiliar object, one can approach it by considering the rational order

(Q, <) as an analog. Any ordered set can be viewed as a directed graph (in fact a tournament)

and one can consider the homogeneous orders. It follows directly from the definition that the

only homogeneous orders are: (1) the “order” on one point; and (2) a dense linear order without

endpoints, which may be taken to be (Q, <). The dichotomy occurring in the theory of homogeneous

graphs occurs here in an extreme form, as there is one extremely finite example and one extremely

infinite example; (Q, <) has no finite smooth approximation with more than one element. Just as

the ordering of Q can be characterized by its density properties, the Rado graph can be characterized

by analogous density properties, stating that any finite subgraph can be extended in all possible

ways by the addition of a suitable additional vertex. Peter Winkler and other fans of Arlo Guthrie

call this the Alice’s restaurant property.

The part of this classification which goes beyond the smoothly approximable case is found in

[LW]. Some other classification results of a similar character have been found; the proofs are purely

combinatorial, relying on Ramsey’s theorem, and are usually long. One may also detect in the

case at hand a striking dichotomy, an instance of a more systematic dichotomy in model theory

uncovered by Shelah: the stable/unstable distinction. This more technical idea enters heavily into

the proofs, and occasionally into the statements, of the main results.

One approach to stability is to define one or more notions of dimension for arbitrary structures,

referred to in model theory as ranks – a confusing terminology when used in connection with

permutation structures – and to call a structure stable if the rank or ranks used are finite. Following

Lachlan, we will use a single notion of rank which is well adapted to the group theoretic viewpoint.

We will call this particular notion the orbit height.

Definition

Let X be a homogeneous structure with κ(X ) and rκ(X ) finite.

1. A tree of orbits of height n in X is a complete binary branching tree of height n, with each

vertex labeled by a pair (A,O) with A a finite subset of X and O an orbit of the pointwise

stabilizer in Aut (X )S of A, such that the sets A increase as one moves along a path in the
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tree, and the two orbits lying below a given vertex are contained in the orbit attached to that

vertex, and are pairwise disjoint.

2. The orbit height of X is the maximum value of n (or ∞) for which X has a tree of orbits of

height n.

3. The structure X is stable if its orbit height is finite.

One sees easily that smoothly approximable homogeneous structures with κ and rκ finite are

stable. The converse is an important structural result. Lachlan’s theory consists of one part which

provides a structural analysis and finiteness theorem for homogeneous structures in which not only

κ and rκ are fixed, but a bound on the orbit height is also fixed in advance. To complete the theory

one must also bound the height in terms of κ and rκ. We will look at this issue more closely in the

next section.

§5. The Coordinatization Theorem

Lachlan proposes to consider the following classification problems:

(Pκ,r) Given κ and r, classify the homogeneous structures X with κ(X ) ≤ κ and rκ(X ) ≤ r

It remains to be seen what constitutes a solution; in other words, what constitutes the specification

of an infinite family of related structures. There are two approaches to this. For example, if the

family in question is {m·Kn}, disjoint sums of complete graphs of fixed size, we can pass to the limit

structure, ∞·K∞, and define the family in question as the set of finite approximations to the infinite

limit – or we can look for the invariants m,n directly. It is reasonable to combine these approaches:

identify the limit structures; show that there are finitely many; show that all sufficiently large

structures approximate infinite limit structures; and identify the numerical invariants that control

isomorphism types within each infinite family. Thus part of the work will take place “at infinity”,

in a model theoretic context, and part will take place in the “large finite”, using combinatorics and

permutation group theory. One speaks also of “shrinking” and “stretching”; shrinking an infinite

structure to its finite approximations – which is relatively easy – and stretching a large finite

structure to its infinite version (which amounts to giving an “explanation” of the finite structure

as an approximation to an infinite one). To put the matter more briefly: there are finitely many

infinite homogeneous structures of a given type, from which all sufficiently large finite homogeneous

ones (and all their infinite limits) arise by a shrinking process. This is the basic finiteness result.

The notion of shrinking is given by smooth embedding: any finite structure which is smoothly

embedded in a larger structure can be considered as a shrinking of the larger structure (it might

be best at some later stage to exclude some very small smoothly embedded substructures). One

can finesse the issue of stretching temporarily by deciding that a stretching of a structure is a

structure in which it smoothly embeds, or in other words stretching is the reversal of shrinking;

this is reasonable, but it just postpones the question of the existence of infinite stretchings, which

is one of the main points: when can a finite structure be interpreted as a “template” for an infinite

structure?
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In any case, with this terminology, we may state:

Theorem 1

Let σ = (n1, . . . , nr) be a type of relational system. There are finitely many homogeneous

structures Γi of type σ such that every finite homogenous structure of type σ is obtained by

shrinking one of the Γi.

To put some flesh on these bones, it is necessary to look at numerical invariants. These are

the analogs of “dimension” in vector spaces, but in the context of relational structures they are of

a relatively degenerate type, as illustrated by the family of homogeneous graphs m ·Kn; here m is

the number of classes of an invariant equivalence relation, and n is the size of the classes. This is

close to the general case, for Lachlan’s context.

A less trivial illustration is furnished by the graphs
[

n
k

]

. Here there should be a single numerical

parameter n (k is fixed, as it can be bounded in terms of κ). Evidently the parameter n is encoded

by
[

n
k

]

with considerably more subtlety than in the case of m · Kn. As mentioned in §3, we will

think of
[

n
k

]

as a grassmannian structure associated with a degenerate geometry. As the examples

in §3 may suggest, one would expect the geometries associated to a homogeneous structure to

be degenerate (or of bounded size, hence more or less unproblematic). Accordingly we make the

following definitions in general.

Grassmannians and invariants

1. A coordinatizing structure will be a structure∆ carrying an equivalence relation E with finitely

many classes, such that the E-classes are permuted transitively by Aut∆, and the group fixing

the classes setwise is the product of the full symmetric groups on each class.

2. A k-grassmannian of ∆ is the structure whose points are the subsets of ∆ meeting each class

in k points, whose full automorphism group is Aut∆ with the natural action. The invariant

attached to a grassmannian is the size of each equivalence class in ∆.

3. The invariants attached to a homogeneous structure Γ are the invariants attached to all k-

grassmannian structures which occur as primitive sections of Γ, with k at most half the size of

each equivalence class in Γ.

The importance of these invariants can be seen in the following result from [CL].

Proposition 1 (Coordinatization)

For any specified type σ of relational structure, there is a bound m such that for every homo-

geneous relational structure Γ of type σ and any maximal ( AutΓ)-invariant equivalence relation

E on Γ, one of the following holds:

1. |Γ/E| ≤ m; or

2. Γ/E is a grassmannian of a coordinatizing structure.

The proof of this relies heavily on permutation group theory, notably the O’Nan-Scott Lemma

and the classification of the finite simple groups. Both the model theoretic content and the permu-
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tation group theoretic analysis are reviewed in [KL]. Stronger results in a similar vein are found in

[KLM] and are essential to the development of theories of broader scope.

This result is the starting point for the study of the “variable” numerical invariants associated

with a homogeneous structure. It should be clear enough how one expands or shrinks a grass-

mannian structure; to do either to a more general homogeneous structure requires more attention.

Shrinking can be defined rather directly: one shrinks the coordinate structures and then sees which

elements of the structure should be kept.

Stretching, on the other hand, is a problem. Indeed, the essence of the matter is to determine

how large a dimension should be in order that it can be stretched freely, and this is a nontrivial

question, very much at the heart of determining at what point the sporadic objects run out and

the general case is encountered. The main result of [KL] is a clean approach to this problem, which

we will indicate very briefly in the next section.

§6. Amalgamation

If Γ is a homogeneous structure, then Sub(Γ) denotes the class of finite structures which are

isomorphic with induced substructures of Γ. A countable homogeneous structure Γ is determined

up to isomorphism by Sub(Γ). Furthermore the relevant classes of finite structures, that is, those

which occur as SubΓ with Γ homogeneous, are easily characterized by their intrinsic properties:

closure under isomorphism and induced substructure, and the amalgamation property, which we

now define.

Definition 2

1. An amalgamation problem is a triple of structures Γ0,Γ1,Γ2 together with a pair of embeddings

ιi : Γ0 −→ Γi for i = 1, 2. A solution to such a problem is a structure Γ̄ and embeddings

ῑi : Γi −→ Γ̄ so that ῑ1ι1 = ῑ2ι2.

2. A class A of structures has the amalgamation property if any amalgamation problem involving

structures in the class has a solution in A.

To see that Sub(Γ) has the amalgamation property for Γ homogeneous, note that we may

take Γ0,Γ1,Γ2 as substructures of Γ, and after applying suitable isomorphisms we may assume the

embeddings ιi : Γ0 −→ Γi are inclusions; in this case, set Γ̄ = Γ1 ∪ Γ2 and let the ῑi be inclusions

as well.

Somewhat less evident, but straightforward nonetheless, is the fact that we can construct

a homogeneous structure from any amalgamation class closed under isomorphism and induced

substructure.

This gives us a quick avenue, in principle, to stretching. Given a large finite homogeneous

structure Γ, let A be the class of all finite structures which embed “locally” into Γ (we will say in

a moment what this means). If A is an amalgamation class, then the corresponding homogeneous

structure should play the role of the “stretch” of Γ. To make this precise we define Sub(n,Γ) as the

collection of finite structures such that every substructure of size at most n embeds into Γ. With
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n fixed, Sub(n,Γ) may be taken as the class of structures that embed locally into Γ. In [KL] the

following is proved, as Theorem 9.2:

Theorem

For each fixed type σ of relational structure, there is a fixed N such that for every homogeneous

finite Γ of type σ, there is some n ≤ N for which Sub(n,Γ) is an amalgamation class, and for which

the corresponding homogeneous structure is smoothly approximable.

Obviously this sketch leaves out not only all of the proofs, but a number of highly relevant

statements and definitions, particularly relating to the treatment of the numerical invariants in the

preceding section and their relation to the theory of stretching. We refer the reader to [KL] for

more details and further references, as well as a discussion of effectivity.

§7. Rank: stability and bounds

We defined the orbit height of a permutation group in §4 and we called a homogeneous structure

stable if its orbit height is finite.

For example, the orbit height of a set on which the full symmetric group acts is 1, since one

cannot split an orbit into two orbits of size greater than 1. On the other hand the orbit height of

the rational order is infinite, since one can split an infinite interval (a, b) into two such, and repeat.

The orbit height is a notion of “dimension” (a measurement of noetherianity). The reader can test

this stable/unstable dichotomy on the explicit list of homogeneous graphs given in §4.
The usual definitions of stability in model theory are of a more general character, but reduce

to this notion in the homogeneous case. To some extent our initial presentation put the cart before

the horse. In the most satisfactory version of Lachlan’s theory, the starting point is stability. One

proves eventually:

Proposition 2

Within the class of homogeneous structures of a fixed type, the stable ones are those which

can be smoothly approximated by finite homogeneous structures of the same type.

Lachlan’s theory gives the classification of all stable homogeneous structures of a fixed type,

which includes the classification of the finite ones, but which makes use of the structure of the

infinite ones along the way: this class falls into finitely many families, each parametrized by finitely

many numerical invariants; and when all invariants are made finite, the resulting structure is finite.

The result on coordinatization (Proposition 1) is actually equivalent to the existence of a

uniform bound on the orbit heights for stable homogeneous structures of fixed type, though one

needs a good dose of model theory to see this. In any case, in all versions of this theory to date

one gets the coordinatization result from group theory (at the finite level) and this then allows the

introduction of model theoretic techniques to handle the infinite limits, returning, eventually, to

the large finite structures. Thus our understanding of the infinite structures requires information
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coming from their finite approximations, but at the same time our understanding of the finite

structures depends on a consideration of their infinite limits.

For unstable homogeneous structures, as we have noted earlier, we have explicit classifications

in some nontrivial cases, but no theory.

§8. Smoothly approximable structures

Lachlan’s theory can be extended mutatis mutandis to smoothly approximable structures, and

if one does so then the supply of geometries is enlarged to include all of the classical geometries

(in both affine and projective flavors) which are so visibly absent in the homogeneous case. This

is one of the most salient differences. It would be easy enough to carry this aspect along through

the theory, but eventually the less trivial geometric structure in these geometries has a certain

impact on developments and a more sophisticated dose of model theory comes into play, modeled

on standard developments in stability theory. As it happens, the geometries involved are not in

fact stable in general, which is one indication that some price is to be paid for the generalization.

This is discussed in [Hr, Ch].

Smooth approximability is a somewhat peculiar hypothesis (as a point of departure) from the

point of view of model theory, but Lachlan observed that in view of the central role it plays in the

theory of stable homogeneous structures and related developments, it is reasonable to work in this

category, discarding any more special model theoretic hypotheses. Furthermore dealing with this

class amounts to dealing at the finite level with permutation groups with a bound on the number

of orbits on 4-tuples; and though one might have preferred to replace 4 by 2 here, this is certainly

a natural class to work with.

It is not at all clear a priori that the only geometries which are relevant here are classical

ones; and strictly speaking, this is not even true, as in characteristic 2 there is another family of

geometries falling just outside the classical camp. One can read off the relevant list of geometries

from the explicit classification of the large finite primitive structures with a bounded number of

orbits on 4-tuples [KLM as modified in Mp]. It is fortunate that permutation group theory is

so effective on primitive structures while model theory has good tools for reducing imprimitive

structures to primitive ones.

We will mention two of these geometries, to give an indication of the sort of objects that come

into play at this level.

Example 1: polar geometry

One has a pair (V, V ∗) with V an infinite dimensional vector space over a finite field (of

countably infinite dimension) and V ∗ a dense subspace of its dual. This is the smooth limit of

analogous finite dimensional structures in which V ∗ is the full dual of V .

In model theory we consider the pair (V, V ∗) as a single geometry. One of the complications

that arises is that in encountering V embedded in a larger structure one cannot easily tell whether it

occurs as a subspace with no additional structure, or as half of a polar pair. For example, we might
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have V together with some grassmannian associated with V ∗; we would then have to reconstruct

V ∗ from its grassmannian in order to have the second component of the polar pair. None of this is

terribly troublesome; it just needs to be dealt with. One of the basic ideas of pure model theory,

expressed by the theory of “orthogonality”, is that geometries interact trivially: either they can be

identified (with some deformation), or they are unrelated. If V and V ∗ are taken to be separate

geometries, this orthogonality principle is lost; but if such things are not allowed, the principle of

orthogonality can be saved.

Example 2: The quadratic geometries

There is a family of geometries in characteristic 2 which appears to blend some of the features

of affine and projective geometry. It arises because orthogonal groups are contained in symplectic

groups in characteristic 2.

The underlying set Q of this geometry in a given (even) dimension is defined as follows: let

V be a symplectic space of dimension 2n, with inner product ( , ), and let Q be the set of all

quadratic forms q for which we have q(x+ y) = q(x) + q(y) + (x, y).

There is a regular action of V ∗ on Q (or of V on Q after identifying V and V ∗): q.λ = q + λ2

for q ∈ Q, λ ∈ V ∗. In this sense (but only in this sense) the space looks affine. The stabilizer of a

point q is of course the associated orthogonal group O(q). The same structure exists in an infinite

dimensional version but there is one delicate point: the witt defect of q ∈ Q is well defined when

the dimension is finite, and in passing to a smooth limit a formal witt defect function ω is inherited,

though the witt defect itself is no longer very meaningful. (The equivalence relation defined by

“same witt defect” can be defined intrinsically from the geometric structure; only the value of the

witt defect is lost.) The upshot of all this is that in the infinite limit, one takes Q together with

V ∗ and its regular action, as well as the structure on V ∗, together with the formal witt defect.

This is the least classical of the geometries that come into play here.

§9. κ(X ): problems

The question naturally arises: for one’s favorite primitive structures, how is κ(X ) computed in

practice? Much of what is understood about this was reviewed in §3. We comment here on cases

we do not understand. There are tools for the general analysis of primitive permutation groups,

beginning with the O’Nan-Scott lemma and continuing in work of Aschbacher, and among other

things, one would like to know how κ behaves relative to this. Some general theory for wreath

products is found in [CMS] with reasonably satisfying results, some loose and very general, others

more detailed under rather specific hypotheses. The following test problem, which remains wide

open, is my personal favorite in this area:

Problem 1

Determine the finite primitive binary structures. (κ(X ) = 2)
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Model theorists might be tempted by an indirect inductive approach involving imprimitive

binary structures as well, but this does not seem very promising, and the group theoretic approach

may work here. Analogously one might ask for the classification of all sufficiently large primitive

structures with a specified bound on κ(X ). The invariant κ may behave well enough – in terms

of crude lower bounds – to make an O’Nan-Scott type of analysis feasible. Certainly κ is not well

behaved under restriction to the socle, as one sees by comparing Sym(n) and Alt(n), but since

only lower bounds are needed, the situation may possibly be manageable.

In §3 we mentioned the conjectured answer in the binary case: oriented and unoriented cycles

of prime order; a naked set (with equality); and the peculiar edge-colored graphs associated with

primitive homogeneous 1-dimensional affine groups which are not strictly linear, namely those of

the form Γq = Fq2>⊳µq+1>⊳Z/2Z, acting on the base field.

Problem 2

Let Ek,l be the set of partitions of a set of n = k · l elements into k classes of size l. Estimate

κ( Sym (n), Ek,l), and consider more general partition types, as well as the action of Alt(n).

One can get some partial results using estimates for κ of a wreath product of actions on k-sets,

though unfortunately in this connection one also needs the values of κ for wreath products falling

in the difficult range, such as those handled by Saracino for k = 1.

For example we have:

With l0 < l/2, κ(Ek,l) ≥ κ(E2,l) ≥ κ(
[

l
l0

]2

)

For the second inequality, work with the stabilizer of a single point in E2,l. An example: κ(E2,4) ≥
κ(42) = 4; the exact value in this case is 5.

One can also show:

κ(En,2) ≥ n

using a form of the “Möbius band” example of Lachlan which was given at the end of [CMS] in a

similar context. This lower bound may possibly be the correct value.

Problem 3

Improve the estimates on κ(
[

n
k

]d
) in the range n ≤ 2k([log2 d] + 1), getting exact values or at

least asymptotically accurate estimates.

The results of [CMS] and the extraordinarily precise analysis by Saracino in the case k = 1

suggest that the best way to approach this is in terms of a function δk(r, n), with the following

subtle definition, which will be elucidated momentarily: δk(r, n) is the least d (or ∞ if none exists)

for which there are two multisets H, H′ of r-labeled k-uniform hypergraphs on n vertices whose

(r − 1)-restrictions coincide up to isomorphism. Here a multiset is a set with multiplicities; an

r-labeled k-uniform hypergraph on n vertices is a map λ from {1, . . . , r} to the k-subsets of an n-

element set; an A-restriction of an r-labeled hypergraph corresponding to a subset A of {1, . . . , r}
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is the A-labeled hypergraph obtained by restricting λ to A; and an (r − 1)-restriction is an A-

restriction with |A| = r− 1. Finally, we say that the A-restrictions of H and H′ coincide if there is

a bijection between H and H′ so that corresponding hypergraphs have isomorphic A-restrictions,

where isomorphisms are permitted to permute the n vertices but the domain A is fixed; and we say

that the (r − 1)-restrictions coincide, if for each A of cardinality r− 1, the A-restrictions coincide.

Examples are in order.

For k = 1, an r-labeled hypergraph is a function from {1, . . . , r} to {1, . . . , n}, and the isomor-

phism types (allowing the action of Sym(n)) are classified by equivalence relations on {1, . . . , r}.
Thus in this case H and H′ can be viewed more simply as collections of equivalence relations on

{1, . . . , r} with at most n classes. For example for n = 2 and r even, we may let H consist of

the partitions of {1, . . . , r} into two pieces of even size (one may be empty); and let H′ consist of

the partitions into two pieces of odd size. One may then check directly that the A-restrictions, for

|A| = r−1, consist of all equivalence relations on A, each occurring once. This shows δ1(r, 2) ≤ 2r−2

and further analysis shows this estimate is exact. For more on δ1 see §3.
Little is known about δ2, but some examples may clarify the meaning of the definition.

δk(r, n) = δn−k(r, n) for any k, n since there is a canonical idenitification between k-sets and

their complements. In particular δ2(r, 3) = δ1(r, 3). Therefore we will consider the case n = 4.

Example

δ2(4, 4) = 2. We give an explicit example. Let a, b, c, d be the four edges of a 4-cycle and define

H, H′ as follows (for each r-labeled graph we just list the values of λ(1), . . . , λ(4) in order:

H: (1) a/b/c/d; (2) a/b/a/b;

H′: (1) a/b/c/b; (2) b/a/b/c.

This explicit example shows δ2(4, 4) ≤ 2; evidently δ2(4, 4) > 1.

Example

δ2(5, 4) ≤ 15.

Let Λ be the set of injective functions from {1, 2, 3, 4, 5} intoK4; these may also be thought of as

labelings of K4 minus an edge by distinct labels 1, . . . , 5. Sym (6) and Sym(4) act naturally on the

edges and vertices; Sym (4) preserves isomorphism types and Sym (6) acts regularly on Λ. Thus

the isomorphism types represented by Λ may be identified with the coset space Sym (6)/ Sym (4)

under a natural embedding of Sym (4) into Sym(6) which actually takes Sym(4) into Alt(6). In

particular this space falls naturally into even and odd types (though the determination of which is

which is of course arbitrary). Let H and H′ be representatives of these two classes. Then H and

H′ each consist of 15 5-labeled graphs on 4 vertices, and we claim that the restrictions of H and H′

obtained by deleting any one label coincide. For each label i there is a natural bijection between

H and H′ in which each 5-labeled graph is replaced by the corresponding 5-labeled graph in which

the label i is moved to the unlabeled edge. In each case the same thing can be accomplished by a
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transposition in Sym (6), so this switches the even and odd types, and it obviously preserves the

i-restrictions.

This example shows that δ2(5, 4) ≤ 15. Full information on δ2(r, n) for a fixed value of n

determines the value of κ(
[

n
2

]d
) for all d. For example, our estimate for δ2(5, 4) suggests that

κ(
[

4
2

]d
) may be 4 for 2 ≤ d ≤ 14 and 5 for d = 15, but to pin this down one would need not only

the exact value of δ2(5, 4), but a little more information about δ2(r, 4) in general.
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