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5 Equivalence Relations

5.1 Binary Relations

Functions = Operations

Relations = Properties

We will only consider binary relations.

Example A typical relation is the order relation< on a set of numbers A. Let us take A = {0, 1, 2}.
Thus 0 < 1, 2 6< 1, etc. The relation < is defined set theoretically in terms of its graph:

<= {〈0, 1〉, 〈0, 2〉, 〈1, 2〉}

Example Consider the relation E on A = {0, 1, 2} defined by

xEy iff x− y is even

Then
E = {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈0, 2〉, 〈1, 3〉, 〈2, 0〉, 〈3, 1〉}

Definition 5.1. Let A be a set. A relation on A is a subset of A× A.

Notation 5.2. If A is a set, R is a relation on A, and 〈a, b〉 ∈ A× A, it is customary to write

aRb

rather than 〈a, b〉 ∈ R.

Thus we may write 0 < 1 rather than 〈0, 1〉 ∈< and 0 ∈ {0} rather than 〈0, {0}〉 ∈∈.

Definition 5.3 (More general). A relation is a set of ordered pairs.

Definition 5.4. If R is a relation, then we define the domain, range,, and field of R by

x ∈ domR ⇐⇒ ∃y 〈x, y〉 ∈ R (1)

x ∈ ranR ⇐⇒ ∃y 〈y, x〉 ∈ R (2)

fldR = domR ∪ ranR (3)

Remark 5.5. If R is a relation and A = fldR, then R is a relation on A.

Example Let R = {〈`, n〉 : ` is a letter, n ∈ N, and the n-th letter of the English alphabet is `}.
Then

domR = {a, b, c, . . . , z} (4)

ranR = {1, 2, 3, . . . , 26} (5)

The field of R is the union of both sets.

The most important kinds of relations are the following:
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• functions f : A→ B;

• equivalence relations (next);

• order relations (following section)

A function f is a relation such that for every 〈a, b〉 ∈ f , a determines b.

One can take unions of intersections of relations: x(R1 ∪ R2)y means “xR1y or xR2y” while
x(R1 ∩R2) means “xR1y and xR2y”.

Exercise 5.6. Let Dn be the relation on Z defined by

xDny iff x− y is a multiple of n

(a) Is there a number m so that D4 ∩D6 = Dm?

(b) Is there a nubmer n so that D4 ∪D6 = Dn?

5.2 Equivalence Relations

Definition 5.7. Let R be a binary relation on a set A.

• R is reflexive iff xRx for all x ∈ A.

• R is symmmetric if xRy =⇒ yRx for all x, y ∈ A.

• R is transitive if xRy, yRz =⇒ xRz for all x, y, z ∈ A.

• R is an equivalence relation if R is reflexive, symmetric, and transitive.

Example The following relations are not equivalence relations.

• R1: xR1y iff x and y are siblings (field: people)

• R2: xR2y iff x < y (field: R)

• R3: xR3y iff |x− y| < .001 (field: R)

Example
The following relations are equivalence relations.

• E1: xE1y if x and y have the same mother.(field: people)

• E2: xE2y if x and y have the same father.(field: people)

• E3 = E1 ∩ E2.(field: people)

• E4 (field M3(R): AE4B iff A and B have the same eigenvalues.

• Dn (field Z) defined by xDny iff x− y is a multiple of n; n fixed.

• E5 (field M3(R): AE5B iff there is an invertible matrix P with A = PBP−1
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• EV (field R): xEV y iff x− y ∈ Q)

Proposition 5.8. For any n ∈ Z, the relation Dn is an equivalence relation on Z.

Proof. • Reflexivity: For x ∈ Z, we have x− x = 0 = 0 · n, so xDnx.

• Symmetry: Let x, y ∈ Z and suppose xDny. Then x − y = nk for some k ∈ N, and
y − x = n(−k), so yDnx.

• Transitivity: Let x, y, z ∈ Z with xDny and yDnz. Then x − y = nk1 and y − z = nk2 for
some k1, k2 ∈ Z. So x− z = (x− y) + (y − z) = n(k1 + k2) and xDnz.

Exercise 5.9. Show that E1 is an equivalence relation.

Exercise 5.10. Show that if E1, E2 are equivalence relations on A, then E1∩E2 is an equivalence
relation on A.

Our first four example all have the following form.

Definition 5.11. Let f : A→ B be a function. The Ef is the relation on A defined by:

aEfb iff f(a) = f(b)

For E1, E2 let the function assign a person to his or her mother, or father, respectively. For E3

use the ordered pair 〈father,mother〉. For E4 assign to each matrix its set of eigenvalues.
Also D10, D2 can be put in this form: for D10 let f(n) = the last digit of n. For D2 let f(n) be
the parity of n (for n even this is 0, for n odd it is 1).
It is harder find functions f to represent the other relations Dn and E5 or E6 as Ef , but we will
do this soon.

Exercise 5.12. If f : A→ B, show that the relation Ef is an equivalence relation on A.

Exercise 5.13. Define a relation E on N× N by

〈a, b〉E〈c, d〉 iff a+ d = c+ b. Give two proofs that E is an equivalence relation:

1. Show that E = Ef where f is the function f : N× N→ Z defined by f(m,n) = m− n

2. Check directly that E is reflexive, symmetric and transitive, and do this without using the
notion of subtraction.

Remark 5.14. Explanation: This exercise is the key step in the construction of Z from N. The first
proof we ask for is more direct than the second proof, but the first proof makes use of properties
of Z. So we actually will need the second proof!
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5.3 Equivalence Classes and Partitions

Theorem 5.15. Let E be an equivalence relation on the set A. Then there is a set B and a
function f : A→ B such that E = Ef .

The proof requires some machinery.

Definition 5.16. Let R be an equivalence relation on the set A. Then for x ∈ A we define the
R-equivalence class of x (denoted [x]R) by

[x]R = {y ∈ A|xRy}

Proposition 5.17. Suppose that R is an equivalence relation on the set A. Then the set

Π = {[x]R : x ∈ A}

is a partition of A.

ExampleConsider the relation D2 on Z. The class [n]D2 will be the class of all even integers if n
is even, and all odd integers if n is odd.

Proof. We need to prove three things.

• Each set [x]R is nonempty.

•
⋃

Π = A;

• If x, y ∈ A and [x]R, [y]R are distinct, then they are disjoint.

In fact we will prove the following, which is more explicit.

• x ∈ [x]R for x ∈ A.

• If x, y ∈ A and [x]R meets [y]R, then [x]R = [y]R

If x ∈ A then x ∈ [x]R by reflexivity and our first claim is proved. This implies that each of the
sets [x]R is nonempty, and that their union is A.
Now we prove our second claim.
If x, y ∈ A and [x]R meets [y]R then let z ∈ [x]R ∩ [y]R. That is: xRz and yRz. Using symmetry
and transitivity we get xRz, zRy, and then xRy. We show [y]R ⊆ [x]R: if t ∈ [y]R, then yRt and
by transitivity xRt, so t ∈ [x]R. Similarly we may show [x]R ⊆ [y]R and conclude [x]R = [y]R.

Example Let f : Rr → R be the function f(x) = x2. The relation Ef has equivalence classes
defined by conditions x2 = C where C ≥ 0. These have the form

{±t}

for t ∈ R. One of these classes is the set {0} and all the others are pairs.

Theorem 5.18. Suppose that Π is a partition of the set A. Then the relation RΠ on A defined by

xRΠy iff [x]R = [y]R

is an equivalence relation.

Proof. Define f : A→ Π by f(x) = [x]R, and observe that EΠ = Ef .



5. EQUIVALENCE RELATIONS Math 361, Course Notes

5.4 Quotients

Definition 5.19. If R is an equivalence relation on the set A, then the quotient A/R denotes the
associated partition into equivalence classes, and the natural map (or the “canonical map”)

f : A→ A/R

is defined by
f(x) = [x]R

Exercise 5.20. Let f : A→ B be a surjection and Ef the corresponding equivalence relation on
A. Define a function φ : B → P(A) by

φ(b) = {a ∈ A : f(a) = b}

Then φ : B ↔ A/Ef is a bijection.

Example Let f : N2 → Z be defined by

f(〈m,n〉) = m− n

Then the associated function φ is a bijection between N2/Ef and Z. This observation will be used
in the construction of Z.

5.5 Summing Up

We have shown that each equivalence relation gives a partition and that each partition gives an
equivalence relation. This has the practical consequence that equivalence relations and partitions
can be treated as two different descriptions of the same idea. We make this more precise as follows.

Theorem 5.21. Let A be a set, let E be the set of all equivalence relations on A, and let P be the
set of all partitions of A. Define functions

π : E → P, ε : E → P

by π(E) = A/E for E ∈ E, and ε(Π) = RΠ for Π ∈ P. Then π : E ↔ P and ε : E ↔ P are
bijections, and each is the inverse of the other. In other words,

• RA/E = E for E ∈ E;

• A/RΠ = Π for Π ∈ P.

The proofs are simply a matter of applying all the definitions carefully, so we leave them as
exercises. But the result is important.

Example If A is finite, the number of equivalence relations on A is the same as the number of
partitions of A. In practice, it is easier to count partitions than equivalence relations.

Exercise 5.22. Show that for a set A with 3 elements, there are 5 equivalence relations on A,
and that for a set with 4 elements, there are 15 equivalence relations.

Example
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• For d = 0, 1, . . . , 9 let Ld ⊆ N be the set of natural numbers with last digit d. Then the
associated equivalence relation is E10: m and n have the same last digit if and only if m−n
is a multiple of 10.

• For d = 0, 1, . . . , 9 let Fd ⊆ N be the set of natural numbers with first digit d. Then the
simplest way to define this relation is simply to refer to the partition: two natural numbers
are equivalent if they have the same first digit. Note that the equivalence class of 0 is {0}.

Appendix to §5. The Numerical Partition Function

Supplemental Notes: Not part of the regular course material.

One way to count the partitions of a set of n elements is to classify the partitions according to the
number of elements in each “box”.
For example, to count partitions of the set {1, 2, 3, 4}, we can list all the ways to write 4 as a sum
of smaller numbers, then list the corresponding partitions, getting the following table.

Numerical Partitions Partitions

4 {{1, 2, 3, 4}
3+1 {{2, 3, 4}, {1}}, {{1, 3, 4}, {2}}, {{1, 2, 4}, {3}}, {{1, 2, 3}, {4}}
2+2 {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}

2+1+1 {{1, 2}, {3}, {4}}, {{1, 3}, {2}, {4}}, {{1, 4}, {2}, {3}}, {{2, 3}, {1}, {4}},
{{2, 4}, {1}, {3}}, {{3, 4}, {1}, {2}}

1+1+1+1 {{1},{2},{3},{4}}
The five rows correspond to the five numerical partitions of the number 3. Note that we consider
rearrangements such as 1 + 1 + 2, 1 + 2 + 1, and 2 + 1 + 1 to all represent the same numerical
partition. Evidently the number p(n) of all numerical partitions of n is considerably less than
the number of all partitions of n. A theorem of Hardy and Littlewood says that for large n, this
number p(n) is approximately

1√
48
e
√

2
3
πn

Numerical partitions with odd, or distinct, parts

But what I want to discuss is a remarkable relationship between the set of numerical partitions in
which only odd terms occur, and the set of numerical partitions in which all the terms are distinct.
For example, when n = 7, there are five of each. We list the numerical partitions of 7 with odd
entries on the left, and the numerical partitions of 7 with distinct entries on the right.
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Odd Distinct

1+1+1+1+1+1+1 1+2+4

1+1+1+1+3 3+4

1+1+5 2+5

1+3+3 1+6

7 7

Let us also write pO(n) and pD(n) for the number of partitions of each kind, “odd” or “distinct”.
Thus we have

pO(7) = pD(7) = 5

Theorem 5.23 (Euler). For all n, pO(n) = pD(n).

Proof. First, consider the infinite product

(1 + x)(1 + x2)(1 + x3) · · · · =
∞∏
n=1

(1 + xn)

If one multiplies out, one gets an infinite series of the form:

1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + · · ·

In fact the product of the first 7 terms already looks like this, and the later factors (1 + x8)(1 +
x9) · · · · are not going to change the first few terms.
The coefficient of xn in this infinite series is pD(n). For example, the term x7 occurs in the following
ways:

x7 = x · x2 · x4, x7 = x3 · x4, x7 = x2 · x5, x7 = x · x6, x7 = x7

and these correspond to 7 = 1 + 2 + 4, 7 = 3 + 4, etc.
So we may write

∞∏
n=1

(1 + xn) =
∞∑
n=1

pD(n)

We have expanded the infinite product.

Next, consider the following expression.

1∏
1∞(1− x2n+1)

In other words the denominator is the product (1 − x)(1 − x3)(1 − x5) · · · · with odd exponents
only. We expand this as an infinite series. To begin with, each expression

1

1− x2n+1

expands to a geometric series, for example when n = 5 (2n+ 1 = 11) this is the geometric series

1 + x11 + x22 + x33 + · · ·

with exponents the successive multiples of 11.
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It is a little more complicated to multiply all of these together. When one does this, the coefficient
of xn comes out to be pO(n). This is because we are now writing the exponent n in xn as a sum
of multiples of odd numbers: if k(2i+ 1) is a multiple of the odd number 2i+ 1, then we can think
of this as using the odd number 2i+ 1 exactly k times.
So now we have two expansions.

∞∏
n=1

(1 + xn) =
∞∑
n=1

pD(n)xn (6)

1∏∞
n=1(1− x2n+1)

=
∞∑
n=1

pO(n)xn (7)

We want to prove that pD(n) = pO(n) for all n. This means that the expressions on the right in
equations (1,2) are equal. So we will show that the equivalent expressions on the left in equations
(1,2) are equal. We claim:

∞∏
n=1

(1 + xn) =
1∏∞

n=1 1− x2n+1

The key idea is to consider a third product:

f(x) =
∞∏
n=1

(1− x2n)

taking even exponents this time: (1− x2)(1− x4) · · · · .
Since we can factor 1− x2n as (1− xn)(1 + xn), f(x) factors as∏

n

(1− xn)
∏
n

(1 + xn)

So if we divide f(x) by
∏

n(1− xn) we get the function associated with pD.
On the other hand, if we divide f(x) by

∏
n(1− xn), then all the terms in the numerator may be

cancelled against terms in the denominator, leaving only odd powers in the denominator:

f(x) =
1∏

n(1− x2n+1)

This is the function associated with pO.
So both of these functions are equal to f(x)∏

n(1−xn)
and thus the coefficients pD and pO are equal.

This proves Euler’s Theorem.
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The Bijection Problem

For each n, let O(n) and D(n) be the number of numerical partitions of n into odd parts, or into
distinct parts, respectively—in other words, the sets which are counted by the functions pO and
pD.
Since O(n) and D(n) have the same number of elements for each n, there must be bijections
between them.

Problem 1. Is there a natural bijection betweeen O(n) and D(n)?

This type of question is hard in general. When two sets are known to have the same size because
of some manipulation of infinite series, there is no known method for converting that proof into
an explicit bijection between the sets. One must start over.
In this particular case, a bijection is known. It is based on the following two facts.

• Every positive integer can be written in a unique way as a power of 2 times an odd number.

• Every positive integer can be written in a unique way as a sum of powers of 2.

In our chart above, each numerical partition of 7 with distinct terms can be converted to an
expression with odd terms by applying our first point: for example, the expression “3 + 4” will be
written as 1 · 3 + 4 · 1 and reinterpreted as “one three and four ones”, giving the corresponding
expression 3 + 1 + 1 + 1 + 1 as a sum of odd terms.
3*3+6*1+2*4 3+6, 2+4, 10 One more example: let n = 25, and let the numerical partition into
distinct terms be

25 = 2 + 3 + 4 + 6 + 10

Writing 2 = 2 · 1, 3 = 1 · 3, 4 = 4 · 1, 6 = 2 · 3, 10 = 2 · 5, this converts first to

1 + +1 + 3 + 1 + 1 + 1 + 1 + 3 + 3 + 5 + 5

and then may be written in increasing order as

1 + 1 + 1 + 1 + 1 + 1 + 3 + 3 + 3 + 5 + 5

(odd terms).
Can you give the general rule for converting numerical partitions with distinct entries into numer-
ical partitions with odd entries? And can you give a rule for the inverse operation, reconstructing
from each numerical partition with odd entries, the corresponding numerical partition with distinct
entries? If so, you have shown that there is a natural bijection between the two sets.


