§3.1 DISCONTINUOUS SOLUTIONS

In this section, we study discontinuous solutions of hyperbolic equa-
tions.
Example 1 For the initial value problem

us + cug = 0, x € R, t>0(C>0)

1, fx<¥
M“mzuﬂﬂ:{m ifz>0

The initial data has a discontinuity at £ = 0. The solution u = ug(z — ct)
also has discontinuities along the characteristic curve z = ct

(.1 0, ifex>ct
ulz,t) =
1, Hz<ect

e Discontinuities of linear wave equation propagates
along characteristics.

e Riemann problem: a hyperbolic system with piecewise
constant initial data.

Example 2 Consider the Riemann problem
U + uugy =0, T€ER, t>0

1, ifz<0
“%m—{m if > 0

Along characteristics, determined by dx/dt = u, the function u =

const. Hence, characteristics are straight lines. Since the initial data
l, 2<l

w@0) =10, z>0°
axis have slop 1; the characteristics originating from the positive axis are
vertical. These two types of characteristics collide. If we insert a curve
to separate these two types of characteristics, we may avoid this difficult.
Along this curve, the initial discontinuity at z = 0 is carried into the region
t>0.

the characteristics originating from the negative



Jump Conditions

Now, let us determine the curve along which the solution has simple
discontinuities. We consider a general form of conservation law of the form

U+ ¢z =0

This equation was derived, under the condition that both w and ¢ are
continuously differentiable, by the integral conservation law:

b
(% /a u(z, t)de = ¢(a,t) — ¢(b,?)

If x = s(t) is a smooth curve in spacetime along which the solution u
suffers a simple discontinuity, i.e., 1) u is continuously differentiable for
z > s(t) and z < s(t); 2) u and its derivatives have finite one-sided limits
as z — s(t)” and z — s(t)*.

d s(t) d b
= — / u(z,t)dr + — / u(z,t)dx = ¢(a,t) — ¢(b,t)
dt a dt s(t)

s(t) b
= / uy(z, t)dr + / u(z,t)dx + u(s™,t)s’ — u(s*,t)s’
a s(t)

= ¢(a7t) i ¢(b7 t)

where lim,_, 54y~ u(z,t) = u(s™,t), lim,_, 1)+ u(z,t) = u(s™,t). By taking
the limits a — s(t)~ and b — s(t)*, we have

u(s™,t)s’ —u(st,t)s’ = ¢p(s,t) — ¢(st,1)
e,

= —s'[u] + [$(w)] = 0




e The last equation is called the jump condition.

e In fluid mechanics, it is known as Rankine-Hugoniot condition.

e The discontinuity in u that propagates along the curve z = s(t)
is called a shock wave.

e The curve xz = s(t) is called a shock path.

e s’ is called the shock speed.

o |[u]| is called the shock strength.

Example 3 (continue Example 2) Now we are ready to determine the curve
in Example 2 which separates two types of characteristics. In fact, the jump
condition for the nonlinear wave equation is

—s'[u] + [7—’;] =0

,_U_+U+_1+O
- 2 s

=5 s =142
So, the curve is a straight line
B=1/2

and a solution, consistent with the jump condition, to the initial value

problem is
1, fx<i/2
u(z,t) =
0, ifz>t/2




Rarefaction Waves

Example 2 let us consider another type of Riemann problem

Uug + uty = 0, r€R, t>0

0, ifz<0
u(:):,O)—{l’ ifz>0

The solution u is constant along characteristics. Since dz/dt = u, we know
that the data u = 0 are carried into the region z < 0 along vertical char-
acteristics; the data u = 1 are carried into the region z > t along the
characteristics with speed 1. Hence there is a region 0 < z < t completely
lacking of characteristics. To define a continuous solution on the whole re-
gion € R and t > 0, we simply select a family of curve to fill the region
0 < z < t such that the characteristic curve z = 0 continuously varies to
x = t. These curve must be a family of straight lines, since we need to make
sure from the original PDE that dz/dt = const. Thus, we take them to be

& == gL, Ob<exl
£ dx T

For a fixed value ¢, along the characteristic x = ct, u = 5 P = Hence,
the solution is )

0, ifz2<0

& -

u(z, t) = Fe ifo<z<t
1, fz>t

e For t > 0, the solution is continuous.
e The solution DOES satisfy the PDE in the region 0 < z <.
e The solution is not continuously differentiable.

e A solution of the form is called a rarefaction wave.




Shock Propagation

e Shock forms if the initial data is discontinuous.

e A solution of a hyperbolic euation may evetually develop
discontinuities, even initial it starts a perfectly smooth data.

e The time when the shock forms is called the breaking time.

Example 5 Consider a more complicated initial value problem

us + uugy = 0, TER, t>0

[ i ifzx<0
u(:c,O):{—l, f0<zr<l1
0, ifx>0

The characteristics are shown here.
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Obviously, a shock must form at ¢ = 0. The shock path can be deter-
mined by the differential equation

¢ = [w?/2)/lu] = “E=
Since u— = 1 and u; = —1, we have s’ = 0 = s = const. Since the curve

passes through (0,0), so it is s(t) = 0.

y

The shock propagates until time ¢ = 1 with the speed s’ = 0. Since
there is no characteristics in the region bounded by three straight lines:
z=1,¢+1=tand z—1= —t, we have to insert a family of straight lines
in the regions. They have the equation

r=—kt+1, k = const

As in Example 4, we have




in the fan region.
Now beyond ¢ = 1, the shock will have speed

1 z-—1
,_u++u__ + t
L e 2
d
Since s’ = —(g—, we have a first order ODE
z—1
d_z":iL_
dt 2

with the initial condition z = 0 at ¢t = 1. This yields
r=s8(t)=t+1-2v1

This curve intersects with x =1 att =14



Uu=29 h

For t > 4, the characteristics emanating from z < 0 run into the
vertical characteristics. The new jump condition for ¢ > 4 is

1+0
'= = =1/2
s 5 /
with the initial condition z = 1 at ¢t = 4. This yields
t—14
R e et
¢ 2



L

Altogether, we have the solution of the initial value problem.
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§3.2 SHOCK FORMATION

We have seen that shock waves can form out from discontinuous initial
data. In this section, we show that shock waves can also form from smooth
data.

Let us consider the initial value problem

ur + c(u)ug =0, z€R, t>0
u(z,0) = uo(x), T €ER

where c(u) > 0, ¢/(u) > 0 and ug is C'. The result in Chapter 2 indicates
that, if ug is nondecreasing, then a smooth solution of the initial value
problem is given implicitly by

U((L‘,t) = ’U«o(é), where T — § = C(u0(€))t

=5 ug must be strictly decreasing in some open interval

Without loss of generality, we assume that ug(z) < 0 on R. The
characteristics are a family of straight lines. For any two points on the
z-axis, say (£1,0) and (&2,0) with & < &, we have

c(uo(€1)) > c(uo(€2))
The two characteristics
T — &1 = c(uo(§1))t
T — &2 = c(uo(&2))t

intersect to each other = a contradiction, since u takes different value on
each of the straight lines.

e Even the initial data is smooth, a smooth solution may not
exist for all ¢ > 0.

11



Determine the breaking time

Assume that along the characteristic

T — & = c(uo(§))t
the solution breaks down. Write

9(t) = ugz(x(t), 1)

d
= d—‘g = Utz + c(U)Ugy

The original PDE =

Utz + c(W)Uge + ¢ (w)u2 =0

T
= = = c(u)g
Since u is constant along characteristics, we can solve the equation
9(0)
—~ =
I T T 9(0) ¢ (uo @)t
up(§)
=> Ug =
1+ up (€)' (uo(€))t

If ¢ and ug have opposite signs, u, will blow up at some finite time ¢ along
the characteristic. Examine all the characteristics, the breaking time for
the wave will be on the characteristic, parametrized by &, where

14+ F'(§)t =1+ uo(§)c (uo(€))t =0

e Breaking will occur on the characteristic with £ = &,
for which F'(£) < 0 and |F’(£)| is a maximum.
e The breaking time is

s tiic
*T &)
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Example 1 Consider the initial value problem

U + utg = 0, r€R, t>0
u(z,0) = exp(—z?), z€R
The function
F(&) = c(uo(§)) = exp(—£?)

Thus
F'(£) = —2€ exp(—¢?)

The function |F’| has a maximum at £ = &, = /1/2 and the break time is

1

_F_'(E—b)- ~ 1.16

= by ==

Problem 4 on P.97 Consider the initial value problem

Uus + uug =0, z>0, t>0
w(z,0)=1, z>{ u(0,t) =t+1, t>0

The characteristics satisfy

dr _
.

Then, the characteristic emanating from the point (0,7) on the positive
t-axis satisfies

i:L—.—7'~|—1
dt
= z=(r+1)(t—71)

For any fixed 7, this curve will intersect either with another characteristic
z=F+1)(t—7)

13



or the characteristic = t emanating from (0,0). In the first case, we know
that these characteristics intersect at time

t=T+F+1
In the second case, the time is
t=74+1

Therefore, the breaking time ¢, = 1. The shock forms at (1,1).
To determine the path of the shock, by the jump condition, we have

S,_u_+u+_7'+1+1
(R R

where 7 is determined by

z=(r+1)Et-71)

I A G R
5 2

z%=“'L+¢i+1V_4x

= +1

To solve the equation, denote (¢ + 1) — 4z = v?, then

t—1—v=2v

t—1
v

= 0 = -1

We can solve this homogeneous equation by writing v = (¢t — 1)w and have

w=1/2

- z = (t+3)(3t +1)/16
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§3.4 WEAK SOLUTIONS: A FORMAL APPROACH

Consider the initial value problem

e+ )y =0, meR, t>0
u(z,0) = uo(x), r€R

where ¢ is a continuously differentiable function on R.

e u is a classical or genwine solution if it is smooth.
e A compact set in xt spacetime means a closed, bounded set.
e The support of f, denoted by suppf, is the set

{(z,t) : f(x,t) #0}

e The set C} contains all smooth functions with compact support:

Cs = {f: fi, f» are continuous and suppf is compact}

For a classical solution u of the initial value problem and a function f
in C}, take a rectangle

D={(z,t):a<z<b0<t<T}

such that it contains the support of f. We take D large enough such that
f vanishes alongr = a, z = b and t = T. Then, by the PDE, we have

//D (P W )t = 0

This implies

/OT/abfut dacdtzf:/onutdtda:=/ab [fuloT—/ontudt] dz

:_/abf(:z,O)uo(ac) da:—-/ab/ontu dt dx

16



and
/OT/abf%da:dt:/OT [fcblz—/abfmcbdx} dtz—/OT/abfmda:dt

= //tZO(Uft + fo¢) dx dt + /t=0 ugfdx =0

e If u is a classical solution and f € C}, then the last identity holds.
e The last equation contains no derivatives of u and ¢.

e The last equation is called the week form of the original IVP.

e The function f is called the test function.

Definition 1 A bounded piecewise smooth function u(z,t) is called a weak
solution of the initial value problem

ut + ¢(u), =0, T€R, t>0
u(z,0) = up(z), z€R

where ug is assumed to be bounded and piecewise smooth, if and only if u

satisfies
// (uft + fz¢) dx dt+/ upfdr =0

for all smooth functions f with compact support.

e If u is a classical solution, then it is also a weak solution.
e If u is a smooth weak solution and ug is also smooth,
then u is a classical solution.
e We may change the definition of a weak solution and replace

the condition piecewise smooth by measurable.
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We now show that the definition of a weak solution leads to the
jump condition across a shock.

Let T be a smooth curve in spacetime given by z = s(t) along which u
has a simple jump discontinuity. For simplicity, let D be a circular region
centered at some point on I' and lying in the ¢t > 0 plane. Let D; and Dy
be the disjoint subsets of D on each side of T'.

t‘

Py

P

Take any f € C3(D). By the definition of weak solution,

0= [/;Uft + ¢(u) f] dx dt
- // [uft + ¢(u) fz] dz dt + // [ufe + o(u) fo] dz dt
Dy e
Since u is smooth in Ds, we know that

ug + ¢(u)z =0

18



By Green ’s theorem,

/wz ~ufda + fout = || [)e+ (f0):) de dt
e //D2 [ufe + ¢(u)fo] dz dt

Since f € C4(D), the line integral is only nonzero along I', hence,

P
I [ufi + ¢(u) fe) dx dt = / —ug fdx + fo(ug)dt
Do P,

Similarly,

P,
// [y -+ bl o] dee dt = / oy Fil R
Dy Py

N / £( = [uldz + [¢(w)]dt) =0
r
Since f is arbitrary, we have

—[u]dz + [¢(w)]dt =0

=¥ —s'(t)[u] + [#(u)] = 0

This is the jump condition.

e PDE alone is not enough to determine the jump condition.
There may be more than one jump conditions.
e Weak solutions are not unique.

19



Example 1 Consider the PDE
U + utty, = 0

Any positive solution satisfies both

2 2 3
ut+(u_) o il (_) N (_) ~0
2 x 2 t 3 x
Each of the equations yields different jump condition. Thus there are more
than one week solutions associate to the PDE.

Since weak solutions are not unique, another condition is required to
guarantee uniqueness. One commonly used condition is the so-called en-
tropy condition:

E
u(w+a,t)—u(:c,t)§gt—, a>0, t>0

where F is independent of z,t and a.

¢ As z moves from —oco to +00, the solution can only jump down.
o If " > 0, then we have the entropy inequality
¢'(u2) > &' > ¢'(w1)
where s’ is the shock speed and u; and us are the states ahead
and behind the shock, respectively. This can be derived from
= )= 0n)_ gy
and the fact that ¢'(u) is increasing with w.

20



§3.5 ASYMPTOTTIC BEHAVIOR OF SHOCKS

In this section, we demonstrate how initial waveform evolve over the
time.

Equal-Area Principle
Consider the initial value problem

us + c(u)ug =0, zeR, t>0
u(z,0) = uo(), z€R

We assume that

o c(u) >0, (u) >0.
e ug(z) € C'(R) is a bell curve.

The solution is given implicitly by

{u = up(§)
g=¢+FEt  F(€) = c(uo(§))

As t increasing, the waveform is distorted and eventually the solution be-
comes multiple-valued.

21
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Lemma 1 Consider a section of the initial waveform between r = a and
¢ = b, with ug(a) = uo(b), with uo a bell curve. Then for any t > 0, the
area under this section of the wave remains constant as it propagates in
time.

23




Lemma 2 Lot a and b be chosen such that ug(a) = ug(b), where ug is
a bell curve, and assume that the shock path is given by =z = s(t) with
a+ tF(a) < s(t) < b+ tF(b) for t in some open interval I. Then

b+t F (b)
/ u(x,t)dr = const, tel
a+tF(a)

where u = u(z,t) is the weak solution.

Write ¢ (u) = c(u). Since ug(a) = uo(b), we have
F(a) = c(uo(a)) = c(uo(b)) = F(b)

w(a + tF(a),t) = u(a,0) = uo(a) = uo(b) = u(b,0) = u(b + tF(b),1)
Thus

g [oHE®)
— u(z,t)d
dt JattF(a)

d [*® b+tF(b)
e )dr + —
) u(z,t)dx + g /;(t) u(x,t)dz

s(t)

=s'(t)u(s~(t),t) — F(a)u(a + tF(a),t) + /+tF( : w(z, t)dz

b+t (b)
CF(b)u(b+ tF (), ) — &' (Dulst (), 1) + / Ll
s(t)

s(t) b+tF(b)
= — 3'[u] — / c(u)ugdx — / c(u)ugdx

+tF(a) s(t)
s(t) b+tF(b)
— ¢(u)

= — &'[u] — ¢(u)
a+tF(a)

= — &/[u] + [(w)] =0

s(t)
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Equal-Area Principle The location of the shock z = s(t) at time ¢ is the
position where a vertical line cuts off equal area lobes of the multivalued

wavelet.
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Shock Fitting

Consider
{ut+uum=0, zeR, t>0

u(z,0) = uo(x), r€R

Once again we assume that the function u = ug(z) is a bell curve. Now we
give an algorithm to determine the shock position.

Assume that the shock is located at z = s(t) at some time at t > tp.
To determine s(t), let us assume that the two characteristics intersecting at
t are

P= €1 + UQ(£1)t, T = €2 + uO(éz)t

Or
s(t) = & +uo(&1)t, s(t) = &2 + uo(&2)t (8)

s, Byl
uo(€1) — uo(€2)

= t=

t>t |

26



The equations in (8) have three unknowns: s,&1,&2. One more equation
is need to determine the shock path. It can be obtained by the equal-area

principle.

&2
[ worat = 5 fuo(@) + uo(60) 6~ &)
s(t) = & + uo(&1)t
=> s(t) = & + uo(€2)t
& ug(€)dt = § [uo(6r) + uo(6)] (61 — &2)

27



Whitham’s Rule For a succession of value of time t, draw a chord on the
initial profile ug of slope —1/t cutting off equal-area lobes. Then shift the
endpoints of the chord to the right by the amounts tug(§2) and tug(&1),
respectively, obtaining the location of the shock at the time ¢.

e If t — 400, the slope of the straight line PQ tends to zero.
e The shock strenghth = ug(&2) — uo(§1)-

28




Asymptotic Behavior
In this part, we study the long-term behaviors of shock strength, shock

path and the solution.
Consider the initial value problem

ug + uug = 0, re€R, t>0
u(z, 0) = up(z), z€R

where u = ug(z) is a bell curve, with ug(x) = u, forz < 0and forz > a > 0.

By Whitham’s Rule, the slope of the straight line P tends to zero as
t to +o0o. This implies that, for t > 1,

uo(£1(t)) = u*

3 ;
s [ w® - wlde = H6 - o) w7l foréa >a
&2
Since, (&1 — §2) + t[’u,o(fl) — ’U,o(éz)] = 0, we have
&1 t
5@ -l = Gue(@) ~ T oy >a
§2
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Or
- [ 10a(€) - wlde = Gluolea) =P, for&a>a

As t — +00, since &, tends to zero, the left hand side tends to the area A
and the quantity ug(&2) — u* tends to the shock strength. Thus

1/2
Shock strength ~ (2—;4-)

By the previous discussion, we have
uo(&2(t)) ~ u* + (24/8)Y2,  t>1
Since as t — +00, we have &(t) — 0, we have

s(t) = &2(t) + tuo(€2(t))
~utt+ (2402, t>1

The point (0,0) moves at speed u* and is located at z = u*t.
= u=u", for z < u*t
Also
T T for z > s(t)
For t >> 1, notice s(t) ~ u*t 4+ (24t)'/2. In the region u*t < r < u*t+
(2At)'/2] since the solution is given by

u = up(§), g = £ + tuo(§)

=% u:m—£

t
Fort>1,=>&(=6—0
= U~ -:tE, u*t < T < u*t + (2At)1/2




