
Class Number problem

First we introduce the class number in one of many ways. Consider a quadratic form
with integer coefficients a, b, c

Q(x, y) = ax2 + bxy + cy2,

a, c > 0 and we also assume it is primitive: that is the greatest common divisor of a, b, c
denoted by (a, b, c) = 1. We recall the discriminant

d = b2 − 4ac.

We shall only focus on d < 0 in this note, that is when the quadratic form Q(x, y) is pos-
itive definite. When d > 0 the situation is equally fascinating and deep with consequences
to prime geodesics in hyperbolic surfaces by virtue of a clever observation in Peter Sarnak’s
thesis(J. Number Theory 1981). First note that by the definition d = 4k or d = 4k + 1.
Since d < 0 it is trivial that we should have a, c > 0 in Q(x, y).

Definition: A discriminant d is said to be fundamental iff d is square free in its prime
factorization or if it contains a square q2 > 1 in its factorization, then d/q2 is not a
discriminant.

We shall only restrict ourselves to fundamental discriminants in what follows.
Now we apply a transformation to Q(x, y) via the matrix in SL(2, Z) that is a 2× 2

matrix with determinant 1 having integer entries.(
α β
γ δ

)(
X
Y

)
=

(
x
y

)
.

Here αδ − βγ = 1 and the matrix above has integer entries.
One can check the discriminant does not change under the transformation and the

new coefficients are given by

At

(
a b

2
b
2 c

)
A,

where

A =

(
α β
γ δ

)
,

and At is the transpose of A. Quadratic forms that are related by such a transformation
of SL(2, Z) are said to be equivalent.

An Example: Consider d = 4k + 1 and the two quadratic forms,

Q(x, y) = x2 − xy +
1 + |d|

4
y2, R(X,Y ) = X2 +XY +

1 + |d|
4

Y 2.
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Note both quadratic forms have the same discriminant d. Next consider the transformation(
1 1
0 1

)(
X
Y

)
=

(
x
y

)
, x = X + Y, y = Y.

Apply this transformation to Q(x, y) and we get on simplification

(X + Y )2 − (X + Y )Y +
1 + |d|

4
Y 2 = X2 +XY +

1 + |d|
4

Y 2.

Thus the two quadratic forms Q(x, y) and R(X,Y ) are in fact equivalent.

Gauss obtained the following easy result, a part of Reduction theory(taken forward by
Borel and Harishchandra (1962) in general) that every quadratic form can be brought to
a standard form by using matrices in SL(2, Z). The new quadratic form has coefficients
that satisfy the inequalities:

−a ≤ b ≤ a, a < c. Or 0 ≤ b ≤ a = c.

For a given d thus
|d| = −d = 4ac− b2 > 3a2.

So a <
√
|d|/3. Hence |b| < a <

√
|d|/3. And so because (a being a natural number is ≥ 1)

c < 4ac < |d|+ b2 < 4|d|/3, we conclude that there are only finitely many non-equivalent
quadratic forms for a given discriminant d.

Proof of Gauss’s result on Reduction: We consider the two matrices
En, F ∈ SL(2, Z),

En =

(
1 n
0 1

)
, F =

(
0 1
−1 0

)
.

Clearly En is associated with the transformation

x = X + nY, y = Y,

and F with
x = Y, y = −X.

We apply the two transformations En and F in tandem to the quadratic form Q(x, y). We
first apply En. We get

a(X + nY )2 + b(X + nY )Y + cY 2 = aX2 + (b+ 2an)XY + (c+ an2 + bn)Y 2.

By choosing n appropriately we can arrange |b| ≤ a. We can use F to switch c+ an2 + bn
with a if the coefficient of Y 2 is smaller than a to arrive at

(c+ an2 + bn)X2 − (b+ 2an)XY + aY 2 = AX2 +BXY + CY 2.
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Thus applying En and F in tandem we see we have

|B|+A < a+ |b|,

where a,A > 0, b, B are integers. This process has to terminate in a finite number of steps.
When it terminates, since the discriminant is preserved, A ̸= 0 as the quadratic form has
to remain positive definite and A ≤ C, or we may apply En and F again to obtain a
contradiction to the minimality. If A = C and B < 0, we may apply F at which point B
is transformed to −B and A = C still. We have now proved all parts of the claim.

Definition: The class number h(d) is the number of non-equivalent quadratic forms of
discriminant d.

Remark: Note h(d) ≥ 1, since one has the quadratic forms,

x2 +
|d|
4
y2, x2 + xy +

1 + |d|
4

y2,

with discriminant d when d = 4k and d = 4k + 1 respectively(d = 4k + 1, (1 + |d|)/4 is a
natural number!).

The class number first appears in a formula of Dirichlet in his famous theorem of
primes in arithmetic progression. This link can be established by using Eisenstein series
and the Dedekind zeta function. This point of view is central to the proof of Heilbronn-
Linfoot. By assuming there are 11 such d with h(d) = 1 they concoct a Landau-Siegel zero
using this link and this leads to a contradiction. The rest of the proof is a deft use of the
Euler-Maclaurin formula.

Gauss computed the discriminant d for which h(d) = 1 and found 9 such values for d.
In 1933 Heilbronn and Linfoot showed that apart for the 9 values found by Gauss, there
is possibly a 10th one and no more.

In the 1950s a schoolteacher in Germany, Heegner claimed to have a proof that the
list of Gauss was complete but he was not believed. In 1967 two proofs one by Stark
and another by Alan Baker(using his theorem of Linear Logarithms) established that the
list of Gauss was complete. Moreover Stark pointed out that Heegner’s proof was in fact
correct but by then Heegner was dead. Baker showed that there are 19 discriminants with
h(d) = 2. The situation for h(d) ≥ 4 is still open. Oesterle has classified the discriminants
for h(d) = 3 in recent times.

It can be easily shown that

Proposition:
h(d) ≤ C

√
|d| log |d|.

Proof: First note by the discussion above

h(d) ≤
∑

a<
√

|d|/3

ρd(a),
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where ρd(a) denotes the number of solutions b mod(2a) (since −a ≤ b ≤ a) to the
quadratic congruence

b2 ≡ d(mod 4a).

It is easily seen that ρd(a) ≤ Cτ(a) where τ(a) is the divisor function, the number of
divisors of a. Thus our inequality above can be re-written as

h(d) ≤
∑

a<
√

|d|/3

ρd(a) ≤ C
∑

a<
√

|d|/3

τ(a).

Using the fact from Dirichlet’s theorem(see the end of these notes) that∑
a<x

τ(a) = O(x log x),

we immediately conclude
h(d) ≤ C

√
|d| log |d|.

A finer result can be obtained, see Iwaniec-Kowalski [3].
The opposite inequality is also valid under the assumption that the L function L(s, χd)

(where the character χd is given by the Jacobi symbol ( dn )) satisfies

L(
1

2
, χd) ≥ 0.

This hypothesis is tantamount to the Generalized Riemann Hypothesis(GRH). The idea
of the proof is to evaluate a residue at s = 1/2 in a representation of the Dedekind zeta
function in terms of Eisenstein series. See [3].

Through the works of Erich Hecke, Max Deuring, Edmund Landau and Heilbronn, it
was established that

h(d) → ∞, |d| → ∞.

Dorian Goldfeld showed that for an absolute and effective constant C one has

h(d) ≥ C log |d|.

If the constant is allowed to be ineffective, one has for any positive ϵ,

h(d) ≥ Cϵ|d|
1
2−ϵ.

A major problem in Modern Number Theory is to obtain an effective constant in the last
inequality. This problem is hard and related to Landau-Siegel zeros of L-functions. If
there is no such spurious zero, the problem will be solved. See remarks above for the
Heilbronn-Linfoot theorem.

We now state a cute theorem of Rabinovitch(1913) on prime spitting polynomials. We
consider discriminants of the form 4k + 1 in the rest of this note.
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First a remark. the discriminant d by definition can only be of the form 4k or 4k+1.
By a little thought if h(d) = 1 then the discriminant d has to be prime if |d| > 15 and also
(1 + |d|)/4 has to be prime.

We set

q =
1 + |d|

4
.

Consider the polynomial

fq(x) = x2 + x+ q.

Theorem: fq(x) is a prime for all integers x, 0 ≤ x ≤ q − 2 if and only if h(d) = 1. That
is the polynomial spits out primes.

By Gauss and Heilbronn-Linfoot, Baker, Stark the complete list of fundamental d for
which h(d) = 1 is the list

−1,−2,−3,−7,−11,−19,−43,−67,−163.

Thus for example if we take d = −163 we get the polynomial

x2 + x+ 41.

Then if we evaluate the polynomial for 0 ≤ x ≤ 39 we get primes. There are no other such
polynomials of the type

x2 + x+ q,

from the discussion above.

We shall now apply the previous discussion to prove a theorem of Fermat.

Theorem(Fermat): Any prime p of the form 4k+1 or 2 can be written as a sum of two
squares

p = A2 +B2.

We may now apply a special case of an identity that goes back to Brahmagupta and
prove

Theorem: Given any number n which has a prime factorization

n = pa1
1 p

a2
2 · · · pan

n ,

where the primes are either 2 or all of the form 4k + 1, then

n = A2 +B2.
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This theorem is a special case of Lagrange’s four-square theorem which states that any
number n can always be written as a sum of four squares

n = A2 +B2 + C2 +D2.

We first prove the second theorem as a corollary of Fermat’s theorem. We use Brah-
magupta’s identity

(A2 +B2)(a2 + b2) = (aA+ bB)2 + (aB − bA)2.

Now any product of primes p, q either distinct or the same and either 2 or of the type
4k + 1 using Fermat’s theorem and Brahmagupta can be written as

pq = (a2 + b2)(A2 +B2) = (aA+ bB)2 + (aB − bA)2.

Using induction (on the number of primes in the factorization) the theorem is now proved.
We now prove Fermat’s theorem. First we note there is only one non-equivalent

quadratic form of discriminant d = −4. We have already observed that,

|b| ≤
√
|d|/3.

Thus if d = −4, b = ±1, 0. Next since d = −4,

d = −4 = b2 − 4ac, 4ac = b2 + 4.

If b = ±1, then 4ac = 5. But 4 cannot divide 5. Thus b = 0 and ac = 1 and so a = c = 1.
Thus the unique quadratic form with discriminant −4 is

x2 + y2.

Since 2 can obviously be written as

2 = 12 + 12

we only focus on primes of the form 4k + 1 in Fermat’s theorem. Let us take for granted
an immediate consequence of Euler’s criterion the fact that one can always find B so that
for primes p of the form 4k + 1 one has

B2 + 1 = kp.

Multiplying this by 4 we get
(2B)2 + 4 = 4kp.

Set b = 2B and we get
b2 + 4 = 4kp. (⋆)

Thus using (⋆) the quadratic form

px2 + bxy + ky2,
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has discriminant −4. But X2 + Y 2 is the only quadratic form in standard form with
discriminant −4, so both X2 + Y 2 and px2 + bxy + ky2 must be related by a SL(2, Z)
transformation,

X = αx+ βy, Y = γx+ δy.

Thus plugging this into X2 + Y 2 we get

X2 + Y 2 = (αx+ βy)2 + (γx+ δy)2.

Equating coefficients for x2 we easily get

p = α2 + γ2.

This finishes the proof of Fermat’s theorem. Euler’s criterion is completely elementary and
left to the reader to prove.

Euler’s Criterion: For p a prime, the congruence

x2 ≡ a(modp)

has a solution, if and only if

a
p−1
2 ≡ 1(modp).

In our problem related to Fermat’s theorem we are trying to solve

B2 ≡ −1(modp).

There is a solution provided

(−1)
p−1
2 ≡ 1(modp).

This is certainly true if p is a prime of type 4k + 1.

Remark: The proof of Lagrange’s four square theorem stated above has a similar flavor.
First one proves that any prime p of the form 4k + 3 can be written as the sum of four
squares. Then one applies a form of Brahmagupta’s identity for four squares. Many proofs
of Lagrange’s theorem and Fermat’s theorem are available. One such proof proceeds by
applying Minkowski’s theorem on lattices in convex domains.

Now we will give an application to counting Lattice points on a circle and eigenvalues
of the Laplace operator, a problem that appears in Quantum Mechanics and Engineering,
to heat flow in plates, vibration problems of plates and so on. We state these as a theorem
and prove them.

Definition: A lattice point in the plane R2 is defined as a point P whose coordinates
(m,n) are both given by integers.
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Our question is: Given a circle x2 + y2 = r, does this circle have any lattice points on
it. Obviously if it does, then since m2 + n2 = r, r must be a natural number. We have

Theorem: A circle x2 + y2 = n where n is a natural number will have lattice points on
the circle, provided one can factor n into prime factors that contain only 2 or primes of the
type 4k + 1 in the prime factorization. Let τ(n) denote the number of divisors of n. The
number of lattice points on the circle will be exactly 4τ(n), when n is odd, and exactly 4
lattice points when n = 2a and 4τ(m), when n = 2am with m odd.

Proof: The first part of the theorem is immediate from our previous theorem that, num-
bers n that have prime factors that are 2 or primes of the form 4k + 1 can be written
as

n = k2 + j2,

with k, j integers. Thus the circle x2 + y2 = n has the lattice point (k, j) on it. Thus
the only question is, in how many ways can we split n as a sum of two squares. This is
answered by a theorem of Jacobi at the end of these notes.

Lastly we give our application to Quantum Mechanics and Engineering. Consider the
Laplace operator on a domain which is a square S of edge length π. We study the eigenvalue
and eigenfunction problem

−∆u(x, y) = λu(x, y), u

∣∣∣∣
∂S

= 0.

This problem has eigenfunctions via separation of variables,

u(x, y) = sin kx sin jy,

with corresponding eigenvalue n = λ = k2 + j2. Thus from the previous theorem we
conclude, that the eigenvalues λ that can appear are natural numbers that are exactly
those natural numbers n that have only 2 and primes of the type 4k + 1 in their prime
factorization. Moreover each eigenspace has dimension exactly equal to 2τ(n). We have
to take 2 as (−k,−j) lead to the same eigenfunction as does (−k, j) etc.

However primes 4k + 3 can also appear as eigenvalues, provided they are exactly
squares in the prime factorization. We collect all this information and state a theorem.

Theorem: Every n of the form

n = pa1
1 · · · pak

k P 2A1
1 · · ·P 2Am

m ,

where pi is either 2 or a prime of the form 4k + 1 and Pi a prime of the form 4k + 3 and
the set pi is non-empty, is an eigenvalue for the vibrating square. Moreover the dimension
of the eigenspace is 2τ(N) where

N = pa1
1 · · · pak

k ,
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where τ(N) is the number of divisors of N and where N is odd. The dimension of the
eigenspace is 1 when N = 2a a odd and 0 when a even and 4τ(M) when N = 2aM , with
M odd.

Examples: Circles x2 + y2 = 35, x2 + y2 = 77 will contain no lattice points and neither
will 35, 77 be eigenvalues/vibrating frequencies of a clamped plate, since the numbers 35, 77
contain 7 in their prime factorization which is a prime of the form 4k + 3. But note that
72 × 5 can be written as a sum of two squares, for example,

72 × 5 = 7222 + 72.

72 by itself cannot be an eigenvalue as the corresponding eigenfunction vanishes

72 = 72 + 02, sin 7x sin 0y ≡ 0.

Note: Linfoot moved to Optics after this work with Heilbronn. He partnered with Wolff
to write books on Optics. This is the same Wolff who wrote a classic textbook on Optics
with Max Born. Wolff moved to the University of Rochester presumably so that he could
be near Kodak. Linfoot was heavily involved in war related work in WW2 related to
Optics. After the war he developed telescopes and headed important Govt. positions in
UK regarding science administration. Linfoot can be seen coming out to field with Hardy
as captain in a famous match: Hardy’s Mathematicals vs Rest of the World at the British
Science Association meeting at Oxford around 1929. Linfoot was a student of Hardy.

9



The Theorem of Jacobi and Lattice Points

We will derive in these notes the theorem of Jacobi via a simple proof. Jacobi used
his beautiful and deep identities on theta functions to derive this theorem. Our proof is
very simple.

Let us consider any n, with its prime factorization

n = pa1
1 · · · pak

k .

Proposition: The number of divisors τ(n) is given by

τ(n) = (a1 + 1)(a2 + 1) · · · (ak + 1) = Πk
i=1(ai + 1).

Proof: The proof is trivial. For a single prime pa, note the divisors are

1 = p0, p1, , p2, · · · pa.

These constitute a+1 divisors. Thus applying this observation to each of the prime factors
of n, we easily get our result.

Now we will prove the theorem of Jacobi in a special case by an elementary argument.

Theorem(Jacobi): Let
n = pa1

1 · · · pak

k ,

where each pi is a prime of the form 4k + 1. Then the number of lattice points on the
circle

x2 + y2 = n,

is 4τ(n), when n is odd. It is 4 when n = 2a and 4τ(m) when n = 2am, m odd. The
lattice points lie on the axes when n = 2a with a even.

Proof: We first take up the case of n odd. By Fermat’s theorem each of the prime factors
that divide n can be expressed as a sum of two squares. Focusing on an arbitrary prime
pi in this list we have

pi = m2 + n2 = (m+
√
−1n)(m−

√
−1n).

The prime pi occurs ai times. We now arrange the numberm+
√
−1n in the first column of

a table where the number of rows is exactly ai. The second column of the table consists of
the complex conjugate m−

√
−1n also in ai rows. See Figure 1. Note that multiplying

all the entries in Figure 1. we get pai
i . Next we multiply the entries in the first column to

get z = M0 +
√
−1N0. Multiplying the entries in the second column yields the conjugate

M0 −
√
−1N0. Further note (M0, N0) is one desired lattice point since obviously pai

i =
M2

0 + N2
0 . Next we interchange the entries in row 1 to get Figure 2. We perform the

operation of multiplying the first column again and getM1+
√
−1N1, with p

ai
i =M2

1 +N
2
1 .

This gets us the lattice point (M1, N1). We next interchange the elements of the second
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row and multiply the first column again to get M2 +
√
−1N2 leading to the lattice point

(M2, N2) since p
ai
i =M2

2 +N
2
2 . The process ends when we interchange the elements of the

last row at which point the second column of Figure 1 will become the first column at the
end of the process. We multiply out the first column leading to the lattice point (Ms, Ns),
where s = ai + 1. Thus pai

i has provided us ai + 1 lattice points.
If we perform the operations described above for two primes p1, p2 arranging their

factorization p1 = (m+
√
−1n)(m−

√
−1n), p2 = (r +

√
−1s)(r −

√
−1s) in two columns

with a1 and a2 rows respectively, we find we get (a1 +1)(a2 +1) lattice points. In general
applying this process for the primes that appear in the factorization of n, we see the
number of lattice points we get by this process is exactly τ(n).

Now given any lattice point, represented by M + iN we can rotate the lattice point
by π/2 and π by multiplication by ±

√
−1,−1 to get additional lattice points. Thus in all

we have exactly 4τ(n) lattice points.
For the case x2 + y2 = 2, the lattice points are (1, 1), (1,−1), (−1,−1), (−1, 1). These

are 4 lattice points and if n = 2a, we will still get 4 lattice points if a is even and 4 when
a is odd. When a is even the only lattice points are the trivial ones (±2

a
2 , 0) which do not

contribute to the eigenfunctions. This finishes the proof.
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Appendix I: The Divisor Function and Dirichlet’s Theorem

Since the divisor function τ(n) appeared in the formula for the dimension of the
eigenspaces, we end these notes with an appendix that establishes bounds for τ(n) and
discuss a statistical average for τ(n) obtained by Dirichlet and some open problems. We
note that the divisor function is very wild and fluctuates a lot from being τ(p) = 2 for p
a prime to being large for composite numbers. Typically in Number Theory, fluctuations
can be smoothed out by averaging.

Proposition: Given any ϵ > 0, there exists a constant Cϵ only dependent on ϵ, such that

τ(n) ≤ Cϵn
ϵ.

This proposition gives us a bound on the dimension of the eigenspace in terms of the
eigenvalue n.

Proof: We use the formula for the number of divisors in the last section. For

n = Πk
i=1p

ai
i , τ(n) = Πk

i=1(1 + ai).

We take a function f(n) to be specified later and consider those primes in the decomposition
for n such that pi ≥ f(n). Then for such primes pi, i ∈ S we have,

f(n)
∑

i∈S
ai ≤ Πi∈Sp

ai
i ≤ n.

Thus
log f(n)

∑
i∈S

ai ≤ log n (1).

For those indices i not in S, we have pi ≤ f(n). The number of such indices, by the Prime
number theorem is bounded by

f(n)

log f(n)
. (2)

We have using pi ≥ 2
2ai ≤ pai

i ≤ n.

Thus,
1 + ai ≤ C log n,

So for i ̸∈ S we get using (2)∑
i ̸∈S

log(1 + ai) ≤ C
f(n) log log n

log f(n)
(3)

Now
log τ(n) ≤

∑
i ̸∈S

log(1 + ai) +
∑
i∈S

log(1 + ai)
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≤
∑
i ̸∈S

log(1 + ai) + C
∑
i∈S

ai.

Using (1) and (3) we get

log τ(n) ≤ C
f(n) log log n

log f(n)
+ C

log n

log f(n)
.

We equalize the two terms by choosing

f(n) =
log n

log log n
.

Thus,

log τ(n) ≤ C
log n

log log n
.

This yields,
τ(n) ≤ nC/ log logn,

which proves the proposition.

Now we pass to Dirichlet’s theorem which is proved by counting the lattice points
under a hyperbola, a method invented by Dirichlet.

Theorem(Dirichlet): We have∑
n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2),

where γ is the Euler-Mascheroni constant. Dirichlet himself noted that the error bound
is not sharp. In fact Voronoi improved the error bound to O(x1/3). The theorem of
Voronoi can be proved using the Fourier series for the periodic sawtooth function and
then applying the classical Van der Corput lemma to estimate oscillatory sums. Voronoi’s
result has been improved by Kolesnik, Iwaniec and Mozzochi and others. Hardy proved in
1912 that one cannot improve the error term beyond O(x1/4). It remains an open problem
to obtain Hardy’s bound. Dirichlet’s theorem shows that statistically on the average the
divisor function behaves like a logarithm which should be compared with the proposition
we proved above.
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Appendix II: Voronoi’s Theorem

We shall prove Voronoi’s theorem with a slight loss. We prove

Theorem: Let ϵ > 0 be any positive number. Let τ(n) be the number of divisors of n.
Then we have ∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O(x
1
3+ϵ).

Our proof is essentially self-contained except we assume the bound given by Van der
Corput’s lemma, the easy proof of which can be found in the book by Iwaniec and Kowalski
[3].

Notation: We shall use the notation [x] for the integer part of x. {x} denotes the
fractional part of x. Thus

x = [x] + {x}.

We will also need to avail of the sawtooth and periodic function, with period 1(see Fig. 4.)

ψ(x) = x− [x]− 1

2
.

As is standard in Number Theory we use the notation

e2πınx = e(nx), ı =
√
−1.

Lastly we denote the distance of a point x to the nearest integer as

||x|| = inf
m

|x−m|, m ∈ Z.

Lemma 1: Since ψ(x) is periodic with period 1, it has the Fourier expansion,

ψ(x) ∼ − 1

2πı

∑
n̸=0

e(nx)

n
.

Proof: This is straightforward. Note that∫ 1

0

ψ(x) dx = 0,

and the Fourier coefficients are given by

cn =

∫ 1

0

ψ(x)e(−nx) dx.

This easily yields the Lemma.
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Lemma 2: We have for any H > 0

ψ(x) = − 1

2πı

∑
0 ̸=|n|≤H

e(nx)

n
+O(

1

1 +H||x||
).

Proof: We first note by summing a finite Geometric series,

|
∑

M≤|n|≤M+N

e(nx)| ≤ Cmin(N,
1

||x||
).

Thus by summation by parts,

| 1

2πı

∑
|n|>H

e(nx)

n
| ≤ C

||x||
∑

|n|>H

1

n2
.

This yields,

| 1

2πı

∑
|n|>H

e(nx)

n
| ≤ C

H||x||
.

So it is enough to consider the situation H||x|| < 1 to estimate the error and finish the
proof of the lemma. We write the error as

ψ(x) +
1

2πı

∑
0̸=|n|≤H

e(nx)

n
.

ψ(x) is already bounded by 1 . Thus we show the finite sum above is uniformly bounded
when H||x|| < 1. To do that we observe that the finite sum above is

1

π

∑
0<n≤H

sin 2πnx

n
.

Next the Dirichlet kernel is given by

DH(t) =
1

2
+

H∑
n=1

cos(2πnt).

By summing a finite geometric series, we see,

|DH(t)| ≤ Cmin(H,
1

||t||
). (1)

So we have
1

π

∑
0<n≤H

sin 2πnx

n
=

∫ x

[x]

(DH(t)− 1

2
)dt.
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By changing variables t→ u+ [x] and (1) we obtain,

| 1
π

∑
0<n≤H

sin 2πnx

n
| ≤ C

∫ ||x||

0

H dt ≤ CH||x|| ≤ C.

This proves the Lemma.

We next need a standard device in Number Theory, the Euler-Maclaurin formula.

Lemma 3: We have,

∑
a<n≤b

f(n) =
f(b)− f(a)

2
+

∫ b

a

f(t) dt+

∫ b

a

f ′(t)ψ(t) dt.

Proof: By a straightforward integration by parts we see,∫ n+1

n

f ′(t)(t− n− 1

2
) dt =

f(n) + f(n+ 1)

2
−
∫ n+1

n

f(t) dt.

The left side can be written as ∫ n+1

n

f ′(t)ψ(t) dt.

Now summing over a ≤ n ≤ b− 1 we obtain

∑
a<n<b

f(n) +
f(b) + f(a)

2
=

∫ b

a

f(t) dt+

∫ b

a

f ′(t)ψ(t) dt.

From the identity above the lemma follows immediately.
We draw a consequence from the previous Lemma.

Lemma 4:
M∑
n=1

1

n
= logM + γ +

1

2M
+O(M−2),

where γ is the Euler-Mascheroni constant.

Proof: We apply the Euler-Maclaurin formula to f(t) = 1/t, to get

M∑
n=1

1

n
=

1

2M
+

1

2
+

∫ M

1

dt

t
−

∫ M

1

ψ(t)

t2
dt.

Now

γ =
1

2
−
∫ ∞

1

ψ(t)

t2
dt.
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Thus we get,
M∑
n=1

1

n
= logM + γ +

1

2M
+

∫ ∞

M

ψ(t)

t2
dt. (2)

We integrate by parts the integral on the right, remembering by periodicity that

∣∣ ∫ B

A

ψ(t)dt
∣∣ ≤ 1,

to get

|
∫ ∞

M

ψ(t)

t2
| ≤ C

∫ ∞

M

dt

t3
= O(M−2).

Inserting the last bound into (2) we obtain our lemma.

We now come to a key lemma which is obtained by the method of Dirichlet by counting
lattice points under a hyperbola. See Fig.5

Lemma 5: We have

[x]∑
n=1

τ(n) = x log x+ (2γ − 1)x− 2

[
√
x]∑

n=1

ψ(
x

n
).

Corollary(Dirichlet):

[x]∑
n=1

τ(n) = x log x+ (2γ − 1)x+O(x
1
2 )

Proof: The Corollary follows by observing that |ψ(t)| ≤ 1 and using this fact in Lemma
5.

We now prove Lemma 5. It is helpful to look at the figures.

Proof: We count the lattice points under the hyperbola XY = x. The lattice points can
be obtained by counting the lattice points in Region I and Region II in Fig 5. But this
double counts the lattice points in Region III in Fig. 6. Thus the lattice points in Region
III have to subtracted. We obtain by this geometric argument

[x]∑
n=1

τ(n) = 2

[
√
x]∑

n=1

[
x

n

]
− [

√
x]2. (3)

Now by definition [
x

n

]
=
x

n
− ψ(

x

n
)− 1

2
.

17



On inserting the identity above into (3) we get

2x

[
√
x]∑

n=1

1

n
− 2

[
√
x]∑

n=1

ψ(
x

n
)− [

√
x]− [

√
x]2. (4)

We next use Lemma 4 with M = [
√
x] to get

[
√
x]∑

n=1

1

n
= log[

√
x] + γ +

1

2[
√
x]

+O(x−1). (5)

Inserting (5) into (4) we get,

[x]∑
n=1

τ(n) = 2x log[
√
x] + 2γx− 2

[
√
x]∑

n=1

ψ(
x

n
) +

x

[
√
x]

− [
√
x]− [

√
x]2 +O(1). (6)

Now
x = x1/2x1/2 = [

√
x]2 +O([

√
x]).

Thus the right side of (6) simplifies to

2x log[
√
x] + 2γx− 2

[
√
x]∑

n=1

ψ(
x

n
)− [

√
x]2 +O(1). (7)

Next we note that

[
√
x]2 = (

√
x+ {

√
x})2 = x+ 2

√
x{

√
x}+O(1). (8)

Lastly we observe using (8) again

2x log[
√
x] = x log[

√
x]2 = x log(x+2

√
x{

√
x}+O(1)) = x log x+2

√
x{

√
x}+O(1)). (9)

Inserting (8) and (9) into (7) we obtain our Lemma.
Next note that

[
√
x]∑

n=1

ψ(
x

n
) =

∑
n≤x1/3

ψ(
x

n
) +

∑
x1/3<n<x1/2

ψ(
x

n
).

The first sum on the right in view of the fact that |ψ(t)| ≤ 1 is already O(x1/3). Therefore
to obtain the result of Voronoi we will prove

Lemma 6: ∣∣ ∑
x1/3<n<x1/2

ψ(
x

n
)
∣∣ ≤ Cx

1
3+ϵ,
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where C only depends on ϵ.
A key ingredient of the proof is the Lemma of Van der Corput which is a simple

consequence of Poisson summation and any elementary version of the stationary phase
formula.

Lemma 7(Van der Corput): Let |f ′′(t)| ≥ Λ on [a, b]. Then,∣∣∣∣ ∑
a≤n≤b

e(f(n))

∣∣∣∣ ≤ C(b− a)Λ1/2.

Lemma 6 will follow from the next Lemma

Lemma 8: For N = 2kx1/3 k = 1, 2, · · · k0, where 2k0x1/3 = x1/2 we have, for any ϵ > 0∣∣ ∑
N<n<2N

ψ(
x

n
)
∣∣ ≤ Cx

1
3+ϵ.

Lemma 6 is an immediate consequence since∣∣ ∑
x1/3<n<x1/2

ψ(
x

n
)
∣∣ ≤ ∑

1≤k≤k0

∣∣ ∑
2kx1/3≤n<2k+1x1/3

ψ(
x

n
)
∣∣ ≤ Cx

1
3+ϵ.

Proof(Lemma 8): We have via Lemma 2

∑
N<n<2N

ψ(
x

n
) =

∑
0<|h|≤H

∑
N≤n<2N

e(hxn )

h
+O

( ∑
N≤n<2N

1

1 +H|| xn ||

)
. (10)

We will apply the Van der Corput Lemma 7 to the inner sum in n to the first term on the
right with f(t) = hx/t. Observe on [N, 2N ], |f ′′(t)| ≥ 2|h|x/N3 so Lemma 7 gives∣∣∣∣ ∑

0<|h|≤H

∑
N≤n<2N

e(hxn )

h

∣∣∣∣ ≤ C
∑

1≤|h|≤H

x
1
2

|h|1/2N1/2
≤ C

H1/2x1/2

N1/2
. (11)

We next estimate the error term in (9). For k ∈ Z such that | xn − k| < 1
2 we obtain

||x
n
|| = |x

n
− k| < 1

2
, |x− kn| < n

2
< N < x1/2.

Setting kn = m we obtain,
|m| ≤ |x−m|+ x < 2x.

Thus for fixed kn = m there are τ(m) solutions to |x− kn| < x. But τ(m) ≤ Cmϵ < Cxϵ

by the previous section and so the error term is bounded by

CNxϵ
∑

0≤m<x

1

1 +H|x−m|
≤ C

Nxϵ

H
, (12)
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where we used
1

H|| xn ||
=

1

H| xn − k|
=

n

H|x− kn|
≤ N

H|x−m|
.

Combining (11), (12) we get

∣∣ ∑
N<n<2N

ψ(
x

n
)
∣∣ ≤ C

H1/2x1/2

N1/2
+ C

Nxϵ

H
.

Equalizing the two terms by setting H = N/x1/3 > 1 we obtain our lemma and Voronoi’s
theorem.

Remarks: G. H. Hardy [1] has shown that in the theorem we have established we can-
not obtain a better error term than O(x1/4). Though there have been improvements to
Voronoi’s result by Kolesnik, H. Iwaniec and Mozzochi and others, Hardy’s optimal error
estimate has not been attained. See also Ingham[2] for the optimal error bounds.
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Appendix III: Proof of Rabinovitch’s Theorem

In this appendix we shall prove Rabinovitch’s theorem on prime spitting polynomials
that was stated earlier. We have a quadratic field K = Q(

√
d) where Q denotes the

rationals and d = 4k + 1 and we denote by OK the ring of integers associated with this
field. We also recall that elements of OK are of the form

m+ nω, ω =
1 +

√
d

2
, m, n ∈ Z.

We shall denote ideals I in OK by displaying the generators

I = [n,m(b+ ω)],m, n ∈ Z. (1)

Recall the norm of the ideal N(I) = mn and is equal to the number of elements in OK/I.
With these preliminary facts out of the way, we can set ourselves to prove the theorem.

Proof: Recall we had set q = 1+|d|
4 and

fq(x) = x2 + x+ q.

First observe that

fq(q − 2) = (q − 2)2 + (q − 2) + q = q2 − 2q + 2 < q2.

Assume by contradiction the polynomial does not spit out primes, i.e there exists a ≤ q−2
such that fq(a) is not a prime. Let a prime p then divide fq(a). It follows from the
computation above that p < q2. Thus w.l.o.g p ≤ q − 1. Consider the ideal in OK given
by

I = [p, a+ ω].

Notice that N(a+ω) = a2 + a+ q. By our contradiction assumption p/N(a+ω) and thus
I is indeed an ideal and clearly N(I) = p. We now establish that I is not a principal ideal.
Assume by contradiction it is. Then there exists γ ∈ OK such that

I = [p, a+ ω] = (γ).

Then we have equating norms N(γ) = p. Since γ is of the type given in (1), we obtain

N(γ) = (m+
n

2
)2 +

n2|d|
4

= p ≤ q − 1 =
1 + |d|

4
− 1 <

|d|
4
.

This can only hold if n = 0. But then the prime p is a perfect square,

p = (m+
n

2
)2.
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This is nonsense. Thus the ideal I is not principal and so h(d) ̸= 1. This proves that if
h(d) = 1, then fq(x) is prime for 0 ≤ x ≤ q − 2.

We now prove the converse. Assume that fq(x) is prime for 0 ≤ x ≤ q− 2. Note from
the beginning parts of these notes on Reduction theory we can show that all ideals in OK

are equivalent to ideals whose norm is less than
√

|d|/3 since we showed that quadratic

forms via a SL(2, Z) transformation can be brought to a quadratic form with a <
√
|d|/3.

We want to establish all such equivalent ideals are principal and thus h(d) = 1. The
reduction above can also be done via Minkowski’s theorem on lattice points in convex
bodies. Moreover we can even reduce the situation to prime ideals. Thus we consider a
non-principal prime ideal I such that

I = [p, a+ ω], a ∈ Z

where p is a prime. We can also with no loss of generality assume 0 ≤ a ≤ p− 1. Now by
our reduction above

N(I) = p <
√
|d|/3 ≤ 1 + |d|

4
− 2 = q − 2, |d| > 3. (2)

For the small values of d our theorem is a direct check and so we can assume that |d| > 3
with no loss of generality. Since I is an ideal, p/N(a+ ω) = fq(a). But a < p ≤ q − 2 and
so by hypothesis, fq(a) must be prime. Thus,

fq(a) = p.

Next fq(0) = q. The polynomial fq(x) is monotonic increasing for x > 0 by elementary
calculus and so

1 + |d|
4

= q = fq(0) < fq(a) = p <
√

|d|/3.

But this is nonsense. Thus the ideal I has to be principal.

We thank Po-lam Yung for useful remarks that improved the presentation.
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