Quiz 1 Honors

Chloe Urbanski Wawrzyniak

Fall 2018

1. (1 point) Which of the following is the negation of the statement "For each even integer n, there exists an integer k such that $n=2 k "$?
$\sqrt{ }$ There exists an even integer n such that for all integers $k, n \neq 2 k$.
\bigcirc For all odd integers, there exists an integer k such that $n \neq 2 k$.
\bigcirc There exists an odd integer n such that there exists an integer k with $n=2 k$.
\bigcirc For all even integers n and for all integers $k, n \neq 2 k$.
2. (1 point) \mathbf{F} True or False: The supremum of a set is the largest element in the set.
3. (1 point) T True or False: Every set has a supremum.
4. (1 point) Complete the following definition: The supremum of a set A is the upper bound of A.

Solution: The supremum of a set A is the least upper bound of A.
5. (1 point) Identify the error in the following proof that $\forall n \in \mathbb{N}$,

$$
1+\cdots+n=\frac{n(n+1)}{2}
$$

Proof. Suppose $1+\cdots+n=\frac{n(n+1)}{2}$ for some $n \in \mathbb{N}$. Then,

$$
\begin{aligned}
1+\cdots+n+1 & =1+\cdots+n+n+1 \\
& =\frac{n(n+1)}{2}+n+1 \\
& =\frac{n(n+1)+2(n+1)}{2} \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Hence, by mathematical induction, the result holds for all natural numbers.

Solution: The author did not include the base case.

