Name: _

- 1. (1 point) <u>**T**</u> True or False: If f and g are differentiable, then so is f + g.
- 2. (1 point) <u>**T**</u> True or False: A monotone sequence of real numbers is convergent if and only if it is bounded.
- 3. (1 point) **F** True or False: Let $f : \mathbb{R} \to \mathbb{R}$. If $\{x_n\}$ is some sequence in \mathbb{R} converging to x_0 such that the sequence $\{f(x_n)\}$ converges to L, then

$$\lim_{x \to x_0} f(x) = L.$$

4. (1 point) Complete the statement of the Intermediate Value Theorem below:

Theorem 0.1 (Intermediate Value Theorem). Let $f : [a,b] \to \mathbb{R}$ be continuous. If L is a real number satisfying f(a) < L < f(b) or f(a) > L > f(b), then

Solution: there exists a $c \in (a, b)$ such that f(c) = L.

5. (1 point) Identify the error in the following proof that $\forall n \in \mathbb{N}$,

$$1 + \dots + n = \frac{n(n+1)}{2}$$

Proof. Suppose $1 + \cdots + n = \frac{n(n+1)}{2}$ for some $n \in \mathbb{N}$. Then,

$$1 + \dots + n + 1 = 1 + \dots + n + n + 1$$
$$= \frac{n(n+1)}{2} + n + 1$$
$$= \frac{n(n+1) + 2(n+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2}.$$

Hence, by mathematical induction, the result holds for all natural numbers.

Solution: The author did not include the base case.