Name: _

- 1. (1 point) $\underline{\mathbf{F}}$ Let $f, g : \mathbb{R} \to \mathbb{R}$ and define h(x) = f(x)g(x). True or False: if h is continuous, then so are f and g.
- 2. (3 points) Using the ε , δ definition, prove that f(x) = 2x + 3 is continuous at $x_0 = 7$. You must write the final proof, not just scratch work.

Solution:

Proof. Let $\varepsilon > 0$. Let $\delta = \varepsilon/2$ and let $x \in \mathbb{R}$ be such that $|x - 7| < \delta$. Then

$$|f(x) - f(7)| = |2x + 3 - 17| = 2|x - 7| < 2\delta = \varepsilon.$$

3. (1 point) Determine the error in the following argument:

Claim 1. The function f(x) = x + 2 is continuous at $x_0 = 0$.

Proof. Let $\varepsilon = \frac{1}{2}$ and set $\delta = \frac{1}{2}$. Then, if $|x - x_0| = |x| < \delta = \frac{1}{2}$, then

$$|f(x) - f(0)| = |(x+2) - (0+2)| = |x| < \frac{1}{2} = \varepsilon.$$

Hence, f is continuous at $x_0 = 0$.

Solution: The definition of continuity has ε universally quantified, so you must prove the statement for all possible positive values of ε , not just 1/2.