Name: \qquad

1. (1 point) $\underline{\mathbf{F}}$ Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ and define $h(x)=f(x) g(x)$. True or False: if h is continuous, then so are f and g.
2. (3 points) Using the ε, δ definition, prove that $f(x)=2 x+3$ is continuous at $x_{0}=7$. You must write the final proof, not just scratch work.

Solution:

Proof. Let $\varepsilon>0$. Let $\delta=\varepsilon / 2$ and let $x \in \mathbb{R}$ be such that $|x-7|<\delta$. Then

$$
|f(x)-f(7)|=|2 x+3-17|=2|x-7|<2 \delta=\varepsilon .
$$

3. (1 point) Determine the error in the following argument:

Claim 1. The function $f(x)=x+2$ is continuous at $x_{0}=0$.
Proof. Let $\varepsilon=\frac{1}{2}$ and set $\delta=\frac{1}{2}$. Then, if $\left|x-x_{0}\right|=|x|<\delta=\frac{1}{2}$, then

$$
|f(x)-f(0)|=|(x+2)-(0+2)|=|x|<\frac{1}{2}=\varepsilon
$$

Hence, f is continuous at $x_{0}=0$.

Solution: The definition of continuity has ε universally quantified, so you must prove the statement for all possible positive values of ε, not just $1 / 2$.

