Name: \qquad

1. (1 point) $\underline{\mathbf{F}}$ True or False: If $\lim _{x \rightarrow x_{0}} f(x)=L$ and x_{0} is in the domain of f, then $f\left(x_{0}\right)=L$.
2. (1 point) Negate the following statement: For all $\varepsilon>0$, there exists $\delta>0$ such that for all $x \in \mathbb{R},\left|x-x_{0}\right|<\delta$ implies $|f(x)-L|<\varepsilon$.
\bigcirc For all $\varepsilon \leq 0$, there exists $\delta \leq 0$ such that for all $x \in \mathbb{R},\left|x-x_{0}\right|<\delta$ implies $|f(x)-L|<\varepsilon$.
$\sqrt{ }$ There exists $\varepsilon>0$ such that for all $\delta>0$, there exists $x \in \mathbb{R}$ with $\left|x-x_{0}\right|<\delta$ but $|f(x)-L| \geq \varepsilon$.
\bigcirc There exists $\varepsilon>0$ such that for all $\delta>0$, there exists $x \in \mathbb{R}$ with $\left|x-x_{0}\right|>\delta$ and $|f(x)-L|>\varepsilon$.
\bigcirc There exists $\varepsilon \leq 0$ such that for all $\delta \leq 0$, there exists $x \in \mathbb{R}$ with $\left|x-x_{0}\right|<\delta$ but $|f(x)-L| \geq \varepsilon$.
3. (1 point) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \neq 0 \\ 5 & \text { if } x=0\end{cases}
$$

What is $\lim _{x \rightarrow 0} f(x)$? You do not need to prove your answer.

Solution: $\lim _{x \rightarrow 0} f(x)=0$
4. (1 point) Describe the logical difference between the following two statements. (Note: simply stating that the quantifiers are rearranged is not sufficient. You should describe how that changes the logic of the statement.)
Statement 1: For all $\varepsilon>0$, there exists $\delta>0$ such that for all $x, y \in \mathbb{R},|x-y|<\delta$ implies $|f(x)-f(y)|<\varepsilon$.
Statement 2: For all $\varepsilon>0$ and for all $y \in \mathbb{R}$, there exists $\delta>0$ such that for all $x \in \mathbb{R}$, $|x-y|<\delta$ implies $|f(x)-f(y)|<\varepsilon$.

Solution: In Statement 1 , the same δ must work for all y. In Statement 2 , it is possible that we require different δ s for different values of y.
5. (1 point) Determine the error in the following argument:

Claim 1. Let $n \in \mathbb{Z}$. If $n^{2}+2 n+4$ is divisible by 4 , then n is even.
Proof. Suppose $n \in \mathbb{Z}$ is even. Then there is an integer k such that $n=2 k$. So,

$$
n^{2}+2 n+4=4 k^{2}+4 k+4=4\left(k^{2}+k+1\right)
$$

Since $k^{2}+k+1 \in \mathbb{Z}$, this shows that $n^{2}+2 n+4$ is divisible by 4 .

Solution: This is a proof of the converse, which is not logically equivalent to the original statement.

