Name: _

- 1. (1 point) <u>**F**</u> True or False: If $\lim_{x\to x_0} f(x) = L$ and x_0 is in the domain of f, then $f(x_0) = L$.
- 2. (1 point) Negate the following statement: For all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in \mathbb{R}, |x x_0| < \delta$ implies $|f(x) L| < \varepsilon$.
 - \bigcirc For all $\varepsilon \leq 0$, there exists $\delta \leq 0$ such that for all $x \in \mathbb{R}$, $|x x_0| < \delta$ implies $|f(x) L| < \varepsilon$.
 - $\sqrt{}$ There exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists $x \in \mathbb{R}$ with $|x x_0| < \delta$ but $|f(x) L| \ge \varepsilon$.
 - \bigcirc There exists $\varepsilon > 0$ such that for all $\delta > 0$, there exists $x \in \mathbb{R}$ with $|x x_0| > \delta$ and $|f(x) L| > \varepsilon$.
 - \bigcirc There exists $\varepsilon \leq 0$ such that for all $\delta \leq 0$, there exists $x \in \mathbb{R}$ with $|x x_0| < \delta$ but $|f(x) L| \geq \varepsilon$.
- 3. (1 point) Define $f : \mathbb{R} \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} x^2 & \text{if } x \neq 0\\ 5 & \text{if } x = 0 \end{cases}$$

What is $\lim_{x\to 0} f(x)$? You do *not* need to prove your answer.

Solution: $\lim_{x\to 0} f(x) = 0$

4. (1 point) Describe the logical difference between the following two statements. (Note: simply stating that the quantifiers are rearranged is not sufficient. You should describe how that changes the logic of the statement.)

Statement 1: For all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in \mathbb{R}, |x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

Statement 2: For all $\varepsilon > 0$ and for all $y \in \mathbb{R}$, there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon$.

Solution: In Statement 1, the same δ must work for all y. In Statement 2, it is possible that we require different δ s for different values of y.

5. (1 point) Determine the error in the following argument:

Claim 1. Let $n \in \mathbb{Z}$. If $n^2 + 2n + 4$ is divisible by 4, then n is even.

Proof. Suppose $n \in \mathbb{Z}$ is even. Then there is an integer k such that n = 2k. So,

$$n^{2} + 2n + 4 = 4k^{2} + 4k + 4 = 4(k^{2} + k + 1).$$

Since $k^2 + k + 1 \in \mathbb{Z}$, this shows that $n^2 + 2n + 4$ is divisible by 4.

Solution: This is a proof of the converse, which is *not* logically equivalent to the original statement.