Quiz 2

Chloe Urbanski Wawrzyniak

Fall 2018

1. (1 point) Which one of the following sequences does not converge?

$$
\begin{aligned}
\bigcirc\left\{\frac{1}{n}\right\}_{n=1}^{\infty} \\
\sqrt{ }\{\sqrt{n}\}_{n=1}^{\infty} \\
\bigcirc\left\{\left\{\frac{\sin n}{n}\right\}_{n=1}^{\infty}\right. \\
\bigcirc\left\{\left\{\frac{\cos (n \pi)}{n}\right\}_{n=1}^{\infty}\right. \\
\bigcirc\left\{\left\{\frac{2 n-6}{5 n+7}\right\}_{n=1}^{\infty}\right.
\end{aligned}
$$

2. (1 point) T True or False: A sequence of real numbers is convergent if and only if it is Cauchy
3. (1 point) \mathbf{F} True or False: Every bounded sequence of real numbers is convergent.
4. (1 point) Fill in the blank in the definition below:
"A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers converges to $A \in \mathbb{R}$ iff for each $\varepsilon>0$, there is an $N \in \mathbb{N}$ such that for all $n>N$, \qquad ."

Solution: $\left|a_{n}-A\right|<\varepsilon$
5. (1 point) Determine the error in the following argument. You are not being asked whether the claim is true. You are being asked to identify the logical error in the proof.
Claim 1. Every integer $n \in \mathbb{N}$ with $n>1$, is divisible by a prime number $p<n$.
Proof. Let $n \in \mathbb{N}$ with $n>1$. Let $S=\{k \in \mathbb{N}: 1<k<n$, and $k \mid n\}$. Since S is a subset of the natural numbers, it has a least element. Call that least element p.
I claim p must be prime. If not, then there exists an integer q with $1<q<p$ such that $q \mid p$. Since $p \mid n$, there is an integer a such that $n=a p$, and since $q \mid p$, there is an integer b such that $p=b q$. Therefore, $n=a p=a b q$. Since $a b \in \mathbb{Z}$, this shows that $q \mid n$ and therefore $q \in S$. This contradicts our choice of p as the smallest element of S. Therefore p is prime, proving our claim.

Solution: The author didn't prove that S is nonempty. They are trying to use the fact that every nonempty subset of the natural numbers has a least element.

