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Abstract
We give an elementary introduction to the subject of operator algebras and non-commutative
analysis with the emphasis on material related to a number of open problems arising from
quantum mechanics.

Introduction

1.1 Basic definitions and notation
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1.1 DEFINITION (Banach algebra). A Banach algebra is an algebra &/ over the complex num-

bers equipped with a norm || - || under which it is complete as a metric space such that

abl| < [lall|lb]] for all a,be o .

(1.1)



1.2 EXAMPLE. Let X be a locally compact Hausdorff space, and let 6(X) denote the set of
continuous complex valued functions on X that vanish at infinity, and equip it with the supremum
norm. Then with the usual algebraic structure of pointwise addition and multiplication, &7 = %y(X)
is a Banach algebra. This is the canonical example of a commutative Banach algebra. There is a
multiplicative identity if and only if X is compact.

1.3 EXAMPLE. Let o/ = L'(R") equipped with the convolution product
frg(x) = g fl@=y)g(y)dy .

Let the norm be the L' norm. Then & is a commutative Banach algebra that does not have an
identity.

1.4 EXAMPLE. Let JZ be a Hilbert space, and let o/ = Z(7), the set of all continuous linear
mapping from 7 to S, equipped with the composition product and the operator norm

lall = sup{ [la¥lle : ¢ €, |Yllw =1}
= sup{ R((p,a)r) : 0.0 € A |olle, IV]le =1}, (1.2)
where || - || is the norm on 5, and (-, ) is the inner product in . This is the canonical

example of a non-commutative Banach algebra.

1.5 EXAMPLE. Let & be the algebra of n x n matrices. The Frobenius, or Hilbert-Schmidt norm
on & is the norm || - ||2 given by

1/2

n
lalla = { > lai )

i,j=1
where a; ; denotes the 4, jth entry of a. By the Cauchy-Schwarz inequality, for all a,b € 7,

1/2

2 n n n
<> ( \ai,kl2> (Z |br.;
k=1 k=1

3,j=1

1/2

2) = [lall2[lbll2 ,

and thus (1.1) is satisfied. Note that the algebra of n x n matrices with the operator norm is the

n

lablla = | >

1,7=1

n
Z a; by j

k=1

special case of Example 1.4 in which s = C".

1.6 DEFINITION (C*-algebra). A C* algebra is a Banach algebra equipped with a conjugate
linear map * : & — &7, the action of which is written as a — a*, and which satisfies the properties

(i) The * map is an involution; for all a € &7, a** = a.
(Ii) For all a,b € o7, (ab)* = b*a™ .
(ii3) For all a € o7,
laa*(| = fla]* - (1.3)

When discussing a C* algebra it is convenient and standard to refer to the map a — a* as the
involution in 7.



In a C* algebra, the involution is always an isometry. This is because
lall* = aa™|| < [lallla™] ,

where we used (1.3) and (1.1) in succession. Then for a # 0, we have ||a|| < ||a*||, and then
lla*|| < [[a**]| = ||al|, so that ||a*|| = ||a|| for all @ € &/. The condition (1.3) is much stronger than
the condition that a — a* be an isometry.

1.7 EXAMPLE. In Example 1.2, take the involution to be pointwise complex conjugation of the
functions that constitute the algebra. The conditions (i), (i) and (iii) are all clearly satisfied in
this case. Thus, 6,(X) equipped with this structure is a commutative C*-algebra.

Similarly, in Example 1.4, take define the involution by taking a* to be the Hermitian conjugate
of a. That is, for all p, 9 € 2,

<CL*<,0,1/1>%0 = <(Pva¢>jf .
It is immediate from this that a — a* is conjugate linear and an involution satisfying (7i). Also, It
is immediate from this and (1.2) that ||a*|| = ||a|| for all a. Moreover, for all ¢ € JZ,

(¥, aa*¥) s = (a* ¥, ") = a™y|?

and hence

laa™|| = sup{ R((p, aa™)r) : .0 € A, |l [¥lle =1}
> (sup{ [a*Ylle = ¢ € A, |l =11 =||la*|* = [lal* .

1.8 EXAMPLE. If we equip the convolution algebra of Example 1.3 with the convolution given by

pointwise complex conjugation, this innvolution is an isometry since for any f € L'(R), | f|| L\(R) =
| f*z1(r)- However, the stronger property (1.3) does not hold in general in this algebra. To see
this, let p and o be two non-negative functions in L!(R"). Fix A € R and define functions f and g
in L'(R™) by
F() = p()e™ and  g(z) = o(z)e™ |

Then

frgle) = eMpro(z)  sothat  [f gl = llo* ol -
However,

frgt(@) = e /R p(2)o(x — y)e *Mdy |

and now a simple argument using the Riemann-Lebesgue Lemma and the Dominated Convergence
Theorem shows that || f * g*||11r) converges to zero as A is taken to infinity. Hence (1.3) fails in
this Banach algebra.

Now consider Example 1.5, and again define a* to be the Hermitian conjugate of a. This is
a conjugate linear involution, and as above, (ab)* = b*a* for all a,b. This involution is even an
isometry in the Frobenius norm since

n n
2 2 2 2
lall3 = D laigl* = Y lajl® = la*|l3 -
ij=1 ij=1
However, the property (1.3) fails. Recall that this algebra has a multiplicative identity e, the n x n
identity matrix. Evidently, e* = e, and so were (1.3) to hold, we would have ||e||2 = |lee*||2 = ||e]|3,

but for n > 1 this is false since ||e[|2 = /n.



The condition (1.3) is very strong. As we shall soon see, given an algebra o/ with a conjugate
linear involution = satisfying (ab)* = b*a* for all a,b € <, there is at most one norm on .o/
that makes it a C* algebra. We shall also see that our two examples of C*-algebras, given in
Example 1.7 are universal. In particular, a theorem of Gelfand and Naimark says that every C*
algebra is isomorphic to a sub-algebra of %B(.#°) for some Hilbert space 7 that one constructs
from the algebra itself using the Galfand-Naimark-Segal construction, to which we sahll come.

An operator C*algebra is an operator norm closed subalgebra of () that is closed under
Hermitian conjugation and closed in the operator norm. The term C*-algebra was first applied in
this context by Irving Segal in 1947. The theorem of Galfand and Naimark shows that “abstract”
C*-algebras, as defined here, are essentially the same thing.

There are other important topologies in %(.7) that are weaker than the topology given by the
operator norm. In particular, there is the weak operator topology on ZB() which is the weakest
topology under which the maps

a = <807 a¢>jf

are continuous for all ¢,1 € 7. Every subset (and hence subalgebra) of () that is weakly
closed is norm closed, but not vice-versa in the case that 7 is infinite dimensional. A von Neumann
algebra is a subalgebra of () that is closed under Hermitian conjugation and closed in the weak
operator topology. Thus, von Neumann algebras are a special type of C* operator algebras, and
these shall be important to us also.

We shall be especially interested in von Neumann algebras, but every von Neumann algebra is
a C* algebra, and every C* algebra is a Banach algebra, and it is natural to begin developing the
theory at this general level, which we do in the next subsection.

1.2 The spectrum and the resolvent set

Let X be a locally compact Hausdorff space that is not compact. Then & = %y(X) equipped
with the usual structures is a Banach algebra without an identity. Let o be the larger algebra
obtained by adjoining to ./ the constant functions, A1, A € C. Then every a € </ has the form
a(x) = XA+ a(z) where a € 6p(X). Then for A+ a and p+ b in o,

(A +a) (4 D) = A+ (\b + pa + ab) .

The constant function 1 is the multiplicative identity in o
The procedure can be done in general. Let o/ be any Banach algebra, with or without a unit.
Define &7 to be C & &/ with the multiplication

(A, a)(p,0) = (A, Ab + pa + ab) | (1.4)

and the norm
[(Aa) [l = [A[ + llall - (1.5)
By the definitions,
1A, @) (i, D) = [[(Apey Ab + pa + ab)[| = [Ap| + [|Ab + pa + abl|
< [Alled + [AMIBI + [elllall + llallll]
= (AT llal) (el + 1ol = [1CA, @) l[ll (e, D) -



This shows that (1.1) is satisfied, and hence that o/ is a Banach algebra. Now define e = (1,0) € .
Then (1,0)(A\,a) = (A, a)(1,0) = (A, a) so that e is the identity in .

The original algebra < is embedded in o as the subalgebra consisting of elements of the form
(0,a). None of these elements are invertible even when 7 itself has an identity. Indeed, if (X, a)
has an inverse (i, b), then

(1,0) = (A, a)(s,b) = (At Ab + pra + ab) |

and this is impossible if A = 0. However, it will be important in what follows that if .27 has a unit
1, then 1 — a is invertible in < if and only if (1, —a) is invertible in <.

1.9 PROPOSITION. Let o/ be a Banach algebra with unit 1. Then 1 — a is invertible if and
only if there exists b € o/ such that
ab=ba=b-a. (1.6)

consequently, 1 — a is invertible in </ if and only if e — a is invertible in o.

Proof. Suppose that 1 — a is invertible. Define b= (1—a)"! —1. Then (1-a)b=1— (1 —a) =a,
and hence ab = b — a. The proof of ba = b — a is similar.
Now suppose that there exists b € &7 such that (1.6) is true. Then

1+b)(1l—-a)=1+b—a—ab=1 and (1—a)(1+b)=1—-b+a—ba=1.

This proves the first part.

For the second part, suppose that 1 — a is invertible in /. Then there exists b € & such that
(1.6) is satisfied. Regarding a and b as elements of o, (1.6) is satisfied also in o/, and hence (1, —a)
is invertible in 7.

Finally, suppose that (1, —a) is invertible in 42?,/ and let (A, b) be the inverse. Then

(1,0) = (1, —a)(\,b) = (\, b — Aa — ab) .

Evidently A = 1, and then b — a — ab = 0. A similar argument shows that b — a — ba = 0, and now
the first part implies that 1 — a is invertible in <. O

1.10 DEFINITION (Spectrum and resolvent set). Let &/ be a Banach algebra, and let a € 7.
If &7 has a unit, the spectrum of a in <7, o./(a) is defined to be the set of all A € C such that
Al — a is not invertible. If &7 does not have a unit, then o, (a) is defined to be the spectrum of
(0,a) € /. The resolvent set of a in 7, per(a) is defined to be the complement of o/ (a).

Let &/ be a Banach algebra with a identity 1. Then we can still carry out the process of
adjoining an identity to form btz?,/ and can regard each a € & also as an element of <. Since no
element of &7 is invertible in .QZ 0 € o _7(a) for all a € o/. However, for A # 0, A1 —a is invertible if
and only if 1 —a/\ is invertible. Likewise, (A — a) is invertible if and only if (1, —a/\) is invertible.
Then by Proposition 1.9, A1 — a is invertible in ¢/ if and only if (1,0) — (0, a/)) is invertible in .
This shows that for A # 0, A € 0(a) <= X € 0, 7(0,a)). We summarize:

{0} Uoy(a) =07(0,a)) . (1.7)



1.11 LEMMA (Spectral Mapping Lemma). Let < be a Banach algebra, and let p be a polynomial.
In case o/ has no identity, we suppose that p has no constant term. Then

plow(a)) = o (pla)) .

Proof. We may suppose that p is not identically constant. We first suppose that &7 has an identity.
Fix A € 0/(a). We shall show that p(\)1 — p(a) is not invertible. The polynomial p(A) — p(z) has
a root at z = A, and hence

p(A) —p(2) = (A = 2)q(2)

for some polynomial ¢(z). Replacing z by a,

p(M)1—p(a) = (A —a)q(a) .

Were p(A\)1 — p(a) invertible, we would have 1 = (A — a)[g(a)(p(A) — p(a))~!], and then since
polynomials in a commute, 1 = [g(a)(p(\) — p(a))"'](A — a). This would mean that A1 — a is
invertible, with contradicts our hypothesis that A € o./(a). Hence p(\) — p(a) is not invertible, and
hence p(A) € 0/(p(a)). this shows that p(o(a)) C ou(p(a)).

Next, fix u € 07(p(a)), and factor

p=p() = a(M — @)+ (An — 2)
where o # 0 and n > 1. For each j, = p(\;). We have
pl —pla) = a(Ml—a) - (A1 —a)

(
and if each A;1—a were invertible, then ;11 —p(a) would be invertible, but this is not the case. Hence
Hence for some j, \j € 07(a), and p = p(Aj) € 07(p(a)). This shows that o (p(a)) C p(oz(a)),
and completes th proof when &/ has an identity. The general case now follows by adjoining an
identity and then appealing to (1.7). O

1.3 Properties of the inverse function

Now let o/ be a Banach algebra with an identity 1. Let a € &/ be such that |1 —a|| =7 < 1. Then
by the defining property (1.1), |[(1 — a)™|| < " for all n € N. For all n € N, define

n

Sp = Z(l - a)j

j=1
where, as usual, we interpret (1 —a)? = 1. Then for all n > m, by the triangle inequality and (1.1),
n /rm

n n
. . —T
Isn —smll < D IA-a)ll< > ¥ =0

Hence {sy, }nen is a Cauchy sequence in 7. Now for the first time we use the metric completeness
of &7: There exists b € o/ such that lim,_, ||b — s,|| = 0. But then

T T _ _ T _ _ oyt
ba—nlgrgosna—nh_{gosn(l (1—a)) nh_g)lo(l (I—a)")=1.

The same reasoning shows that ab = 1, and so a is invertible. Let {2 denote the set of invertible
elements in o/, This brings us to:



1.12 LEMMA. Let & be a Banach algebra with a unit. Let Q be the set of invertible elements
of «/. Then Q contains every a € & such that |1 — a|| < 1, and in this case a=! is given by the

convergent series
o

a = Z(l —a)’ .
=0
Moreover, if |A| > ||al|, then A1 — a is invertible, with

1

1A = a)7H | < -
Al = [lall

(1.8)

In particular, 0. (a) is contained in the closed disk of radius ||a|| € C.

Proof. It remains to prove the final part. If |A| > ||a||, the \1—a = A(1-A"ta) and ||[1—(1-A"1ta)|| =
IA|7Y|a| < 1, so that (1 — A~ ta) is invertible. O

At this point, we do not know in general that o.(a) is not empty, but we do know this of
per(a). We now claim that € is open. This has the immediate consequence that p.(a) is open,
and hence that o (a) is closed, though at this point the possibility that o, (a) = () has not yet ben
eliminated.

Let ap € Q and a € &. Then |1 — aay || = ||(ao — a)ay || < |la — aol|||ag*|| Therefore, for any
r e (0,1),

1 H -1

lla —ao|| < rllay = I1—aagt|<r = aayt € Q.

Since 2 is closed under multiplication, a = (aa, 1)ao € ). This shows that for all ag € €2, the open
ball of radius ||ag ||~ an center ag is contained in Q. In particular, Q is open.

Now recall that a function F' from a Banach space X to itself is Frechet differentiable at xog € X
in case there is a continuous linear transformation L from X to itself such that for all x € X,

[1F(xo + @) — F(xo) — La|| = o(|[z]]) ,

and in this case, L is unique and is the Frechet derivative of F' at zg. We now show that the inverse
function a — a~! is Frechet differentiable at every ag € 7, and that the derivative is the linear
transformation

-1 -1

This is a simple consequence of an important identity that we record in a lemma:

1.13 LEMMA (First resolvent identity). Let o/ be a Banach algebra with an identity 1. Let Q be
the set of invertible elements. For all a,b € €,

al—bt=atb-—a)p?. (1.9)
Proof. Simply expand the right hand side. O

Now suppose that ag,ag + a € ). Then

1 1

(ap + a)_1 — aal = —(apg + a)_laaa = —a, aaa1 + [aal

— (ap + a) aay .



By (1.1) once more and the continuity proved above,

1

llag™" = (a0 + @) aag || < llag ' llag " — (a0 + a)~[llall = o(]lall) -

We are now ready to show that for all a in any Banach algebra, o, (a) # 0. Let ¢ be any
continuous linear functional on &7, regarded as a Banach space. Such functionals exist (and are
plentiful) by the Hahn-Banach Theorem. Define a complex valued function f in the resolvent set
pe(a) by

FO=e((c1=a)™).
Note that the resolvent set includes {¢ : |¢| > ||a||}, and that by (1.8),

lim f(¢)=0. (1.10)

(—o

Next, by the identity (1.9),

FC+m) = FO =nel((C+m1—a) (1 -a)'].
From this identity and the continuity of the inverse function, it follows that

L FC )~ Q)

n—0 n

= o[(CL—a)7?],

which shows that f is an analytic function on p./(a).

If the resolvent set p(a) were all of C, f would be an entire analytic function, and on account
of (1.10), f would also be bounded. By Liouville’s Theorem it would then be constant, and by
(1.10), the constant would have to be zero. In particular, we would have f(0) = 0. Therefore, for
every continuous linear functional ¢ on &7, it would be the case that ¢(a~!) = 0. This contradicts
the Hahn-Banach Theorem. We summarize:

1.14 THEOREM. Let &/ be any Banach algebra with an identity 1. Then for all a € &7, 0.(a)
is a nonempty closed set contained in the closed disc of radius ||a|| centered at 0 in C.

It is now a simple matter to prove:

1.15 THEOREM (Gelfand-Mazur Theorem). Let o/ be a Banach algebra with identity 1. If o
s a division algebra, then <f is isomorphic to C. More specifically, each element a of </ satisfies
a = Al for some necessarily unique A\ € C, and a — X is an isomorphism with C.

Proof. Suppose that o/ is a division algebra. By Theorem 1.14, there exists A € o.(a). Thus
Al —a is not invertible. Since the only non-invertible element in a division algebra is 0, a = A1. O

1.16 DEFINITION (Spectral radius). The spectral radius of an element a of a Banach algebra
o is

v(a) =max{ [\| : A€oy(a)}. (1.11)
1.17 THEOREM (Gelfand’s formula). The spectral radius of an element a of a Banach algebra

A is given by
v(a) = nli_)n010||a"\|1/” . (1.12)

In particular, the limit exists.
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Proof. Suppose that A € o/(a). Then by the Spectral Mapping Lemma, \" € o,/(a"), and then by
Theorem 1.14 and (1.7) in case o7 lacks an identity, |A\|" < ||a™||. Taking the nth root, we obtain
v(a) < |la®|'/™ for all n € N.
It remains to show that
limsup ||la" ||/ < v(a) . (1.13)
n—oo

To this end, pick A with |[A| > v(a) so that A € p(a). Let ¢ be any continuous linear functional
on /. Then, as in the proof of Theorem 1.14, the function f defined by f(A) = p((Al —a)™1) is
analytic on p.(a). Define ¢ = 1/X, g(¢) = f(1/A) = Cp((1 — Ca)~1), which is analytic on the open
disc about 0 with radius 1/v(a).

o0

For ¢ with |¢| < |la]|~!, (1 — Ca)~" has the convergent power series (1 — Ca)™' = ZC"@".
- n=0
Therefore, by the uniqueness of the power series representation, g(z) = Z ¢"p(a™) is a conver-

n=0

gent power series for all ¢ with |¢| < 1/v(a). It follows that for all such ¢, lim,, o ¢("p(a™) = 0.
In particular, there exists a finite constant C, such that

I("Mp(a™)| < C, forall neN. (1.14)

Now, for each n € N define a linear functional A, on &/*, the Banach space dual of &7, by

An() = (" lop(a™) .

Then (1.15) says that
sup{ [An(p)[} < Cop - (1.15)
ne

The Uniform Boundedness Principle then implies that there exists a finite constant M such that
IIAL]| < M for all n, and hence for all p € &/* with ||¢| =1,

IC|"p(a™)| < M forall neN

. The Hahn-Banach Theorem provides ¢ € &/* with ||¢|| = 1 such that ¢(a™) = ||a™||. Hence we
have [¢|"!||a"|| < M. Taming the nth root of both sides,

M) 1/n
q

This proves that |¢|limsup,, ... [|a™||'/™ < 1. However, ( was any complex number with |¢| <
1/v(a), this proves (1.13). O

cllla " < (

We close this section with the following results that is trivial for commutative Banach algebras,
and familiar for the algebra of n x n matrices.

1.18 THEOREM (Spectrum of ab and ba). If </ is a Banach algebra, then for all a,b € 7,

{0} Uoy(ab) = {0} Uoy(ba) . (1.16)
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Proof. By passing to JZZ we may suppose that o/ has an identity. For each \ # 0, we must show
that (A1 — ab) is invertible if and only iff (A1 — ba) is invertible. Dividing through by A, we may
take A = 1. Therefore, suppose that (1 — ab) is invertible, and let z = (1 — ab)~!. Then

(1 —ba)(1+4bza) =1—ba+ bza — babza
=1—-ba+b(l—ab)za=1—ba+ba=1.

Likewise, (1 + bza)(1 — ba) = 1, and so (1 — ba) is invertible with inverse (1 + bza). O

1.19 THEOREM (Spectral Contraction Theorem). Let o/ and 9B be Banach algebras, and let
w: o — B be a homomorpism. Then for all a € o,

ogz(m(a)) C {0} Uoy(a) . (1.17)

Proof. Adjoin identities to ./ and %, and define 7 : & — & by 7((1,a)) = (1,7(a)). This is
a homomorphism, and takes the identity in o/ to the identity in %. Since adjoinng an identity
had no effect on non-zero spectrum, we may assume that o/ and % have identities 1, and 1y
respectively, and that 7(1,) = 14.

Now suppose that A € p./(a). Then 1, = (Al,; —a)(A, —a)~!. Since 7 is a homomorphism,

lg =71(ly) = (Mg —m(a))m((My, —a)™t) .

Thus 7((AM — a)™!) is a right inverse of Al — m(a), and the same reasoning shows it is also a
left inverse. Hence A € pg(m(a)). This shows that py(a) C pg(m(a), which is equivalent to the
statement oz (m(a)) C o (a), and even shows that when &/ and # have identities and 7 takes the
identity in </ to that in 4, it is not necessary to adjoin {0} on the right side in (1.17) O

1.4 Characters and the Gelfand Transform

1.20 DEFINITION (Characters). A character of a Banach algebra </ is a non-zero algebraic
homomorphism from ¢/ to C. The set of characters of < is denoted A(<7), and the set {0} UA()
is denoted A’(<7).

Though characters are defined with respect to the algebraic structure alone, they are necessarily
continuous:

1.21 LEMMA. If o/ is a Banach algebra and ¢ is a character of <, then p(a) € 0(a), and

lp(a)] < [lall (1.18)

for all a € &/. That is ¢ is a contraction from </ to C. Moreover, if &/ has an identity 1, then
e(1) =1.

Proof. Suppose first that o/ contains an identity 1. We first prove the final statement. Since
(1) = ©(12) = (¢(1))2, (1) solves ¢ — ¢? = 0, so either p(1) = 0 or (1) = 1. But if p(1) = 0,
then for all a € &, p(a) = p(la) = p(1)¢(a) = 0, and this is excluded by the definition. Hence
p(1) =L
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Next, for any a € &7, ¢(a)l — a is not invertible, and hence ¢(a) € o.(a). To see this, note
that ¢(p(a)l —a) =0, but if p(a)l — a had even a right inverse b, we would have

1=¢(1) = ¢((¢(a)l —a)b) = 0p(b) =0 .

Then since o (a) is contained in the closed centered disc of radius ||a||, (1.18) is proved.
Now suppose that .7 lacks a unit. Let o7 be the algebra obtained by adjoining an identity, and
let @ be the character on &/ given by

P((Aa) = A+ ¢(a) ,

which is easily seen to be a character. Since o./(a)) = o (0, a)) be definition, and ¢((0,a)) = ¢(a),
it follows from the above that p(a) € o(a), and then that ||¢(a)|| < [/(0,a)] = ||al|. O

Note that if ¢ € A(/), then for all a,b € &7,

p(ab) = p(a)p(b) = p(b)p(a) = p(ba) .

Consequently, ¢(ab — ba) = 0 for all a,b. When the algebra .7 is not commutative, this can be a
stringent constraint, and there may not exist any characters at all.

1.22 EXAMPLE. Let & be the algebra of 2 x 2 matrices. The Pauli matrices are

o SN 2 I I S
711 0| 271 o 5710 -1

Then with [a, b] denoting the commutator ab — ba,
[01,09] =203 , [09,03] =201 and [o3,01] =209 .

It follows that for any homomorphism ¢ of &/ into C, p(c;) = 0 for j = 1,2,3. Next, the identity
matrix [ satisfies I = 0%, and so ¢(I) = (¢(01))? = 0. Thus, for all (zg, 21, 22, 23) € C*,

©(z0l + 2101 + 2209 + z303) =0 .

Since every evidently {I, 01, 09,03} is linearly independent and <7 is 4 dimensional, &7 is the span
of {I,01,092,03}, and hence ¢ vanishes identically on 7. Thus, if & is the algebra of 2 x 2 matrices,
A(e/) =0 and A’(«/) is the one-point space {0}.

Even when & is commutative, there may be no non-trivial characters. However, as we shall
see in the next chapter, when & is a commutative C* algebra, characters are plentiful enough to
justify our present considerations. In the rest of this chapter, commutativity of the algebras will
not play any role in the proofs, and so we shall state the results without making any reference
to commutativity. However, one should keep in mind that without commutativity, and even with
commutativity alone, A(%) may be empty and A’(2/) may be a one-point space, as in the previous
example.

1.23 DEFINITION (Gelfand topology). For a Banach algebra <7, the Gelfand topology on A'(<)
is the relative weak-* topology on A’(47) considered as a subset of 7*, the Banach space dual to
/. That is, the Gelfand topology is the weakest topology on A’(<7) that makes the functions
© +— ¢(a) continuous for all a € 7.
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1.24 LEMMA. Let & be a Banach algebra. Then A'(), equipped with the Gelfand topology is
a compact Hausdorff space. If o/ does not have an identity, then with the Gelfand topology, A(<7)
is a locally compact Hausdorff space, and A'(<f) is its one-point compactification. If &/ has an
identity, A(<) itself is compact and 0 is an isolated point in A'(<).

Proof. Equip «&/* with the weak-x topology; i.e., the weakest topology making all of functions
¢ — ¢(a) continuous for all a € &7. The Banach-Alaoglu Theorem asserts that the unit ball in </*
is compact in the weak-* topology. For each a,b € &7, define a function f,; on &/* by

fap(p) = p(ab) — p(a)p(b) .

This is evidently continuous for the weak-* topology. Now note that

N()= [V {ped : fap(e)=0}.
a,besf

This displays A’(47) as an intersection of closed sets. Hence A’(47) is a closed subset of the unit
ball in @/*, and hence is compact.

For o1, p2 € A'() with 1 # @9, there exists a € o such that ¢;(a) # pa(a). Let Uy and Uy be
disjoint open sets in C that contain ¢;(a) and ¢a(a) respectively. Then {¢ € A'(«7) : (a) € Uy }
and {¢p € A'(&) : (a) € Uy } are disjoint open sets in A’(.27) that contain ¢; and @2 respectively.
In particular, for each ¢ € A(«7), there disjoint open neighborhoods V; of ¢ and V5 of 0, and then
since Vi C Vi, Vi is a compact neighborhood of ¢. Thus, A(<7) is locally compact. If o7 has an
identity 1, ¢(1) = 1 for all ¢ € A(<7), while 0(1) = 0. Consequently, the zero homomorphism is an
isolated point of A’(«7) in this case. O

1.25 DEFINITION (Gelfand transform). Let ./ be a Banach algebra. The Gelfand transform
is the map 7 from &7 to € (A’ (<)) given by

(v(a)lg] = ¢(a) - (1.19)

That is, y(a) is the function of evaluation at a, and it is continuous by the definition of the Gelfand
topology.

1.26 THEOREM. Let &/ be a Banach algebra. The Gelfand transform is a norm reducing
homomorphism from < to €((A'(«)). That is, the Gelfand transform is a homomorphism of
algebras and for all a € o7,

Iv(@)llararyy < llall -
Proof. The homomorphism property is evident since for all a,b € & and all ¢ € A'(«),
(v(ab))[g] = w(ab) = p(a)p(b) = (v(a))[](v(b)[#] -
Next, suppose that &7 has an identity 1. If ¢ € A(«) and a € &7, then
p(p(a)l —a) = p(a) — ¢(a) =0,

and so ¢(a)l — a is not invertible. This means that ¢(a) € 04 (a), and this is contained in the
closed centered disc of radius v(a) < ||a|.
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If o7 lacks an identity, adjoin an identity to form o . For v € A(), define ¢ on o by

oA a) =X+ ¢(a) .

It is easy to check that ¢ € A(,sz;j Let e = (1,0) denote the identity in o/ Then for all a € o,

Plp(a)e = (0,a)) = p(a) = p(a) =0,
so that once again, we have that ¢(a) € o./(a). O

This result, as it stands, does not take us far at all. The problem is that at this level of
generality, there may be no characters at all, and the transform may be a trivial homomorphism
into a trivial algebra. As indicated above, characters can only be expected to be plentiful for
commutative algebras. Even then, there may be too few characters for the Gelfand transform to
be of interest. However, afundamental theorem of Gelfand and Naimark says that for commutative
C*-algebras, the Gelfand transform is an isometric isomorphism. This is explained in the next
chapter. We close this chapter with some examples, and then an important theorem on characters
in a commutative Banach algebra.

1.27 EXAMPLE. Let ag be the n x n matrix, n > 1, with
1 j=i+1

a/L?J = . . *
0 j#i+1

That is ag is the n X n matrix with 1 in every entry just above the diagonal, and zero elsewhere.
It is easy to see that af = 0,

Let o/ denote that subalgebra of the n x n matrices that are polynomials in ag. That is, every
a € & has the form

n—1
a= ijaf) , (1.20)
=0

where higher order terms are zero. This is a commutative algebra with an identity. Let ¢ € A’(«).
Then 0 = ¢(ag) = (¢(ap))™ so that ¢(ag) = n. Then for a given by (1.20), ¢(a) = pop(I) = po.
Thus, the only candidate for a character on o/ is the map ¢q given by

n—1
vo | > piad | =po
=0

It is readily checked that this is indeed a homomorphism and it is non-zero. Hence A(«7) = {po}
and A'(«7) = {po} U{0}. Since A’(7) consists of two isolated points, we may identify € (A’(<7))
with C? in the usual way, and then we may write the Gelfand transform as

n—1
v Dopiah | = (p0,0)
=0

which is indeed a norm reducing homomorphism, but not very interesting.
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Before leaving this example, we note that for elements of @, the spectrum is as trivial as
Theorem 1.14 allows: For all a € &/, 0(a) consists of a single point: o4 (a) = {¢o(a)}. This is
true since when a is given by (1.20), then a is invertible if and only if py # 0.

finally, note that while the algebra of all n x n matrices equipped with the usual norm is a C*
algebra, this subalgebra is not closed under the Hermitian adjoint, and hence is not a C* algebra.

1.28 EXAMPLE. This example illustrates not what can go wrong when &/ is not a commutative
C* algebra, but what the utility of these considerations might be when & is a commutative C*
algebra.

Let ap be any n x n normal matrix; i.e., agag = agao. Let </ be the algebra of all polynomials
in ap and aj. (We may unambiguously evaluate a polynomial p(n, ) in two the variables 7, ¢ at
1 = ap and ¢ = afj precisely because ap and af; commute.) This is a commutative algebra with an
identity.

The Spectral Theorem for n x n matrices says that there exists a orthonormal basis {¢1, ..., ¢n}
of C" such that each ¢; is an eigenvector of ag. Let A; be the corresponding eigenvalue. That is,
appj = A\j¢;. Then ajo; = /\;gbj, and especially, for any polynomial p,

p(ao, ap)p; = p(Aj, Aj)o; -

For each j =1,...,n define a linear functional ¢; on &/ by

pj(a) = (pj,ad;) .

By what we have noted above, for any polynomial

@j(plao, ag) = p(Aj, Aj) -

It is evident that each ; is a character, and that if A\; # A; than ¢; # .

In this case we have plenty of characters. We shall see in the next chapter that there are no
other characters besides these. Granted that, A(</) can be identified with the set {u1,..., tm}
of distinct eigenvalues of ap, and the Gelfand transform identities p(ag,af;) with the function on
{p1, ..., bm} given by p+— p(p, 1*). Since the operator norm of a normal matrix is the maximum
of the absolute values of its eigenvalues, it is evident that the Gelfand transform is an isometry in
this case.

1.5 Characters and spectrum in commutative Banach algebras

The Hahn-Banach Theorem, which provides the existence of continuous linear functionals on a
Banach space, may be viewed as a theorem asserting the existence of maximal closed subspaces
containing a given subspace. In the Banach algebra setting, the kernel of a homomorphism of a
Banach algebra o7 to C is not only a closed subspace, it is a closed ideal, as we now explain, and
consideration of mazimal ideals leads to a Banach algebra version of the Hahn-Banach Theorem
for commutative Banach algebras. Much of what is introduced here is also useful without assuming
the & is commutative. We therefore start in general, and shall be clear about the key point when
commutativity enters.
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1.29 DEFINITION. Let & be a Banach algebra. An ideal of < is a subspace of & such that
forallbe ¢ anda€ &, ba € ¢ and ab € . An ideal of & is proper in case it is not equal to
o/ itself. An ideal of &7 is a closed in case it is topologically closed as a subset of «7. If ¢ is an
ideal, an element u of &7 is called a unit mod ¢ in case

au—a€ ¢ and wa—ac ¢ forall ac o . (1.21)

An ideal ¢ is called a modular ideal in case there exists a unit mod _Z.

Evidently if ¢ is an ideal in &/, and j is the norm closure of ¢, then ? is also an ideal in
.
Given a Banach algebra ./ and an ideal _#, there is a natural equivalence relation ~ on ./
given by
a~b < a-bec 7.

Let {a} and {b} denote the equivalence classes of a and b respectively. Let @ and b be any other
representative of {a} and {b} respectively. Then for some z,y € #,a =a+z and b =b+y. Then

ab= (a+z)(b+y) =ab+ (ay + b+ xy) ~ ab .

Even more simply one sees that @+ b ~ a + b and for all A € C, A\d ~ Aa. Hence <7/ 7, the set of
equivalence classes in o7, equipped with the operations

{a}{b} = {ab} and {a}+{b} ={a+b} and Ma}={Ia}

is an algebra, and a — {a} is a homomorphism of &/ onto &7/ 7.
Now introduce a norm on .7/ _¢ by

{a}|| = inf{ fla]| - a~a}=inf{la-0b] : be 7 }.
Note that |[{a}|| < ||a]|. To see that

[{a{b}I < [[{a}(I[I{o} (1.22)

for all {a},{b} € &/ 7, let 0 < e < min{||{a}|],||{b}||}, and pick @ € {a} and b € {b} so that
{a} > ||a|| — € and {b} > ||b|| — €. Then

Ha o} = [I{ab}]| < llabl| < llalllo]l < (I{a} ]+ e)(I{b}] +e) -

Since € can be taken arbitrarily small, (1.22) is proved.

Therefore, o7/ ¢ will be a Banach algebra with this norm provided it is complete in this norm.
Consider a Cauchy sequence {{a}n}nen in &7/ _#. A standard argument shows that this sequence
always has a limit if ¢ is closed. Thus, when ¢ is a closed ideal, &7/ ¢ is a Banach algebra, and
the map a — {a} is a contractive homomorphism of &7 onto <7/ _#. This homomorphism is called
the natural homomorphism of </ onto </ | 7.

It is possible for &7/ _# to have an identity evan when &7 does not. Suppose that ¢ is modular,
and that v is a unit mod _#. Then for all a € &7, {u}{a} = {ua} = {a} and {a}{u} = {au} = {a}.
Thus, {u} is a multiplicative identity in <7/ _#. Clearly if &/ has an identity 1, 1 is a unit mod _#.

There is a close connections between closed ideals and kernels of continuous homomorphisms of
Banach algebras.
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1.30 PROPOSITION. Let &/ and $ be Banach algebras, and let w : &/ — % be a continuous
homomorphism. Then ¢ = ker(</) is a closed ideal in o/. Conversely, if 7 is a closed ideal in
o/, then the map a > {a}/, sending a to its equivalence class mod 7 , is a homomorphism of o/

onto | 7.

Proof. Suppose that m: &/ — % be a continuous homomorphism. Then evidently ¢ = ker(</) is
a closed by the continuity of 7, and it is a subspace by the linearity of 7. Next, for all z € _# and
a,b € o, w(axb) = w(a)w(x)m(b) = w(a)0m(b) = 0. Hence azb € ker(n), and so ¢ is an ideal. The
converse is clear from the construction of &7/ _# described above. O

Now consider a commutative Banach algebra «7. For any zg € o7, we can define ¢ () to be
the subset of & given by

S (@) ={woy : ye }. (1.23)

Then for all yzog € # (o) and all a,b € &7, ayxob = (ayb)xo € _Z(x¢), and evidently &7 is a
subspace of 7. Hence ¢ (z¢) is an ideal, and it is called the ideal generated by x.

In the non-commutative setting, one could consider the set { yzoz : y,z € & } which is closed
under left and right multiplication by elements of 7. However, without some additional hypothesis
on xg, such as that xg commutes with all elements of <7, it need not be a subspace, and the clousre
of its span might be all of <.

Let o7 be a commutative Banach algebra with an identity 1. Let x¢ be a non-invertible element
of &/. Let # (o) be the ideal generated by xg. Then no element of # (x¢) is invertible. Indeed,
if 2oy were invertible, there would exist z € 7 such that (xgy)z = xo(yz) = 1, and then (since <
is commutative), yz would be an inverse of g, which is not possible. Hence, for all non-invertible
xo, ¥ (zo) consists entirely of non-invertible elements. Since the open unit ball about the identity
consists of invertible elements, # (x() does not intersect the open unit ball about the identity 1.

In particular, 1 does not belong to _# (x¢), the closure of ¢ (zo).
Now we come to a crucial construction of characters in a commutative Banach algebra:

1.31 THEOREM. Let & be a commutative Banach algebra with identity 1. Then for all non-
invertible xo € o, there exists a character ¢ € A(4/) such that p(z9) = 0.

Proof. Since x is not invertible, #(x¢) is a proper ideal in o7, and in fact, as explained above, the
open unit ball about 1 does not intersect ¢ (z(). Now consider any chain of proper ideals in 7,
ordered by inclusion. Since no proper ideal contains the identity, the union of this chain is again a
proper ideal. Hence by Zorn’s Lemma, there exists a maximal proper ideal .# containing ¢ (zo).
Since no proper ideal can contain any invertible elements, this ideal does not intersect the open
unit ball about 1. Hence its closure .# also contains _# (z) and is proper. Since .# is maximal
among such ideals, .# = .#. Hence in a commutative Banach algebra </ with identity 1, for each
non-invertible xy € <7, there exists a closed proper ideal .# that contains any ideal in < that
contains _Z (o).

We now claim that the Banach algebra & = o/ /.# is a division algebra. Suppose not. Then
it contains a non-zero, non-invertible element {yo} 4. Let .4 be the closure of the ideal in %A
generated by {yo} . Let m be the natural homomorphism of & onto %, and let w5 be the
natural homomorphism of & onto %/.4". Then 7 o 71 is a homomorphism of &/ onto %/.4". By
Proposition 1.30, ker(mz o m1) is a closed ideal that contains .# = ker(w;). The containment is
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proper since w011 (yo) = 0, but yo ¢ .# since {yo} 4 # 0. Finally, 1 ¢ ker(m o) since {1} 4 is a
unit B = & /M, and A does not contain any invertible elements, so ma({1} ) = ma(m1(1)) # 0.
Thus, ker(my o7y) is a closed proper ideal that strictly contains .#, which is impossible. Hence the
hypothesis that %8 = &7 /.4 contains a non-zero, non-invertible element is false. This shows that
PB = of | is a division algebra, and then the Gelfand-Mazur Theorem tells us that # = &7 / 4 is
canonically isomorphic to C. Hence m; may be regarded as a character of <7, and by construction

xo € F(v0) C M = ker(my). O
This theorem has the following important consequence:

1.32 COROLLARY. Let a € &/, where </ is a commutative Banach algebra. Let A\ € o.(a).
Then there exists ¢ € A(&/) such that p(a) = X. In particular, the spectral radius v(a) of a is
given by
v(a) = sup{ [p(a)] : p € A() }. (1.24)
Proof. Adjoining an identity if need be has no effect on the spectral radius, so we may assume that
o/ has an identity 1. We have already seen that for all ¢ € A(%), ¢(a) € 04(a). We now show
that for every A € o./(a), there exists p € A(&/) with ¢(a) = A.
Since A1 —a is not invertible, by Theorem 1.31, there exists ¢ € A(/) such that ¢(A\1 —a) = 0.
But (Al —a) = Ap(1) — p(a) = X — ¢(a). O

2 The Spectral Theorem for C* Algebras

Let o/ be a C* algebra. The involution * allows us to to define certain classes of elements in .7:

2.1 DEFINITION (Self-adjoint, normal and unitary elements of a C* algebra). Let <7 be a C*
algebra. Then:

(i) a € of is self-adjoint in case a = a*.
(ii) a € &/ is normal in case aa* = a*a.
(i4i) In case o has an identity a, a € &7 is unitary in case a*a = a*a = 1.

This definition generalizes these notions from the basic example in which &7 is the algebra of
n X n matrices or the bounded operators on some Hilbert space 7.

2.2 LEMMA. Let & be a C* algebra with an identity 1. Then 1 is self adjoint and ||1]| = 1.
Moreover, for any unitary v € <, ||u|| = 1.

Proof. 1* = 1*1. Applying the involution 1* = 1*1, showing that 1 is self adjoint. The next
two parts use the strong condition on the norm in a C* algebra, which is that for all ¢ € <7,
lla*al| = ||a]|?>. We use this first in

1= 122 = 1) = [)®

where the second equality is true since 1 = 1*. Thus ||1]] =1 or ||1|| = 0. The latter is impossible.
Finally, if u is unitary, 1 = ||1]| = |lu*u|| = ||u/|?, so that ||u|| = 1. O
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2.3 THEOREM (In a C* algebra, self-adjointness implies real spectrum). Let &7 be a C* algebra,
and let a € o/ then if a = a*, o4(a) C (R).

Proof. 1t is no loss of generality to assume that </ has an identity since we may adjoin one if need
be with out any effect on the spectrum apart from possibly adjoining 0 to it. Therefore, suppose
that <7 has an identity but contains some self adjoint element a with some A € o./(a) such that
A ¢ R. Then taking a appropriate real multiple of a (so the the multiple is still self adjoint), we
may suppose that e** = 2 for some \ € o./(a).

For each n € N, define the polynomial p,({) = Z?:o (i¢)7/4!. By the Spectral Mapping Lemma,
for each n, p,(A) € pp(a). For n > m,

n

Ipa(@) = pm(a)ll < D llall’/5t

j=m+1

and hence by standard estimates on the exponential power series for numbers, {p,(a)}nen is a
Cauchy sequence in /. Therefore, there exist u € & with u = lim,,_, pn(a). Evidently, for all
n, (pn(a))* = pn(—a), so that once again, by standard estimates for the exponential power series,
u*u = wu* = 1; that is, u is unitary, and by Lemma 2.2, ||u|| = 1. Therefore, for all y with |u| > 1,

ul — u is invertible. But
lim (pn(A\)1 — pn(a)) = €1 —u .

n—oo

Since [ 1| = 2, ¢"* 1 —u is invertible. However, p,(\)1—py,(a) is non-invertible for each n. Since the
set of invertible elements is open, it cannot be that a sequence of non-invertible elements converges
to an invertible element. Thus, the hypothesis that &/ contains some self adjoint element a with
some A € o (a) such that A\ ¢ R leads to contradiction. O

2.4 DEFINITION (Hermitian character). Let </ be a C* algebra. A character ¢ of & is
Hermitian in case for all a € &7,

2.5 LEMMA. All characters of a C* algebra are Hermitian.

1 1
Proof. For any a € o/ define x = i(a +a*) and y = ?(a —a”). Then z and y are self-adjoint, and
i
a = x +1y. For any character ¢ of &7,
pla) = p(x +iy) = p(x) +ip(y) and  @(a®) =z —iy) = p(x) —ip(y) -
By Theorem 2.3, ¢(z) and ¢(y) are real, and hence p(a*) = (¢(a))*. O

The next theorem again makes use of the strong condition on the norm in a C* algebra, which
is that for all a € <7, ||a*a| = ||al|?.

2.6 THEOREM (Norm and spectral radius in a C* algebra). Let o/ be a C* algebra. Then for
all a € o,
la]|* = v(a*a) (2.1)

and if a is normal,
lall = v(a) . (2.2)
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Proof. Suppose first that a is normal. Then (a*a) * (a*a) = a*aa*a = (a?)*(a?). Then by the
C*-algebra identitiy ||b*b|| = [|b||? applied twice, and the isometry propert of the involuton,

lal® = llal?[la*[[* = la*all* = [|(a*a) * (a*a)|| = [|(a®)* (a*)]| = [la*]|* .

Therefore, ||a?|| = |a||?, and by an obvious induction, for all m € N, [[a®*"| = ||a/|*™. Then by
Gelfand’s Formula,

v(a) = lim ([la®)"/*"™ = |al.
m—0o0
This proves (2.1). Next, for any a € o, a*a is self adjoint and so v(a*a) = ||a*a||. Then since

o/ is a C* algebra, |la*al| = ||a||?, and this proves (2.2).
O

2.7 THEOREM (Commutative Gelfand-Naimark Theorem). Let </ be a commutative C*-algebra.
Then the Gelfand transform is an isometric isomorphism of </ onto 6o(A(<)).

Proof. By Lemma 2.5, for all a € & and all ¢ € A(),

since the involution in 6,(A(.27)) is pointwise complex conjugation.

Next, |v(a)l¢]| = |¢(a)|. By the easy Lemma 1.21, sup { |¢(a)| } <wv(a). By the deeper
PpEA(A)
Corollary 1.32 of Theorem 1.31, sup { |p(a)| } > v(a). Combining these two inequalities with
EA(F)
Theorem 2.6, and noting that in a commutative C* algebra, every element is normal,

sup { [y(a)lgl| } = v(a) = |lall ,
PEA(H)
which proves that the Gelfand transform is an isometry, and hence is injective onto a subalgebra of
~v(&) of €o(A(<7)). However, (/) separates points, and does not vanish at any ¢ € A(&7), and
is closed under complex conjugation. Hence by the Stone-Wierstrass Theorem, and the closure of
V), 1) = Co(A(H)). O

2.1 Spectral invariance and the Abstract Spectral Theorem

Let & be a Banach algebra with identity, and let & be a Banach subalgebra. It can happen that
some b € £ is not invertible in 4, but is invertible in /.

2.8 EXAMPLE. Let D denote the closed unit disc in C, and let C' denote its boundary, the unit
circle. Let o7 = %(C), the algebra of continuous functions on C. Let 2% denote the algebra of
continuous functions on D that are holomorphic in the interior of D. These functions are determined
by their values on C, and their maximum absolute value is attained on C. Therefore, restriction
to C is an isometric embedding of & in &7, so we may regard & as a subalgebra of <.

Let b denote the function f(e?) = €¥, the identity function on C, which evidently belongs to
2. Then 1\ — b is invertible in o if and only if A ¢ C, in which case the inverse is the function
g(e?) = (X — €)1, However, for X in the interior of D, ¢ ~ (A — ¢)™! is not holomorphic in
the interior of D, and so the inverse of b in o/ does not belong to #. That is 04(b) = C, but
ox(b) = D.
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Now we specialize to C* algebras, first introducing certain minimal subalgebras:

2.9 DEFINITION. Let o/ be a C* algebra with unit 1. For all b € o7, C'(b) is the smallest C*
subalgebra of & that contains b and 1.

2.10 THEOREM. Let o7 be a C* algebra with unit 1, and let b € of. if b is invertible in <7,
b= € C(b), and hence b is invertible in every C* subalgebra of </ that contians 1 and b. In
particular, if BB is a C* subalgebra of </ that contains 1 and b, then

oz(b) = 0.(b) .

Proof. Suppose first that b is self adjoint and invertible in «/. By Theorem 2.3, o¢()(b) C R, and
consequently, for all n € N, b— (i/n)1 is invertible in C'(b). Since lim,,_,(b—(i/n)1) = b in o7, and
since the inverse is continuous, lim,, (b — (i/n)1)~1 = b~ in /. But since (b— (i/n)1)~1 € C(b)
for all n, and since C'(b) is closed,
b=t = lim (b— (i/n)1) ™ € C(b) .
n—oo
Hence, b is invertible within C(b).

Now let b be any invertible element of /. Then b* and b*b are invertible in o7, and also belong
to C(b). Since b*b is self adjoint, what we have proved above says that (b*b)~! € C(b). Define
x = (b*b)~1b* € C(b). Evidently b = 1. Thus, b has a left inverse in C(b). The same argument
shows that y = b*(bb*)~! is a well defined right inverse of b in C(b), and then z = z(by) = (zb)y = y
so x =y is the inverse of b in C'(b). In particular, for all A € C, A1 = b is invertible in C'(b) if and
only if it is invertible in 7. Thus, A1 — b is invertible in .o/ if and only if it is invertible in C(b),
and this proves the final statement. O

2.11 LEMMA. Let & be a C* algebra with identity 1, and let a € &7 be normal. Then the map
o = p(a) is a homeomorphism of A(C(a)) onto oy(a).

Proof. Since a and a* commute, the closure of the linear span of { a”(a*)" :m,n >0 } is a C*
algebra that contains 1 and a. Evidently, it is C'(a). Hence if ¢ € A(C(a)), ¢ is determined by
its values on a and a*. In fact, since ¢ is necessarily Hermitian, ¢ is determined by its value on a.

That is, for any ¢, € A(C(a)),

p=1 < gla)=1y(a).

We have also seen that for all p € A(C(a)), ¢(a) € o¢(q)(a) = 0(a), and for all A € o/(a) =
0c(a)(a), there is a gy € A(C(a)) such that py(a) = A. This shows that the map ¢ +— ¢(a) is
a one-to-one map of A(C(a)) onto o4 (a). This map is also continuous by the definition of the
Gelfand topology, and continuous bijections between compact spaces are homeomorphisms. O

We now come to the Abstract Spectral Theorem:

2.12 THEOREM (Abstract Spectral Theorem). Let o/ be a C* algebra with identity 1, and let
a € & be normal. Then identifying Ca(c(a)) and € (o (a)) through the homeomorphism provided
by Lemma 2.11, we may regard the Gelfand transform as a homomorphism of C(a) into € (o (a)).
Then the Gelfand transform v is an isometric isomorphism of C(a) onto € (o (a)). For all non-
negative integers m,n, y(a™(a*)") is the function on o (a) given by

A AT (2.3)
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Proof. The Commutative Gelfand-Naimark Theorem says that « is an isometric isomorphism, and
if p € A(C(a)),

v(a™(@")™)le] = e(a)™ ((p(a))")" = A™(X7)"
for A = ¢(a) so that under the identification provided by Lemma 2.11, v(a™(a*)™) is indeed given
by (2.3). O

2.13 DEFINITION. For & a C* algebra with identity 1, a a normal element of &, and
f € €(04(a)), f(a) is defined by v~1(f); i.e., f(a) is the inverse image of f under the isomet-
ric isomorphism of C(a) onto € (o (a)) that is provided by the Commutative Gelfand Naimark
Theorem.

2.14 THEOREM (Spectral Mapping Theorem). Let &/ be a C* algebra with identity 1, a a
normal element of <7, and f € € (0 (a)). Then

0(f(a)) = flox(a)) -

Proof. For all u € C, the function A\ — pu — f(A) is invertible in €(o.(a)) if and only if u does
not belong to the range of f, which is f(o.(a)). Then, using the isomorphism provided by the
Commutative Gelfand Naimark Theorem, we see that ul — f(a) is invertible in C(a) if and only
if u ¢ f(ow(a)), and hence o¢(y)(f(a)) = 0/(a). Finally, by Theorem 2.10, the spectrum of f(a)
is the same in all C* subalgebras of & that contain f(a) and 1. In particular, og(q)(f(a))

aca(f(a)). O

2.2 Continuity of the spectrum and the functional calculus

2.15 THEOREM (Newburgh’s Theorem). Let o/ be a Banach algebra and a € o/ . Let U be an
open subset of C with o./(a) C U. Then there exists a 6 > 0 such that if ||b—al <4,

Up{(b) cU.

Proof. First note that for all b € &7 with ||b —al| < 1, ||b]| < ||a|]| + 1, and hance for all A € C with
A>la||+ 1, X € py(b). Hence when ||b—a|| <1, 0,(b) is contained in the closed centered disc of
radius [|a| + 1.

Let K =U°Nn{ A : |Al <|a|+1 } which is a compact subset of po(a). It suffices to show
that there is an 7 > 0 so that for all 4 € K, (ul — b) is invertible whenever [|b — a| < r.

Let A € K. Then \ € py(a), and for all b € & and p € C with

= A+ o —all <A1 =a)7H™" = (w1 =b) = (AL =a)[ < [\ —a)7HI7,

and hence p € p,/(b). For each A € K, define Uy = {u : | — Al < 1[|(A1 —a)71||7 }. Since K is
compact, there exists a finite subcover {U),, ..., Uy, }. Define

.1 1 1 -
r=min(L(a1 - )7 IOl —a) )
Then for any b with |[b — al| <7 and any u € K, € Uy, for some j = 1,...,n, and then
1(u1 = b) = (A1 = )| < |p = Al + b= all < (W1 = a) 77

Therefore, (141 — b) is invertible. Thus, for all u € K, whenever ||b —al| <7, u € py(b). O



23

Now <7 be an Banach algebra, and let z,y € o/, and t € R. Then for all n € N, by the
telescoping sum identitiy

n—1
(l‘ + y)n R ((w + y)n*jxj _ (x + y)n*jflijrl
§=0
n—1 ' '
=Sy Iy
§=0
Therefore,
n—1 . A
I +y)™ =2 < | D@+ )" ) vl < nllzl) + Tyl -
§=0

Therfore, when ||y|| < 0, ||(z+y)" —2"|| < n(||z]+ )™, and this proves that x — z™ is continuous.
In a C* algebra we can say more.

2.16 THEOREM. Let &7 be a C* algebra with identity 1. Let U C C be open with U compact.
Let Ny be given by
Np={aed 1aa" =a"a and oy(a) CU }. (2.4)

Then A is an open subset of the normal elements of o/ . Moreover, let f be a continuous complex
vauled function on U, and for all a € A, define f(a) € < using the Gelfand-Naimark isomor-
phism. Then the map a — f(a) is continous on N.

Proof. The first assertion is an immediate consequence of Newburg’s Theorem. For the second,
consider any sequence {p,} of polynomials converging uniformly to f on U. Then for all a € .47,

Ipn(a) = f(a)|| < sup{pn(X) = F(A)]}-

AeU
That is,
lim (Sup{ Ipn(a) = f(a)ll }> =0.
n—ro0 CLE«,/VU
Thus, the function a — f(a) is the uniform limit of the continuous functions a — py,(a), O

For normal elements of a C* algebra, there is a quantitative version of Newburgh’s Theorem.

2.17 THEOREM. Let & be a C* algebra, and let a,x € o/ be normal. Then
og(a+x)C{ X : dist(\,op(a)) <|z| } .

Proof. Let A € py(a). By the Gelfand-Naimark isomorphism,

1

AL —a) M| =sup{]A = p|™" : peoyla)}= dist(\, 0. (a))

Let x € &/ be normal, Then [A\1—(a+x)]—[A\l—a] = —x. Therefore, as long as ||z|| < dist(}, 0 (a)),
[Al — (a + x)] is invertible O



24

2.3 Positivity in C* algebras

2.18 DEFINITION. Let « be a C* algebra. Then a self adjoint element a in &7 is positive in
case 0(a) C [0,00). The set of all positive elements of .7 is denoted /.

If a € &/, we may use the Abstract Spectral Theorem to define \/a, and then a = (y/a)? =
(va)*(v/a). It is also true that in any C* algebra, every element of the form b*b is positive. This
was not known to Gelfand and Naimark when they wrote their 1943 paper, in which they raised
the question as to whether it was true or not. They included an extra hypothesis in their paper,
namely that for all bin o/, 1 ¢ o,/(b*D).

The fact that for all b in a C* algebra <7, b*b € o/ was finally proved in 1952 and 1953 through
the contributions of Fukamiya and Kaplansky. The history is interesting: Kaplansky had managed
to prove that if the sum of two positive elements is necessarily positive, then b*b is necessarily
positive. However, he was unable to show that /" was closed under sum. He published nothing,
but showed his proof to many people. When Fukamiya proved the closure of 27T in 1952, Kaplansky
communicated his proof to the reviewer of Fukamiya’s paper for Math Reviews, and the proof was
published there.

2.19 THEOREM (Fukamiya’s Theorem). Let «/ be a C* algebra. Then </ is a pointed convex
cone. That is:

(1) For all \ € RT, and alla € /%, \a € &/, and for alla,be &/, a+be oT.
(2) —t Nt ={0}.
(The first part says that </ is a convexr cone; the second part says that this cone is pointed.)

Proof. We may suppose that 7 has an identity 1 since otherwise we may adjoin an identity without
affecting positivity.

Let B, denote the closed unit ball in /. Fukamiya observed that that /™ N B, consists
precisely of the self-adjoint elements a with both a and 1 — a are in B,,. To see this suppose that
a € @/ N By. Then since a is self adjoint, v(a) = |la|| < 1, and so o (a) C [0,1]. By (an easy
case of) the Spectral Mapping Lemma, o./(1 —a) C [0,1], and hence |1 —al =v(1 —a) < 1.

Conversely, suppose a is self-adjoint and both a and 1 —a are in B,,. Since « is self adjoint and
lla|| <1, o(a) C [—1,1]. Then by the Spectral Mapping Lemma, o,(1 —a) C [0,2]. However, if
I1 —al <1, then 04(1 —a) C [—1,1], and altogether we have that o,(1 —a) C [0, 1], and then by
the identity @ = 1 — (1 — a) and the Spectral Mapping Lemma once more, o4 (a) C [0, 1], so that
a € &/T. That is,

dTNBy={a€d : a=a* and a€ByN(1-By)}. (2.5)

Now let a,b € B,,. Then by Minkowski’s inequality ||(a + b)/2|| € B,y and

a+b 1
=252 < s =ar+m-o. (2.

If furthermore, a,b € &/, then we also have that |1 —al| < 1 and ||1 — b|| < 1, and then from
(2.6), |1 — (a +b)/2|| < 1. Thus, (a + b)/2 is self adjoint and belongs to both B, and 1 — B,,. ,
and hence (a +b)/2 € /T,



25

Since the closure of /T under positive multiples is clear, it then clear that «/T is closed
under sums. Finally, if a € T and —a € &/, then o(a) C (—00,0] N [0,00) = {0}, so that
|la|]| = v(a) =0, and hence a = 0. O

2.20 THEOREM (Fukamiya-Kaplansky Theorem). For all a € <7, a C* algebra, a*a € &/ .

Proof. We first show that if a*a € —2/ ", then a*a = 0. Since a*a and aa* have the same spectrum,
Fukamiya’s Theorem says that a*a + aa* € —a . However, writing a = x + iy with x and y self
adjoint,

a*a+aa* =2(x* +y*) € T

where once again we have used Fukamiya’s Theorem, and the Spectral Mapping Lemma. Since .7
is a pointed cone, his means that a*a + aa* = 0. But then a*a = (a*a + aa*) — aa* = —aa* € FT.
Again since /7 is pointed, this means that a*a = 0, as claimed.

Now suppose that x = b*b for some b € o7, Define continuous functions f,g : R — R by
f(t) = max{t,0} and g(t) =t — f(t). Note that f(t)g(t) = 0 for all ¢. By the Abstract Spectral
Theorem, if we define y = f(z) and z = g(x), then yz = 0, and y + z = = b*b. Now define
w = bz, Then

wrw = 2b*bz = z(y + 2)z = 2° .
Since 0.(2) C (—00,0], 23 € —&/ ™, and the first part of the proof says that w*w = 0. Therefore,
z =0, and so b*b = f(b*b) € . O

2.4 Homeomorphisms of C* algebras

2.21 THEOREM. Let & be a C* algebra, and let # be a norm-closed ideal in o/. Then ¢ 1is
closed under the involution.

The heart of the proof is the following approximation lemma:

2.22 LEMMA. Let &/ be a C* algebra, and let ¢ be a norm-closed ideal in </. Then for every
a € 7, there is a sequence {uy}neN of positive elements of ¢ with ||uy| <1 for all n such that

lim [jau, —al| =0.
n—oo

Proof. Consider the sequence of continuous functions f,, : Ry — R4 given by f,(t) = min{nt, 1}.
Note that
t1—nt)?2 t<1/n

_ 2:
{1 = fult)) {O i

Evidently sup;sq [{t(1 — fu(t))?}| < 1/n. Consequently, by the Abstract Spectral Theorem
applied to a*a for any a € <7, ||(fn(a*a) — 1)a*a(fn(a*a) — 1)|| < 1/n. Note that

I(fa(a*a) = 1a*a(fa(a’a) = 1| = l|afa(a’a) —al*.

Thus, lim, 0 ||afn(a*a) — al| = 0. By the Abstract Spectral Theorem, | f,(a*a)|| < 1 and
fn(a*a) € & for all n. It remains to show that when a € _#, then f,(a*a) € _# for all n. Clearly
when a € #, a*a and all polynomials in a*a belong to #. But then since f,, may be uniformly
approximated by polynomials, and since ¢ is norm closed, f,(a*a) € 7. O
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Proof of Theorem 2.21. Let a € ¢, and let {u, }nen be a sequence of positive elements of ¢ such
that lim,,_, ||au, —al| = 0. Since ||upa* —a*|| = |lau, —al|, and up,a* € Z, lim,, o0 [Jupa® — a*||0.
Then since ¢ is closed, a* € 7. O

Now let & be a C* algebra, and let # be a closed ideal in #. As usual, let {a} denote
equivalence class of @ mod ¢, and let |[{a}||| denote the quotient norm of {a}; that is,

[{a}[[l = nf{ fla =b = be 7 }.

Then <7/ _# is a Banach algebra with the quotient space norm. By Theorem 2.21, a—be ¢ <=
a* —b* € _#, and therefore we may define an involution on on _# /& by

{a}" ={a"} .

Evidently this involution is an isometry, and so for all a € &, ||[{a}*{a}| < |[{a}||>. To show that
/| 7 is a C* algebra with this involution, we need only show that for all a € <7,

{a}l* < [{a}*{a}]| - (2.7)
We shall use the following lemma:

2.23 LEMMA. Let o/ be a C* algebra, and let ¢ be a closed ideal in </. For all a € <7, the
quotient norm of {a} is given by

[{a}| =inf{ |la —aul| : v"=ue # and uweFdTNBy}. (2.8)

Proof. Whenever w € ¢, a ~ (a — au) so that |[{a}| is no greater than the right hand side of
(2.8). To prove the equality, pick e > 0 and b € _# so that |[{a}|| > |[a — b|| — e. Then by (2.5),
[1—wul|l <1, and so

la = bl = fla = bl|[[1 = ul| > [[(a =b)(1 = w)|| = [[(a = au) = (b = bu)[| = [[(a = au)|[ = [|(b = bu)[| -

By Lemma 2.22 we can choose u so that ||b — bu|| < e. We then have ||{a}| > |la — au|| — 2¢, and
since € > 0 is arbitrary, (2.8) is proved. O

Now to prove (2.7), pick € > 0 and u = u* € _# with u € &/ N B, so that
la*a(l —w)|| < [{a}*{a}]| + €= [[{a}|* + €.
Then
{a}|? < la(@ = )2 = (1 = w)a*a(l —w)|| < (1 = w)[[la*a(l —w)|| < [a*a(l —u)] .

where the last in equality is valid since by (2.5), ||1 —u|| < 1. Altogether, |[{a}||? < |[{a}*{a}| + ¢,
and since € > 0 is arbitrary, (2.7) is proved. We have shown:

2.24 THEOREM. Let &/ be a C* algebra, and let 7 be a norm closed ideal in <, then ¢ is
closed under the involution, and the definition {a}* = {a*} defines an involution on <7/ # so that,

equipped with the quotient norm, o/ ¢ is a C* algebra.
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2.25 LEMMA. Let & and B be C* algebras, and let m : &/ — P be a x-homomorphism. Then w
is a contraction; i.e., |w(a)|| < ||a|| for all a € <. If moreover w is one-to-one, T is an isometry.

Proof. For all a € o7, by the Spectral Contraction Theorem, v(w(a)*m(a)) = v(7w(a*a) < v(a*a).
Then since for self adjoint elements of a C* algebra, the norm is the spectral radius, ||7(a)*7(a)|| <
|la*a||. Then by the crucial defining property of a C* algebra relating the norm and the involution,
|(a)||® < ||al|?, and this proves that 7 is a contraction.

Notice that if v(7(a*a) = v(a*a), the argument gives ||7(a)|| = ||a||. Hence it remains to show
that if 7 is one-to-one, 7 cannot decrease the spectral radius of any self adjoint element of 7.

Indeed, let @ = a* € o7, and suppose that v(m(a)) < v(a). Then there is a non-zero continuous
bounded function f supported on [—v(a),v(a)] that vanishes identically on [—v(w(a)),v(m(a))].
since f may be approximated by polynomials, 7(f(a)) = f(n(a)). However, since f vanishes
identically on the spectrum of m(a), f(w(a)) = 0. Thus, f(a) is in the kernel of 7, which is a

contradiction. Hence, when 7 is one-to-one, it preserves the spectral radius of self adjoint elements.
O]

We summarize with the following theorem:

2.26 THEOREM (Homomorphisms of C* algebras). Let &/ and B be C* algebras, and let w :
o — B be a x-homomorphism. Then 7 is a contraction, w(</) is a C*-subalgebra of B, and w
induces an isometric isomorphism of < [ker(mw) onto w(</).

2.5 Projections in C* algebras

2.27 DEFINITION. Let & be a C* algebra. A self adjoint element e of &/ is a projection in

case e = e. A projection e is a central projection in case e commutes with every element of .27.

Note that 0 is a projection, as is 1 when o7 has an identity. Any other projections, should they
exist, are non-trivial projections. Suppose that e is a non-trivial projection in /. Then 1 — e is
also a non-trivial projection in &7

Associated to e are the two subalgebras, namely e</e and (1 — e)o/ (1 — e), where e<Ze consists
of all elements of &7 of the form eae, a € <7, and likewise (1 — e)47(1 — e) consists of all elements
of & of the form (1 — e)a(l —e), a € o/. Evidently, these are both C* subalgebras of <. Note
that e is the identity in e<Ze, and (1 — e) is the identity in (1 — €)%/ (1 — e)

The name “corner algebra” come from the case in which & = M,,(C), the algebra of n x n
complex matrices, and for some 1 < m < m—1, e is the orthogonal projection onto the subspace of
C™ consisting of vectors (71, ...,n,) such that n; = 0 for j > m + 1. The general element of a € &/

can then be written in “block form” asa = | © Y | where z € M, (C), w € My, (C) and y and
z w

2T are m x (n —m) matrices. Then

z 0 00
eaez[o 0] and (1—6)&(1—6):[0 y]
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0
Continuing with this example, note that if a = eae + (1 — e)a(l — e) so that a = [ 3(; ],
w

then a is invertible if and only if both z and z are invertible, and so for such matrices a,

o, (c)(a) = on,c)(T) Yo, ) (w) -

We shall be especially interested in the case in which e is central. Note that this is not the case
in the example we just considered.

If e commutes with every element of cA, then e«Ze = { ea:a € &/} ={ae : a € o }, and
edf e is then evidently an ideal in 7, as is (1 — e)o/(1 — e). In this case,

o =ede®(l—e)d(l—e)

since for all a € &7, a =ae+a(l —e) andif a € efenN (1l —e) (1 —e),a=ca and a = (1 —e€)a
so that a = e(1 — e)a = 0.
For all a € &7, a is invertible if and only if ea is invertible in e«Ze and (1 — e)a is invertible

in (1 —e)a(1 —e). To see this, suppose that a is invertible in «7. Then e = eaa™! = e?aa™! =

(ea)(ea™!) = (ea=1)(ea), and so the inverse of ea in e</e is ea~!. The same reasoning shows that
the inverse of (1 —e)a in (1 —e)aZ(1 —e) is (1 — e)a~!. For the converse, suppose that ea has the
inverse ex in e</e and that (1 — e)a has the inverse (1 —e)y in (1 — e)</(1 — e). Then

alex + (1 —e)y) = (ae +a(l —e))((ex + (1 — e)y) = ae’z + a(l — €)%y
— (ea)(ex) + (1 —e)a(l—ely = e+ (1—e) = 1,

thus showing that (ex + (1 — e)y) is a right inverse of a. A similar computation shows that it is a
left inverse. This leads to the following result:

2.28 THEOREM. Let of be a C* algebra with identity 1, and let e be a central projection in
/. For any a € o, let a = ea + (1 — e)a be the unique decomposition of a corresponding to
o =ede®d(1—e)d(1—e). Then

U(d(a) = Ueyfe(ea) U U(l—e),Qi(l—e)(a) :

Proof. For all A € C, A1 —a = (Ae—ea)+ (A(1 —e) — (—1e)a). By the remarks above the theorem,
A € py(a) if and only if A € peore(ea) N pi—eyni—e) (1 — €)a). O

3 Lin’s Theorem

3.1 Almost commuting and nearly commuting

In 1995, Huaxin Lin proved a theorem that settled an old conjecture arising from the work of John
von Neumann on quantum mechanics. His theorem concerns the C* algebra M,,(C) of complex
n X n matrices:

3.1 THEOREM (Lin’s Theorem). For every e > 0, there is a 6 > 0 such that for any n € N and
any pair of self-adjoint a,b € My (C) with ||a||, ||b]| < 1 and

llab — bal| < 6, (3.1)
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there exists a commuting pair of self adjoint a,be M, (C) such that
la—al + ||b — BH <e. (3.2)

When a pair a,b € M, (C) satisfies (3.1) for small §, we may say that they almost commute.
When a pair a,b € M,(C) is such that there exists a commuting pair @,b € M, (C) such that (3.2)
is satisfied for small €, we may say that a and b are nearly commuting — they are near to matrices
that exactly commute.

The theorem may be rephrased as a theorem about “almost normal” and “nearly normal”
matrices. Let a,b € M, (C) be self adjoint nxn matrices Let x = a+ib. Then x*x—zz* = 2i(ab—ba)
so that

|z*x — za*|| = 2|jab — bal| (3.3)

so that ||z*z — zz*|| < 26.
Let @ and b be another pair of self adjoint n X n matrices, and define £ = a — b. Note that
x—&=(a—a)—+i(b—0b),so that ||z — Z|| < |la — a|| + ||b — b||. However,

a_a:(:v—fc)+(a:*—5c*)
2

so that ||a — || < ||z — Z||. Likewise, we have ||b — b|| < ||z — &|. Altogether,
lz — 2| < la—al| +[lb— 0]l < 2llz — Z] . (3-4)
Combining (3.3) and (3.4), we arrive at an alternate formulation of Lin’s Theorem:

3.2 THEOREM (Lin’s Theorem, Alternate Formulation). For every e > 0, there is a 6 > 0 such
that for any n € N and every x € M,(C) with ||z|| <1, and

|lx*z —xx™|| <0, (3.5)
there exists a normal & € My (C) such that
|z — 2| <e€. (3.6)

The crucial feature of Lin’s Theorem is that § depends only on € and not on n. Without the
requirement that é be independent of n, the result is trivial. It then suffices to show that for fixed
n, and fixed € > 0, there does not exists a sequence {x;};en of n x n matrices with ||z;|| <1 for all

j and such that lim; . [|z7z; — ;27| = 0 but [|z; — z[| > € for all normal x and all j

Suppose such a sequence exists. By the compactness of the unit ball in the space of n x n
matrices, there is a subsequence {z;, }ren and an 2 with ||z|| <1 such that limjy_, ||z, — | = 0.
Evidently

* * ° * *
e —xz = lim (2 x;, —x;, 2 )=0.
k%oo( Ik Ik Jk ]k)

Therefore, = is normal but ||z, — z|| < € for all sufficiently large k.
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3.2 The finite spectrum problem

Lin’s proof of his theorem turns on the analysis of two C* algebras that we now define: For any
sequence {n;};jen of natural numbers, define two sets of sequences of matrices as follows:

o ={{aj}jen : aj € M,,(C) and sulg l|la;|| < oo } (3.7)
j€
and
S =1 {bikjen ¢ bj € My;(C) and  lim [|bj]f =0} (3.8)

Obviously # C /. Equip &/ with the operations of term by term addition and multiplication and
the norm

[{a;}jenll = sup [la;]| -
JEN

This makes &/ a Banach algebra. Equip 7 with the involution consisting of term by term Hermitian
conjugation. This make &/ a C* algebra, and ¢ a closed ideal in 7. Let % denote the quotient
algebra <7/ _#, and let m denote the natural homomorphism of </ onto Z. This notation will be
used throughout this section.

The relevance of this construction is as follows: If Theorem 3.2 were false, there would exist a
sequence {n;};en of natural numbers, and a sequence {z;};jen with each x; € M, (C) such that
for some € > 0,

|zj — ;]| > € forall j €N and all normal Z; € M,,(C), (3.9)
and
li frj— x| =0 . 1
jggon]:U] rjril| =0 (3.10)

Let us write = to denote {z;};en considered as an element of .o/, and let us write y to denote
m(z) € #. By (3.10), which says that {z}z; — z;27}jen € 7,

vy — gy = m(a")n(2) - w(@)n(a”) = m(ale; - zja5) = 0

Thus, for any = {x;},en satisfying (3.10), y = m(x) is normal in %.

We say that an element of a Banach algebra has finite spectrum if its spectrum is a finite
subset of C. There are two parts to Lin’s proof. One is to show that every normal y € % can be
approximated arbitrarily well in norm by a normal element 3 that has finite spectrum. The other
is to show that for any = = {z;}jen € &7, if m(x) is normal with finite spectrum, then (3.9) is
impossible. We begin with the latter point.

3.3 LEMMA. Letx = {zj}jen € & and suppose that y = w(x) is normal and has finite spectrum.
Then there exists a normal & = {Z;}jen € & such that ©(Z) =y, and, consequently, such that

lim ||lz; — %] =0 . (3.11)

J—00

In other words, normal equivalence classes in .//_# that have finite spectrum have a normal
representative.
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Proof. Let {A1,..., A} be the points in the spectrum of y. Let p and g be complex polynomials
with
p(Aj) =7 and q(j)=X; for j=1,...,n.

Notice that g o p(A) = A on o4(y) so that ¢(p(y)) = y. Since p(A\) € R for all A € o4(y), p(y) is
self adjoint.

Let z be any element of &/ with 7(z) = p(y). Then 7(z) is self adjoint, and so w((z* + 2)/2) =
p(y). Then

q(m((z" +2)/2) = 7(q((z" + 2)/2)) = q(p(y)) = v ,
Then since (z* 4 2)/2 is self adjoint, ¢((z + 2*)/2) is normal, and thus the equivalence class of y
contains a normal representative, namely ¢((z* + z)/2), that we denote by z.
By the definition of the norm in the quotient algebra, for all € > 0, there exists b = {b;}jen € #
such that ||z — Z — b|| < e. This means that

|25 — 25| < e+ [bs]] -

Then since € > 0 is arbitrary and lim;_, ||b;|| = 0, (3.11) is proved. O

3.3 Approximation of normals by normals with finite spectrum

It remains to show that every normal element of % can be well-approximated by normal elements
with finite spectrum. To prepare for this, we make several observations about the algebra <.
Consider x € M,,(C) for some n € N. Then x has a singular value decomposition

z = ustd”

where s is a diagonal matrix with non-negative entries, and v and v are unitary matrices. Since
w*u =1, z = vu*(usu*). We define u = 90* and |z| = asu*. Then we have

x=ulz|] and |z|=Vz*z,

where the square root is defined by the functional calculus. Because u is unitary, this is called a
unitary polar decomposition of .

Now we observe that every element z = {z;};en € & has a unitary polar decomposition
x = ul|x|: Simply choose such a decomposition z; = uj|x;| for each j, and then u = {u;};en and
[z = {lz;}jen-

Next consider any y € %, and any = € & such that w(x) = y. Let u|z| be a unitary polar
decomposition of z. Then

y =n(wn(|z)) = m(wr(Vare) = m(w)y/y*y = 7wyl ,

and 7(u) is unitary. Therefore, each element of Z has a unitary polar decomposition.

Essentially the same argument shows that every unitary v € %, has a unitary representative
in o/; i.e, there exists a unitary u € & such that m(u) = v. To see this, consider any x € &/ such
that 7(z) = y, and and let = u|z| be a unitary polar decomposition of z. Then y = 7(u)w(|z|) =
7(u)|m(z)| = w(u)|y| = 7(u). While we have to do significant work to obtain even an approcximate
normal representative for normal y € 4, for unitary v € 4, things are much simpler: THere is
always an ezact unitiary representative in /. This will be used below.
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3.4 LEMMA. Let any € > 0 and any countable subset F' of C be given. Then for all normal
y € A, there exists a normal § € B such that ||y — gl < € and FNoyg(y) = 0.

Proof. The set of invertible normal elements is dense in the set of normal elements of &. To
see this let, y € % be normal and let y = v|y| be a unitary polar decomposition. Then |y|?> =
y*y = yy* = v|y/*v*, which mean that |y|>v = v|y|? so that v computes with |y|?, and hence any
polynomial in |y|?, and hence any continuous function of |y|?. In particular, v commutes with |y|.
Evidently, v(]y| + 1€) is invertible and normal since v is unitary and commutes with |y|. Clearly
lly —v(Jy| + Le)|| < € and this justifies the claim that the set of invertible normal elements is dense
in the set of normal elements of A.

It follows that for each A € F, the set of normal elements z € 4 such that A1 — z is invertible
is dense and open in the relative topology. By Baire’s Theorem, the intersection of these sets over
all A € F' is dense in the normal elements of Z. OJ

This lemma shall be applied to approximate an arbitrary normal y € 9 by another normal
y € B where o4(y) lies on the € grid I'. C C, where for € > 0,

Fe={s+iteC : sceZ or tcel}. (3.12)
To do this, fix € > 0, and let F' be the set of the centers of the squares in I'c. That is, the set
Foi={s+iteC : s+ ce(Z+1/2) and tce(Z+1/2)}.
Let f be the obvious continuous contraction from C\ F, onto T, such that for all A € C\ F,
() = A <e/V2. (3.13)

Define § = f(y). Then g is normal and by the Spectral Mapping Theorem, 04(y) € I'e. By (3.13),
|7 — y|| < €/+/2. This proves:

3.5 LEMMA. For all normal y € A there and all € > 0, there exists a normal § € B such that
o5(§) CTe and |ly — g|| <e.

Now fix € > 0 and consider any normal y € # such that o02(gy) C I'e. Then since 0(9) is a
closed subset of C contained in D), the closed centered disc of radius [|y|| in C,

op(y) C TN D”y” .

At this point we have that the spectrum of y lies in a subset of C that looks something like the
following:
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Now consider two the sets
Ac={s+iteC : sceZandtece(Z+1/2) or sceZandteceZ+1/2)} (3.14)

and
Ac=A={s+itcC:sceZandtceZ}. (3.15)

Note that A, is the set of midpoints on the elementary segments of the grid I', and A, is the set
of intersection points of the grid I'.

There is an obvious continuous g retraction of I'.\ A, onto /~\6 such that for all A € T',
lg(A) = Al <€/2.

Therefore, if y is any normal element of 8 with spectrum in I':\ A, g(y) is a normal element with
ly — 9|l < €/2, and 55(g(y)) € Ac N Dyy|> a finite set whose cardinality depends only on € and
Il

We now turn to the lemma that will enable us to remove, one at a time, the finitely many points
of Ac N Dy from the spectrum of our normal element y, (whose spectrum lies in I'c N D). This
will give us the approximation by elements of finite spectrum that we seek.

3.6 LEMMA. Lety € % be normal. Let V be an open subset in C such that VNox(y) is contained
in a subset X of C that is homeomorphic to the open unit interval. Let yo € V Nogz(y) and suppose
that Ao is not an isolated point of o5(y). Then for each € > 0, there exists a normal § € A such
that

05(§) C oa(y)\{Ao} and [y — gl <.

We preface the proof with remarks on the strategy. Suppose we can find a commutative subal-
gebra ¢ of £ that contains C(y) and a projection e, necessarily central, such that for some small
neighborhood U of \g

oegeley) CU and  o(1_og—e)((1 —€)y) Coz(y)\U . (3.16)

Pick any A\ # Ao € o(y) NU. The function A\ — |A; — A| is bounded by diam(U) on oeze(ey).
Therefore, by the Gelfand-Naimark Theorem, ||A1e — ey|| < diam(U).
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Define § = Aje + (1 — e)y Then §; is normal, and ||§ — y|| = [|Aie — ey|| < diam(U). Finally,
by Theorem 2.28 and (3.16), 0% (7) = {M} Uoa_ewa—e) (1 —€)y) C {\}Uog(y)\U. Then by
Theorem 2.10,

o2(9) C { M} Uoz()\U C {Ao} Uoz(y)\{o} -

The construction of e requires some ingenuity: If we could apply the characteristic function
1y to y, we would readily obtain e. However, 1y need not be continuous on o%(y), and so the
Abstract Spectral Theorem is not available. If y had finite spectrum, then of course there would be
a continuous function f agreeing with 17 on o04(y), and then we could define e = f(y). However,
o04(y) need not have any isolated points, and then there will be no such continuous function.

We will use the fact that y is an equivalence class of sequences of matrices, represented by some
x = {xj}jen. If each x; were normal, we could apply the spectral theorem to define 1,(z;) for
each j, and this would provide us with a projection of the sort we seek. However, we do not know
that in general that normal y € % have normal representatives — except in the special case that y
is not only normal, but unitary. Therefore, we use the continuous functional calculus to convert y
into a unitary, and then we work with a unitary representative of this in &/ to produce our desired
projection.

Proof. Choose a relatively open set U C X with
MEUCUCX and diam(U) <e.

Let fo be a homeomorphism of X onto T\{—1} where T is the unit circle in C. Extend fj to a
continuous function f : o4(y) — C by

[R) Aex
f()\)_{l A€og(y)NnXe.

Set v = f(y). Observe that v is unitary. Let u be any unitary in & with 7(u) = v. Since fj is
a homeomorphism of X onto T\{—1}, and since U is open in X, W = fy(U) is open in T. Let 1y
denote the characteristic function of W.

We now use the Spectral Theorem for n x n matrices to define 1y (u;) for each j € N. For each
j € N, 1w (u;) is a projection in M,,,(C). Therefore, e = m ({1w (u;)}jen) is a projection in %. For
each j € N, u;lyw(u;) = 1w (uj)u;, and hence, ue = eu.

Let ¢ be any continuous function on T. Then ¢(u) € C(u), and since e commutes with wu,
e commutes with ¢(u). Now let ¢ : 04(y) — C be any continuous function with ¢(A) = 0 on
o2(y)\V. Define a function ¢ : T — C by

L et ) AeT\{-1}
SO(A)_{ 0 A=-1.

Then ¢(y) = ¢(u) so that e commutes with ¢(y).
Suppose that ¢ = 1 everywhere on U. Then ¢ = 1 everywhere on W. Hence, for each j € N,

Lw (ug)P(uy) = @(us)lw (ug) = Tw (uj) , (3.17)
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and hence ep(y) = ¢(y)e = e. Finally, if ¢[x\py = 0, then $|r\y = 0, and then

Lw (uj)@(uj) = G(uj)lw (uj) = d(u;) (3.18)

with the conseqeunce that ¢(y)e = ep(y) = p(y).
Summarizing the last two paragraphs, when ¢ is continuous on o4(y), then:

Plogwnvy =0 = epy) =p)e, (3.19)
Closwv =0 and ¢lp=1 = ep(y)=pyle=c, (3.20)

and
Clogwnu =0 = epy) =p(yle=p(y) . (3.21)

Now let h : X — [0,1] be a continuous function such that h|z = 1 and h|x\y = 0. Then using
(3.20), (3.19), the commutativity of C(y), and then (3.20) once more,

ye = yh(y)e = eyh(y) = eh(y)y = ey .

Thus, e commutes with y.

Let € be the smallest C* algebra containing y, e and 1. Evidently € is commutative, and e
is a central projection. We now claim that o.g.(ey) C U. To see this, it suffices to show that
whenever 1) is continuous on oz(y) with | = 0, then ¢ (ey) = 0. In fact, it suffices to do this for

continuous 1 such that |, )y = 1, since by the Gelfand-Naimark Theorem, 1(ey) # 0 whenever
1 takes on any non-zero value anywhere on the spectrum of ey. Then since y and e commute and
e is a projection, ¥(ey) = ey(y). But (1 —Y)[s )\v = 0 and (1 — )|z = 1, and so by (3.19),

e=-¢e(l —(y)). Altogether,

viey)=ep(y) =e(l—(1—-¢(y) =e—e=0.

More simply, let ¢/ be continuous on o(y) with 9|, o = 0. Then by (3.21), (1—e)y(y) =0,
but as above ¥((1—e)y) = (1—e)y(y). Hence there is no spectrum of ¢/((1—e)y) outside o4(y)\U.
By Theorem 2.10 and the Spectral Invariance Theorem, putting § = A\je + (1 — e)y, we have

o(y) C{ M} U (02(y)\U). Finally, | —yl| = [[Adre —ey| < -

Proof of Lin’s Theorem. Let € > 0, and let y be normal in %, and suppose that o4(y) C I'¢. Since
o#(y) is contained in the disc of radius ||y||, there are at most 2||y||(2||y|| + 1)/€* edges of the
elementary squares in I'c whose midpoints intersect o0(y). That is, with A defined as in (3.14),
there are at most 2||y||(2||y|| + 1)/€? points of A, within o(y).

We claim that there is a normal § such that ||7]| < ||y|, |7 — y|| < € and

U@(g) C Fe\AE .

This is true because if A\g € o2(y) N A¢, we have the following alternative: Either )\ is an isolated
point of o4(y), or it is not.

If Ao is an isolated point of o4(y), then we can find a continuous function f : I'c — T'c such
that f(\) = A except on a small neighborhood of A\, and such that A\ is not in the range of f. We
may choose the neighborhood small enough that

sup {IFO) = A} < /2yl 2yl +1)
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Moreover, we can always arrange that applying f does not increase the spectral radius. Then

ILF I < llyll, Then [|f(y) —yll < €/QllylI2llyll + 1), f(y) is normal, o5(f(y)) C Te\{Ao}. In this
way, we remove all points in A, that are isolated points of the spectrum.

Now we apply Lemma 3.6 to remove all points in A\ that are isolated points of the spectrum,
noting that we only affect the spectrum near the each such point of A. at each step. We may
arrange that the shift in 3 at each step has norm no more than €3/(2||y||(2||y|| + 1).

At the end of at most 2||y||(2||ly|| + 1)/€®> operations, each of which shifted y by at most
€ /(2|lyl|(2]ly|l + 1) in norm, we arrive at § which is normal and has ||§ — y|| < € and

oz(y) C T\Ae.

The set T'.\A, is a disjoint union of open crosses, and there is a continuous function f on I';\A,
that retracts each cross onto its center. That is, there is a continuous function f : T':\A¢ — A, with

sup {[f(A) —Al} <€/2.
AeT\Ae

Then f(g) is normal with finite spectrum and || f(g) — g|| < €/2. Consequently, ||f(7) — y|| < 3e/2.
Combining this with Lemma 3.5, we see that for every normal element of 4, there is a normal
element with finite spectrum arbitrarily close in norm, which is what we had to show. O

3.4 The Bott invariant and obstructions to commutativity

One might hope that one could extend Lin’s Theorem to three or more matrices. That is, one
might conjecture that for all € > 0, there is a 6 > 0 such that if {h1, ho, hs} is a set of n x n self
adjoint matrices such that

[T, halll + W[ [h2, ha]ll + [IThs, halll < 6,
then there exists a set of three self adjoint commuting matrices {k1, ko, k3} such that
11 = Kl + llh2 — kall + [lhs — ks < e .
This is false. Hastings and Loring, building on previous work, have shown the following:
3.7 THEOREM. For all j € 3N there exists a set {h1, ha, hs} a set of self adjoint (2j+1)x (2j+1)

matrices such that 1

ViG+1)
and such that if {k1, ko, ks} is any set of commuting self adjoint (25 + 1) x (25 + 1) matrices, then
I — ka4 s — kol + llhs — ksl > /1~ 4//3G + 1)

3.8 DEFINITION. Let § > 0 be given. A 0 representation of the sphere in M, (C) is a set
{h1, ha, hs} of self adjoint n x n matrices such that

1171, hall[ + [[Tha, ha] || + [[[ha, ]|l <

Ih1, ho]ll <65 [lh, ha]l <6 and  ||[hs, bl <6, (3.22)

and
11— (A} +h3+h3)|| <6 . (3.23)
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3.9 EXAMPLE. A set of three self-adjoint n x n matrices {s1, s2, s3} that satisfy
[s1,82] =is3, [s2,s3] =is; and [s3,s1] =1s2 . (3.24)

is an n dimensional representation of the Lie algebra su(2). The representation is irreducuble in
case there is no subspace of C" that is invariant under each of s1, s and s3. The simplest example
is provided by the Pauli matrices, multiplied by 1/2:

1 1[0 1 1 1[0 —i . 1 11 o
= - = — = - = — 1 — — — —
SITRTo o0 TR T o o MY OBTRTo 0 1

For each j € 1N there is an irreducible representation by (2j + 1) x (2j + 1) matrices {s1, s2, 53}
and these matrices satisfy s2 + s3 +s§ = j(j+1)1, and they each have the same spectrum consisting
of {—j,—j+1,...,5 — 1,7} It is then easy to see that defining h; = (j(j + 1))_1/23j, j=1,2,3,
we obtain a (j(j 4 1))~'/? representation of the sphere.

We now explain the representation theory on which this construction depends, partly for com-
pleteness, and partly because it will be useful for some calculations that follow.

Notice that for any representation, s3s? = s18351 + i[s3, s1]s1 = s383 + i[s3, s1]s1 + is1[s3, 51]-
Using (3.24), this reduces to [s3, s7] = —s251 — s152. A similar calculation shows that [s3, s3] =
$182 + s281. Altogether, [s3, (s7 + s3 + s3)] = 0, and by symmetry, s + s3 + s3 commutes with s;
and so as well. In summary, defining the positive matrix s by

s% =52 + 55+ 53, (3.25)

[51,5%] = [s2,5%] = [53,5°] =0 . (3.26)

Suppose that {s1, s2,s3} is an irreducible n-dimnsional representation of su(2). By (3.25), the
eigenspaces of s? are invariant under each of s1, s3 and s3. Since the representation is irreducible,
it must be that s? is a multiple of the identitiy. Let u temporaraily denote this multiple, so that
52 = pul.

Define operators si and s_ by

S =81 +iss and s_ = s8] —iSo . (3.27)

We compute s3(s1 + is2) = (s1 + is2)ss + ([s3, s1] + i[s3, s2]) = (51 + is2)s3 + (is2 + s1). That is
[s3,5+] = s4. Taking the adjoint, [s3,s_] = —s_, and we have

[s3,5+] = s+ and [s3,s_] = —s_. (3.28)
Therefore, if ¢ is an eigenvector of s3 with s3¢ = Ass,

$3(54C) = s4(s3C) +54:¢ = (A + 1)s1.C .

That is, either A 4+ 1 is an eigenvlaue of s3, or s4¢ = 0. In the same way we see that either A — 1
is an eigenvalue of s3 or else s_( = 0.

Now let ¢; be an eigenvector of s3 with minimal eigenvalue. (This is a least weight vector in
the language of representation theory.) Then s_¢; = 0. Define vectors ¢ = (51 )*71¢. Suppose
that for some m € N, no vector in {(1,...,(n} is zero. By what we have noted above, each is
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an eigenvector of s3, and the successive eigenvlaues are all different, so that this set is orthogonal.
Evidently, there is some least m € N for which (s )™! = 0. Let m be this integer.

By construction, sy(x = (g1 for k& < m, and s;(, = 0. Next, we compute that sy s =
s+ 83 + s3 and s_s; = s} + s3 — s3. Adding and subtracitng s3,

sy5. =8> —s24+s3 and s_s; =s5> — 52 —s3. (3.29)
Since each vector in {(1,...,(n} is an eigenvector of s? — 5§ + s3, it is an eigenvector of s_s; and
of s;s_. For each k = 2,...,m, (i is a multiple of sy (1. Hence s_(; is a mutliple of s_s4 (1

which, by the above, is a multiple (1. For £ = 1, s_(; = 0 since otherwise it would be an
eigenvector of s3 with an eigenvalue lower by one than the least eigenvalue. Hence the span of
{C1,...,(n} is invariant under s_ as well as sy and s3. Hence it is invariant under eauch of s, so
and s3. Since the representation is irreducible, m = n and the span is all of C".

Now let A be the least eigenvalue of s3, and recall that u denotes the single eienvalue of s2. By
construction, (, is an eigenvector of s3 with eigenvalue A +n — 1. Since s_(; = 0 and s;(, = 0,
(3.29) gives us

O=p—X4+X and O=p—A+n—-1)2-A+n—-1).

Thus, > +2X\(n — 1) + (n — 1)2 + A+ (n — 1) = A? — X so that
Mn=—(n-1)—(n-1>%*=-nn-1).

We obtain

(3.30)

At this point it is traditional to introduce j € %N by j = "T_l, so that n = 25 + 1, and then
52 = j(j+1)1. The eigenvalues of s3 are then given, in increasing order, by {—j—(j—1),...,j—1,j},
and by symmetry, s; and sy have the same spectrum.

So far we have seen that if for some j € %N there is a 2j+1 dimensional irreducible representation
of su(2), then there is an orthonormal basis {eta_;,...,n;} of C¥*1 such that s3n = kny, for each
k=—-25—1,...,2j + 1. This gives us the (diagonal) form of the matrix for s3 in this basis.

Moreover, we have seen that for all k = —25 —1,...,24, aynr = tpn for some poisitive mutiple

t, while ayn2;11 = 0. We compute

th = (M, S—sqmi) = (i, (8% — 55 — s3)me) =4 (G + 1) — k(k+1) .

That is,

simk=Vj(G+1) —k(k+1ny  forall  k=-25—-1,...,2j+1. (3.31)

This gives us the form of the matrix representing s in this basis, and taking the hermitain conjugate
we get the matrix that represents s_.

Finally, it is easy to check that the matrices determine a triple {s1, s2, s3} of self adjoint (25 +
1) x (27 4+ 1) matrices that satisfy (3.24). Hence, for each j, there is a representation of su(2) by
(27 +1) x (2§ + 1) matrices, and any two such representations are unitarily equivalent. Any such
representation is called a spin j representation.

Each such representation gives rise to a natural example of a (j(j + 1))~'/? representation of
the sphere: Since

s ss4ss =4 +1D1,
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we define h; = (j(j + 1))*1/28]-, § =1,2,3, {h1,ho, h3}, and this provides a (j(j + 1))~'/2 repre-
sentation of the sphere.

We will show, following Hastings and Loring, that if {ki, k2, k3} is a set of three commting self
adjoint (27 4+ 1) x (25 + 1) matrices, then for the spin j representation of su(2),

1P = kil + lha = kall + [[h3 — k3]l = /1 =2/7 .

The method involves a topological invariant, the Bott invariant that we now define.

3.10 DEFINITION (Bott invariant). For any set of three n x n hermitian matrices hj, he and
hs, define the 2n x 2n matrix b(hq, ho, h3) by

hs  hy —ihy ]

3
b(h1, he, h3) = o;®h; = .
(1 2 3) ]Zl J J h1+Zh2 —h3

Note that b(hi, ha, hs) is self adjoint so that all of its eigenvalues are real. Let N (hq,ha, hs) be
the number of strictly positive eigenvalues of b(hi, ha, hs), and let N_(hy, ho,hs) be the num-
ber of strictly negative eigenvalues of b(hi,he,hs). Suppose that 0 is not an eigenvalue of
b(hl, ho, hg), so that N+(h1, ho, hg) + N_(hl, ha, hg) = 2n. Then N+(h1, hs, hg) — N_(hl, ho, hg) =
2n — 2N_(hy, he, h3) is an even intteger, so that

1
bOtt(hl, h2, hg) = i[NJr(hl, hz, hg) — Nf(hl, hg, hg)]
is an integer. This integer is the Bott invariant of {h1, ha, hs}. Note that bott(hi, ha, hs) is only
defined when 0 is not an eigenvalue of b(hy, ha, h3).

Note that the three matrices o1, o9 and o3 are have the same spectrum, namely {—1,1}. Then
for any self adjoint h € M, (C), 01 ® h, 02 ® h and 03 ® h all have the same eigenvalues, namely
{£A1,..., £ A} where {A1,..., A\, } is the set of eigenvalues of h. Hence

o1 ®@ bl = [[o2 ® || = |loz @ Rl = [|A] -
It follows that for any self adjoint triple {h1, ha, h3},
[b(h1, h2, hg)|| < [|Pall + [[h2]l + [|7s]] - (3.32)

Suppose that hq, ho and hs are three commuting Hermitian n x n matrices. Then there is a
unitary n X n matrix u such that k; := u*h;u is diagonal for each j = 1,2,3. Evidently

u* 0 u 0
. | b(h1,h2, h3) = b(k1, ko, k3) .
0 wu 0 u
Therefore,
bOtt(hl, hg, I’Lg) = bOtt(k‘l, ]{32, k‘g) .
Let a1,...,Qn, B1,...,Bn, and 71, ..., 7, be the diagonal entries of ki, ko and k3 respectively. Then
b(k1, k2, k3) is unitarily equivalent to

n

D

(=1

. 3.33
ag+1ife =Y (8:33)

Ve ay —ife ]
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2
—1 10
A simple computation shows that o e | _ (af + B +7) . Since the
oy + 10 —Ye 01
trace of W. o — ibe is zero, it then follows that the eigenvalues are =4, /a? + 5% + 762.
ag+ife —

Thus, as long no non-zero vector is in the null space of each of hi, he and hg, each of the blocks in
(3.33) has one strictly positive eigenvalue and one strictly negative eigenvalue. In particular, this
is the case if each of hj, he and hg are invertible. It follows that in this case, bott(hi, ha, hs) = 0.
We have proved:

3.11 LEMMA. Let h1, ho and hs be three commuting invertible Hermitian n X n matrices. Then
bOtt(hl, hg, h3) =0.

3.12 EXAMPLE. Let {hi, ho, h3} be the (j(j + 1))~'/2 representation of the sphere provided
by a spin j representation of su(2). Let {n_gj_1,...,m2j4+1} be the corresponding sequence of
eigenvectors of s3 and hence hs. Since, using the notation of the previous example,

1

83 S_
ViG+D | s+ —ss |

is is easy to see that the vectors of the form (ng, £nr11), —25—1, ..., 27, togehter with (0,7—2j — 1)

b(hi, h2, hs) =

and (12;4+1,0). are a set of 2n orthonormal eigenvalues of b(h1, ha, h3). A simple calculaution show
that the pairs (1, £7r+1) contribute a positive and a negative eigenvalue each, while the two special
case eigenvectors have positive eigenvalues. Hence

bOtt(hl, h2, hg) =1
for all j.

Next, we show that the Bott invariant is defined for all J representations of the sphere with
§<1/4.

3.13 LEMMA. Let {hy,ha, hs} be a §-representation of the sphere in M, (C) with 6 < 1/4. Then

o (b(hy, ha, h3)) C [~V1+ 45, —V1 — 45 U [V1 — 46,V1 + 46] . (3.34)
Moreover, if {k1, ko, ks} is any triple of self adjoint operators with
v = ||h1 = k1|| + [|h2 = k2| + [[h3 — k3] < V1 =46 , (3.35)

then for all t € [0,1],

o(s((1 —t)hy + tky, (1 — t)hg + tka, (1 — t)hg + tks)) C
[~y = V1+45,7—V1—45| U [V1—46 —v,V1+46+7] . (3.36)

and consequently, bott((1—t)hy +tky, (1 —t)ha+tka, (1 —t)hg+tks)) is well-defined for allt € [0,1].
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Proof. We compute that
(s(h1,ho, h3))? = 1@ (h? + h3 + h3) + 03 @ i[hy, he] + 01 @ i[ha, k3] + 02 @ i[hs, hy] .
Therefore, ||s(h1, h, h3))? — 1|| < 45, and then by the Spectral Mapping Lemma,
o(s(hi,ha,h3)) C{t€R : |[t? —1| <46 } .
Next, note that by (3.32),

Hb((l — t)hl + tkq, (1 — t)hg + tko, (1 — t)hg + tk’g)) — b(hl, ho, hg))” =
tHb(kl — hl, kQ - hg, k3 - hg))” S t’y . (337)

Then (3.34) and Theorem 2.17 yield (3.39), and bott((1 —¢)hy +tky, (1 —t)ho +tke, (1 —t)hs+tks))
is well-defined for all ¢ € [0, 1]. O

3.5 The Bott invarinat as a trace function

Recall that for an n x n matrix a, the trace of a, Tr[a], is defined by
Trla] = aii (3.38)
j=1

where a; ; denotes the 4, j entry of a.

A simple computation shows that for any a € M,,(C), and any invertible b € M,,(C), Tr[b~tab] =
Tr[a]. Let {m,...,n,} be any orthonormal basis of C", and let {x1,...,xn} be the standard basis.
Let u be the unitary matrix with uy; = n; for j =1,...,n. Then

n n
Trla] = Trju*au] = Z<Xi,U*aUXi> = Z(nj, b tabn;) ,
j=1 j=1
showing that the trace may be computed at the sum of the diagonal elements in any ortonormal
basis. If a is self adjoint, there is an orthonormal basis consisting of eigenvectors of a; an; = A\;n; for
each j = 1,...,n. Then evidently Tr[a] —>"7_; ;. The function a + Tr[a] is evidently continuous.

Now let € > 0 be given, and let f. be any continuous function form R to [—1,1] such that
f(t)=—1fort < —eand f(t)=1fort >e.

Let a € M,(C) be self adjoint and such that (—e,e) N oy (a) = 0. Let {n1,...,n,} be an
orthonormal basis of C" consisting of eigenvectors of a with an; = A\;jn; for each j = 1,...,n.
Define

Ni@) =Y nlm(y) and No(@) =3 nlwo(h) .
j=1 j=1

Then by considering a sequence of polynomial approximations of f. on [—||al|, ||al|], we have
that

n

Te[f(a)] = Y _(ny, f(a)ng) = ) fe(Aj) = Ne(a) = N-(a) .
j=1

j=1
It follows that when {hq, ha, hg} is a 0 representation of the sphere in M, (C) with § < 1/4,

bOtt({hl, hg, h3}) = Tr[f1,45(s(h1, hg, h3))] .
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Proof of Theorem 3.7. Consider the 1/1/7(j + 1) representation of the sphere associated to the spin
j representation of su(2). By Lemma 3.13, if {k1, k2, k3} is any triple of self adjoint (2541) x (2j+1)
matrices with

v = b = k| + [lha — kall + [1hs — Kall < /1 - 4/3/GG+ 1) (3.39)
then for all t € [0, 1],

O'(S((l — t)hl + tkq, (1 — t)hg + tko, (1 — t)hg + tkg)) -

=1+ 4VTG+ D= 1= 4VGGF D10 1 - 456+ D7/ 1+ 453G + D +4]

(3.40)

and consequently, for any € < \/1 —4/j(74+1) =,
bott((1—t)hy+tky, (1—t)ho+tka, (1—t)hg+tks))—Tr[fe((1—t)hy+tki, (1—t)ho+tka, (1—t)hs+tks)) ,

with f. defined as in the paragraphs above. Then the right hand side is a continuous integer valued

function of ¢, and so
bOtt(l{?l, ko, kjg) = bOtt(hl, ho, hg) =1.

Therefore, {k1, k2, k3} cannot be a commuting triple.

4 Operators on Hilbert space

4.1 Topologies on HA(H)

Let S be a separable Hilbert space with inner product (-, ) and norm || - || ,», and let Z(5),
as usual, denote the C*-algebra of bounded linear operators on 5. There are two important
non-metric topologies in Z (), waker than the norm topology, that are essential to what follows.

4.1 DEFINITION (Strong and weak operator topologies). The strong operator topology on B(H)
is the weakest topology such that for each & € ., the function a — a& from B(H) to H is
continuous with the usual norm topology on . The weak operator topology on B(H) is the
weakest topology such that for each &, € 7, that function a — ((,a&)» is continuous from

B(H) to C.

It follows from the definitions that a basic set of neighborhoods of 0 for the strong operator
topology is given by the sets

Uty in =ta € B(H) - ||a&jllw <€ for j=1,...,n} (4.1)

where € > 0 and &4, ..., 2, € JZ. Likewise, it follows that a basic set of neighborhoods of 0 for the
weak operator topology is given by the sets

‘/E,Cl,---7C7L7§1,---,va = {a' e ‘@(%) : |<Cj’ a£]>jf| < € fOl” ] = 17 A 7n } (42)
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e>0and (..., &1, .., 2y € F. Note that both topologies are evidently Hausdorff.

It is clear that for each £ € 77, a — a& is continuous in the norm topology on % (), so that
the norm topology is stronger than the strong operator topology. Furthermore, since for all ( € 57,
& ((, &) is continuous on 7, the function a — ((, a&)» is continuous in the strong operator
topology on A(.), being the composition of continuous functions, and hence the strong operator
topology is stronger than the weak operator topology.

The following proposition shows that the norm topology is strictly stronger than the strong
operator topology, which is in turn strictly stronger than the weak operator topology.

4.2 PROPOSITION (Continuity of the norm and adjoint). Let % be an infinite dimensional
Hilbert space. Then:

(1) The function a — ||a|| from B(H) to Ry is continuous in the norm topology, but is only lower
semicontinuous in the strong ad weak operator topologies.

(2) The function a — a* is continuous from B(H) to B(H) in the norm and the weak operator
topologies, but not in the strong operator topology.

Proof. Let {(;} be an orthonormal sequence in 7. For each n € N, let p,, denote the orthogonal
projection onto the span of {(i,...,(,}. Then for all £ € 2, lim, o ||[pné|| = 0 by Bessel’s
inequality, so that lim,_,~ p, = 0 in the strong operator topology. However, for n # m, ||p, —p —
m|| = 1, so that the sequence {p,} is not even Cauchy in the norm topology. Hence the norm is
discontinuous in the strong operator topology, and hence also in the weak operator topology.

To see that the norm is lower semicontinuous in these topologies, it suffices to show that the
sub-level sets { a € () : |a|| <t } are closed for each t > 0. Fix ¢t > 0 and b in the closure
of {ae€ B(AH) : |la|| <t }. Then for each unit vector £ € #, and each n € N there is an
an € {a € B(H) : |a|]| <t} such that b —a, € Uy, ¢, which means that (b — a,)¢|| < 1/n.
This means that ||b¢|| < ||an|| +1/n < t+ 1/n. Since n is arbitrary, [|b¢|| < ¢. Then since £ is an
arbitrary unit vector in 7, ||b|| < t. This proves the closure in the strong operator topology, and
a very similar argument proves the closure for the weak operator topology.

For the second part, since every infinite dimensional Hilbert space contains a copy of /s, the
Hilbert space of all square summable functions from N to C, we may suppose without loss of
generality that s# = f5. Define the shift operator a € B(°) by

G- =2
(@C)J—{O =1

Evidently, for all ¢, ||aC||.# = ||¢||.#. The adjoint is given by (a*(); = (j4+1 for all j € N. Therefore,
la*C12, = $52, 161 = K112 — |G1[2- Tt follows that for all ¢ € 2,

lim |[(a")"Cllr =0 while [la”"C[lr = [[C]le -
n—oo

Hence the sequence {(a™)*} converges to zero in the strong operator topology, but the sequence
{a"} does not. Since {a"} = {(a™)**} this shows that the involution is not continuous in the strong
operator topology.

The continuity of the involution is obvious in the norm topology since the involution is an
isometry, and in the weak operator topology it follows from the fact that

(VetrGnkrnbn)” = VetrnCrrtn -
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O

As far as sequences are concerned, a sequence {a,} in ZA(F) converges to a € #() in the
strong operator topology if and only if for all £ € J7, lim,,_,oc an€ = a&, and likewise, converges to
a € B(H) in the weak operator topology if and only if for all {, & € 2, limy, 00 (C, an&) s = (a&) ».
A sequence {a,} in B(H) is a Cauchy sequence for the weak operator topology in case for every
basic open neighborhood V¢, . ¢, ¢, ¢, of 0, am —ap € Vee . cnciog, for all but finitely many
£, m. Cauchy sequences for the strong operator topology are defined analogously.

4.3 THEOREM. Let {an} be a Cauchy sequence for the weak operator topology. Then {|an|}
is a bounded sequence, and there exists an a € B(H) with |a| < suppen{llan||} and such that
lim, .o an, = a in the weak operator topology. Moreover, the analogous statement for the strong
operator topology is also true.

Proof. Let {a,} be a Cauchy sequence for the weak operator topology. We first show that {||a,||}
is a bounded sequence. To see this, note that for each ¢,§ € 7, {((,anf) »} is a Cauchy sequence
in C, and hence convergent and bounded. Thus, if we define the sets C,,, C 5 x € by

Cm =G E €A XA = sup (G and)or| < m}

we have that Uy,enCp, = 5 x . If {(Ck, &)} is a convergent sequence in Cp, with limit (¢, €),
then for all n,

(G an8harl = i 1 anbidorl = m

so that C, is closed. Since S x 5 with the product metric is a complete metric space, by Baire’s
Theorem, for at least one m € N, C), contains an open set, and then it is clear that {|/a,||} is a
bounded sequence.

Now let L = sup,en{llanll}, and for all (,§ € 2, define ¢((, &) = limy—o0(C, ané) », which
exists since the sequence on the right is Cauchy in C. It is easy to see that ¢, — ¢((,§) is a
sesquilinear form on 7, with

14(S, O < LiClliEll# -

For each £ € 7, the map ¢ — ¢((, &) is a conjugate linear functional on 7, and hence by the Riesz
Representation Theorem, there is a uniquely determined vector ne € J such that ¢(¢, &) = ({,n¢) v
for all ¢ € 2, and ||n¢|» < r||&]|». Since g is sesquilinear, the map £ — ¢ is linear, and thus
there exists a € () such that |ja|| < L and n¢ = a for all {£ € . It now follows that for
each (,& € A, limy,—00((, an&) v = (C, a&) s, and hence that lim,_,~ a, = a in the weak operator
topology. The corresponding proof for the strong operator topology is easier, and is left as an
exercise.

O

We next claim that the strong operator topology is not metrizable when J# is infinite dimen-
sional. The basic open set Ucg, . ¢, contains all a € #(H#°) with a§; = 0foreach j=1...,n. If &
is infinite dimensional, then there is a non-trivial subspace of #(7¢) contained in every Ucg, ¢, ,
and hence in every open set about the origin.

For each n € N, the set Cy, := { a € () : |la|| < n} is closed in the strong operator topology
by the lower semicontinuity of the norm. By what we have just said, each C), is nowhere dense,
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since no ball can contain a non-trivial subspace. Since evidently Z(#) = U2, Cy, it follows that
PB(H) is a countable union of closed, nowhere dense sets in the strong operator topology. Suppose
the strong operator topology were metrizable. Then by Theorem refwscom, %(.7) equipped with
this topology would be a complete metric space. Baire’s Theorem says that a complete metric space
is never the countable union of closed nowhere dense sets, so the strong topology on %() cannot
be metrized. A similar argument applies to the weak operator topology. However, as we show next,
The relative weak and strong operator topologies on bounded subsets of B(H) are metrizable when
FC is separable.

4.4 THEOREM. For r > 0, let B, denote the closed unit ball of radius v in B(H). That is,
B, ={aeB(H) : |a|| <r }. Then there are metrics p, and ps on B, such that the metric
topologies are equivalent to the relative weak and strong operator topologies respectively, and such
that (B, pw) and (B, ps) and are complete metric spaces.

Proof. Let {n;} be any sequence of unit vectors that is dense in the unit sphere of J#, For all
a,b € B(H), define

o o0
=S 2=yl and pulab) = S 27 F|mla—bn)l . (43)
j=1 Gok=1
It is easy to verify that these are indeed metrics.

We now show that the relative strong operator topology on B, coincides with the metric topology
on B, induced by the metric ps. First, we first show that for every t > 0, { a : ps(a,0) <t }
contains a neighborhood of 0 in the relative strong operator topology . Choose n so that 127" < t/2.
Then for b € Uyjgp,,...p, N B,,

22 tllbm|<z2 N SR ET
Jj=n+1
and consequently, Uy /2, . NB,Cc{a : ps(a,0) <t}

We next show that every basic strong operator topology neighborhood Ucg, . ¢, contains an
open ball about 0 in the relative metric topology. By decreasing epsilon as necessary, we may
suppose that §; is a unit vector for each j. Choose {n;,,...,n;,.} such that ||n; — &l < €/2 for
k=1,...,m. Let M = max{j1,...,5m}. Then for b € B,N{a : ps(a,0) <27Me}, ||bn;| <
for each j =1,...,m, and consequently b € Ue¢, ¢ . A similar argument shows that on each B,
the relative weak operator topology is metrizable. O

We shall be especially concerned with bounded subsets of the self adjoint elements of (),
for which there is an even simpler description of the relative weak operator topology, for which
there is an even simpler criterion for weak convergence:

lim <77]an77]) = (njan;)» forall jeN.

n—

4.5 LEMMA (Polarization identify). Let a € B(A) be self adjoint. Then for all  and & in I,
[<(C +8),a(C+ &) — (=€), alC —&))x]
(€ +18), a(C + i) — (¢ — i), a(C —i&)) o] -

<C7 a£>(“ Z
)
4
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Proof. This is a direct computation. O

4.6 REMARK. It follows that for the relative weak operator topology on the self adjoint elements
of B(A), a basic set of neighborhoods at the origin is given by the sets

Vetr,bn, =10 € B(H) : [(§,a8j) vl <e for j=1,....n} (4.4)
e>0and&,...,x, € .

4.7 THEOREM (Continuous linear functions for the strong operator topology). Let ¢ be a
Hilbert space, and let ¢ be a linear functional on B(H) that is continuous in the strong operator
topology. Then there exists n € N and two sets of vectors {C1,...,C(n} and {&1,...,&.} such that
for all a € B(H),

n
p(a) = (¢, a&)r - (4.5)
j=1
Evidently, every such linear functional is weakly continuous, and hence every strongly continuous
linear functional is weakly continuous. Consequently, a convex subset of B(H) is strongly closed
if and only if it is weakly closed.

Proof. If ¢ is strongly continuous, then ¢~ 1({\ : |\| < 1}) contain a neighborhood of 0 in (7).
Thus, there exists an € > 0 and a set of n vectors &1, ...,&,, which without loss of generality we
may assume to be orthonormal, such that if |[a;|| < € for j = 1,...,n, [¢(a)] < 1. Note that if
aj =0for j =1,...,n, thent > 0, [[ta&;|| < € for j =1,...,n, and consequently t|p(a)| < 1. It

follows that
aj =0 for j=1,....n = ¢a)=0. (4.6)

n

For any a € B(H), define a by a = Za£j<§j, Y. Evidently (a —@)§; =0for j =1,...,n,

j=1
and hence by (4.6),

pla) = p(@) =Y ¢l(ag){&, ol - (4.7)
j=1

For each fixed j, and any n € J¢, consider the rank-one operator n({;,-)». Then n —
©(n(&j,-).») is a bounded linear functional on ¢, and therefore by the Riesz Representation
Theorem, there is a vector (; € J¢ such that ((;,n).» = ©(n(&;, ) ) for all n € 5. Combining
this with (4.7) yields (4.5). The final statement is a standard application of the Hahn-Banach
Theorem. O

4.2 The measurable functional calculus

Let a € B(H) be self adjoint, and for brevity let o(a) denote o 4((a), Let n € 7, and define a
linear functional p, on € (c(a)) through

pn(f) = (n, fla)n)e - (4.8)
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Then 4 is evidently a positive linear functional with (1) = ||n||%,. By the Reisz-Markoff Theorem,
there is a positive Borel measure of total mass ||n||%,, also denoted by p,,, so that for all f € €(c(a)),

walf) = [ . (4.9)

Combining (4.8) and (4.9), we conclude that for all f € € (o(a)), (n, f(a)n)nr = / fduy,
o(a)

Now let {n;} be any dense sequence in the unit sphere of .7#, and define the probability measure
v on o(a) by

o0
v=> 27, . (4.10)
j=1

By (4.8) and (4.10), for all f,g € €(o(a)), and all k,
27¥1(f (@) = g(@)melZe < D277 (nj, | f(a) = g(@)Pny) e < /( ) f = g[dv . (4.11)
j=1 o(a

Recall that the continuous functions on o(a) are dense in L'(o(a), ) for any Borel measure
p, and that from any sequence that converges in L!(o(a), 1), one can extract a subsequence that
converges a.e. to f. It follows that if f is any bounded Borel function of o(a), there exists a
sequence {f,} of uniformly bounded continuous functions on o(a) with lim,_,~ fn(A) = f(\) for
v a.e. A, then by the Lebesgue Dominated Convergence Theorem, lim,, fa(a) |fn — f|?dv = 0.
Consequently for all € > 0, fg(a) | frn — fim|?dv < € for all but finitely many m and n. Then by (4.10),
{fn(a)} is a Cauchy sequence for the strong operator topology, and hence lim,,_, fn(a) = b exists
for this topology. In particular, for all £ € 2,
lim f,(a)é =0¢ . (4.12)

n—oo

We would like to define f(a) = b, but at this point, one might suppose that the definition
depends on the approximating sequence of continuous functions, or on the choice of the dense
sequence {7;} in the unit sphere of J#. In fact, it does not.

First, let f be a bounded Borel function on o(a), and let {f,} and {f,} be two sequences of
continuous functions that converge v a.e. to f, where v is defined by (4.10) for some choice of a
dense sequence {n;} in the unit sphere of .. Define the “interlaced” sequence {g,} by gan—1 = fn
and go, = fn. Then evidently {g,} converges v a.e. to f, and so b = lim,_, g (a) exists in the
weak operator topology. Since subsequences of convergent sequences converge to the same limit,
we have

b= lim fy(a) = lim fu(a).

n—o0

Next, let {n;} and {7;} be two dense sequences in the unit sphere of .7, and define v and ©
in terms of them as in (4.10). Then v and 7 are equivalent measures, meaning that a Borel set
E C o(a) is a null set for one if and only if it is also a null set for the other. To see this, suppose on
the contrary that E is a Borel subset of o(a) with v(E) > 0 but #(E) = 0. Let f be the indicator
function of E. Let p = v+ v, and let {f,} be a sequence of continuous non-negative functions that
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converges {1 a.e. to f, and hence converges both v and 7 a.e. Since each f,(a) is self adjoint and
nonnegative, so it the weak limit b. Therefore

lim faN)dv =v(E) >0 while lim fa(N)do =0(E) =0 .
)

n—oo 0_( n—oo O'(

This would imply that
Zz (njbn;)r >0 while 22 (b)) = 0,

and then since each term in the sum on the right is non-negative, (7;b7;)» = 0 for all j, while for
at least one jo, (nj,bnj,). 2 > 0. But since {7;} is dense in the unit sphere, there is a subsequence
{n;, } with limy_, 7;, = 1j,, and this then forces (n;,bn;,).» = 0. The contradiction shows there
is no such Borel set E' and hence the two measures are equivalent.

In other words, the self adjoint operator a determines a class of mutually equivalent Borel
measures, and if £ is a null set for this class then u,(E) = 0 for all n € S since for n # 0, we may
include Hn”}n is any dense sequence in the unit sphere. Thus, when discussing a.e. convergence of
functions on the spectrum of a, we shall always mean almost everywhere with respect to any one
of these equivalent measures, and then for any Bounded Borel function f on o(a), we define

fla) = lim fo(a) (4.13)

n—oo

where {f,,} is any sequence of continuous functions on o(a) that converges almost everywhere to f
in this sense. By what we have noted above, such sequences always exist, the limit always exists,
and the limit is independent of the approximating sequence {f,} and of the particular reference
measure used in the construction. We have prepared the way for an easy proof of the following
theorem:

4.8 THEOREM (Functional Calculus For Bounded Self-Adjoint Operators). Let.# be a separable
Hilbert space, and let a be a self-adjoint element of B(H). Let B(o(a)) denote the bounded Borel
functions on o(a). Then for f € B(o(a)), f(a) is defined through (4.13) as described above.

The function f — f(a) is a norm-reducing *-isomorphism from B(o(a)) into B(H). Moreover:

(1) Its restriction to the continuous functions %B(o(a)) agrees with the function f — f(a) given
by that Abstract Spectral Theorem. In particular, a is the image of A — X\ and the identity is the
image of A — 1.

(2) Let {fn} be a sequence in B(o(a)) sup,enillfnlloo} < 00, and such that lim, o fn(A) = f(N)
for all X € o(a). Then f(a) = lim, o fn(a) in the strong operator topology.

(8) The function f+— f(a) preserves order: If g > f in HB(o(a)), then g(a) — f(a) is non-negative.

Proof. Let f € #(o(a)) and let { f,} be a bounded sequence in € (o(a)) converging a.e. to f. Then
for all zn, ci € 72,

(G (F@) € = (@), = lim (fa(a)C, €)r = Tim (¢, f1(@)E) e = (¢, /7 (@)€)
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The map f — f(a) is evidently linear, and we conclude the proof that it is a 8-homomorphism by
showing that for f,g € #(o(a)), fg(a) = f(a)g(a). Let {fn} and {g,} be bounded sequences in
% (o(a)) converging a.e. to f and g respectively. For any (,& € 2,

(€. F@g(@)€)r = (" ()G, 9(a))r = lim (£3(a)C. 9n (@) =
lim <C,fn9n(a’)€>jf = <Ca fg(a)§>ji” .

n—oo

Next, for all f € #(o(a)), and all £ € " with |||

=1

W@w%=/ POV Pdpe < 1112

gla

since pg¢ is a probability measure. This completes the proof that f +— f(a) is a nor reducing
«-homomorphism from %B(c(a)) to B(H).

Properties (1) and (2) have been proved above, and to prove (3) write g — f = h% and use the
x-homomorphism property. O

The *-homomorphism provided by Theorem 4.8 need not be an isomorphism. The following
example is useful elsewhere: Let \g € o(a)m and consider the function 1y, given by 1y,(A) =1 for
A = Ao and zero otherwise. Then for all A, Ag1y,(A) = Aly,(A). By the *-homomorphism property,

Aoly,(a) = aly,(a) .

It follows that any non-zero vector in the range of 1),(a) is an eigenvector of a with eigenvalue
Ao, and conversely any such eigenvector ¢ is in the range of 1),(a) as one sees by considering a
continuous approximation {f,} to 1y,: We suppose that ||£|| = 1, and note that

<§7 1)\0(@)6>% = T}g&(& fn(a)§>}f = nlgglo fn()\0> =1.

By the conditions for equality in the Cauchy-Schwarz inequality, and the nor reduction property,
Ix ((I)f =¢.

In fact, for any Borel set E C R, the indicator function 1 is a projector in #(o(a)), and hence,
by the *-homomorphism property, 1g(a) is a projector in A(.7°). Taking E = (s,t] for s < t yields
a useful family of projectors that we shall encounter later on.

4.3 The polar decomposition

4.9 DEFINITION (Operator absolute value). . Let . be a Hilbert space and let a € ().
Then the operator absolute value of a is the operator |a| defined by

la| = Va*a , (4.14)
where the square root is taken using the Abstract Spectral Theorem.

4.10 REMARK. One should not be misled by the notation: It is not in general true that |ab| =
la||b|, or that |a*| = |a| or even that |a + b| < |a|] + |b].
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Next, or each ¢ > 0, define the operator
ug := a(tl + |a|) L.

This does not require the Abstract Spectral Theorem; since |a| > 0, (1t + |a]) is invertible. Now
note that for s,¢ > 0, by the Resolvent Identity

ug — us = (5 — t)al(tl — |a|) (sl — |a)) 7Y .
Hence for any £ € 57, and 0 < s < t,

[(ue — us)€l? = (s = )*(&, [al*(t1 — |a) 72 (s1 = |a]) 2€).r
)\2
= (¢ =5’ L(Ia) (5 N)2(s + a2 e

t2
< e du
/aua)\{O} (t+2)2 ¢

Since 0 < 2/(t + A\)?2 < 1 for all A > 0, and since lim;_,ot2/(t + A\)? = 0 for all A > 0, the Lebesgue
Dominated Convergence Theorem yields

i (supdl s — )€} ) =0

=0 \ s<t

Thus, the strong limit v = lim;_,o u; exists. Note that u|a| = lim;_,¢ u¢|a| = z im0 fi(Ja|) where
ft(A) = A/(t + A). since lim;o fi(A) = 1(g,o)A for all A > 0, it follows from Theorem 4.8 that
lim; 0 fi(la]) = L(o,00)(la]) = 1 — 1py([al). Since 1;p1(|al) is the projector onto the null space of
|al, which is the null space of a, alggp(|a|) = 0, and hence

ulal =a . (4.15)
Next note that u*u = limy o0 f7(|a]) with f;(A) = A/(t + \) once more. It follows that
uu = 100 (] (4.16)

which is the projector onto ker(a)*. It follows from (4.15) that ran(u) = ran(a), and hence u is a
partial isometry from ker(a)* onto ran(a).

Taking the adjoint of (4.15), we obtain a* = |a|u* and hence aa* = ua*au*. Squaring both sides
and observing that au*u = a follows from (4.16), we obtain (aa*)? = u(a*a)?u*. An induction now
yields (aa*)"™ = u(a*a)™u* for all n, and then taking a polynomial approximation to the square

root, we conclude that
ulalu® = |a*| , (4.17)

and then since a* = |a|u* = u*u|a|u*,
a® = u*(u|alu™) (4.18)

is the polar decomposition of a*.
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4.4 Compact operators

Let ¢ be a Hilbert space. An operator a € () has finite rank if ran(a) is a finite dimensional
subspace of #, or equivalently, ker(a)* is finite dimensional. If a is finite rank and {ny,...,nm} is
an orthonormal basis for ker(a)*, then we may write a in the form

a=>_ &)l (4.19)
j=1

where for each j, { = an;. Conversely, every operator of the form (4.19), even without the
assumption that {n,...,m,} is orthonormal, is evidently finite rank. It is clear that the set of
finite rank operators on #(J¢) are a two-sided *-ideal in Z(.#), but it is not closed in AB(H),
which brings us to the following definition.

4.11 DEFINITION. An operator a € #(7) is compact in case it is the norm limit of finite rank
operators. That is, the set € () of all compact operators on % is the norm closure of the set of
finite rank operators on J7.

The closure of a 2-sided x-ideal is a 2-sided #-ideal, and hence % (.7) is a 2-sided x-ideal in
PB(A) and a C* subalgebra of B().

4.12 EXAMPLE. Let {)\;} be a sequence of complex numbers such that lim; ,o, A; = 0. Let
{n;} and {&;} be any two orthonormal bases of J#, and define a sequence of operators a, by
n

an = ZAﬂm)(fﬂ. Then for any ¢,(’ € 7 and any m <n € N,
7j=1

n

(G, (an = am)C Vol < INIKG )oY ) M2
j=m+1

< (max O01Y) 30 KCmbrl G e 2

j=m+1
< ; P
< (ma, 0 ) Iele e

where we have used Cauchy-Schwarz in the last line. This shows that ||a, —am || < max;>m+1{|A;]},
and hence that {a,} is Cauchy in the operator norm. The limit is a compact operator that is finite
rank if and only if \; # 0 for only finitely many j.

4.13 THEOREM. An operator a € B(H) is compact if and only if the image of the unit ball in
F under a has compact closure.

Proof. Suppose that a is compact. Choose ¢ > 0, and a finite rank operator b = E;nzl 1€5) (1]
such that ||b — al| < €¢/2. Let b(B) denote the image of the unit ball under b, which is evidently
isometric to a bounded subset of C", and hence it may be covered by a finite collection of balls
of radius €/2. Let {&1,...,&,} denote the centers of these balls. For any 7 in the unit ball of 7,
[bn — &1 w0 < (@ =b)nllse + [lbn — &l
image of the unit ball B under a, a(B),is covered by finitely many balls of radius €. Since € > 0 is

o < €/2 for some j. Then |lan — &;|

w < €, and hence the

arbitrary, a(B) has compact closure.
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Conversely, suppose that a(B) has compact closure. Let a = ula| be the polar decomposition

of a. Since w is an isometry from ran(|a|) onto ran(a), |a|(B) has compact closure. For any € > 0,
consider the spectral projection pe = 1 |jq/1(a)- By the Spectral Theorem, pt|a| has spectrum in
(0, €] and hence ||pt|al|| < e. Since |a| = pe|a| + ptlal,

llal = pelall < Iplalll < e .

Hence to show that |a| is compact, it suffices to show that pc|a| is finite rank for all € > 0.

For any 7 in the range of pe, |||a|n||» > €||n||». Therefore, if {n1,...,nn} is any orthonormal
set in the range of pe, |||a|n; — |a|njll» > V/2¢ for all i # j. Hence the range of p. cannot be
infinite dimensional when |a|(B) has compact closure. This shows that |a| is compact, and then
since € () is an ideal, a = u|a| is compact as well. O

More useful information can be gleaned from the proof of Theorem 4.13. Let a € € (%), and
let @ = u|a| be its polar decomposition. For ¢ > 0, consider once more the spectral projection
Pe = 1(¢||o)j(@). Then as we have seen, pc|a| = pc|a[p. is finite rank and is self adjoint. Hence it has
discrete spectrum, and then by the Spectral Theorem, we may write

m
pelal =Y ajln;) (] (4.20)
for some set of m numbers o1,...,0,, in the interval (e, |lal|] and some orthonormal set
{etay,...,nm}. We may assume without loss of generality that the indexing is such that o; < o

for j > i. If all of the o; are distinct, then the representation in (4.20) is then uniquely determined,
and the vectors 7; are determined up to a complex multiple of unit modulus. As noted above,

llal = pelall| < €.

Thus, lime_,0 pela| = |a|. As € decreases, the only effect on (4.20) is the addition of more terms on
the right, since for 0 < ¢ < € and pe ¢ := 1o q(a), pelal = pe lal + pelal, and the ranges of the
two operators on the right are orthogonal. This reasoning leads to:

4.14 THEOREM. Let a € € (). Then there exist two orthonormal sets {n;} and {{;}, not
necessarily complete, and a monotone non-increasing sequence of positive numbers {o;} such that
a has the norm convergent expansion

a=3 ol (a.21)

Proof. We have already seen that this is the case when a = |a|, and then we may take &; = n; for
each j. In general, let a = u|a| be the polar decomposition of a, and define &; = un);. O
4.5 Trace class operators

Let a be a positive operator on a separable Hilbert space ¢, and let {n;} and {&} be two
orthonormal bases for .7#. Then

> (g, ans) Z||(11/277j||1f’ ZZ‘ &rra
7=1

7=1 k=1
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Since infinite series of non-negative terms may be summed in any order, the right hand side is
actually symmetric in {n;} and {&}. Therefore, by symmetry in the two orthonormal bases,

Z Ug,am Z<§k:a5k>%
Jj=1 k=1

showing that Z;;(nj, anj)» depends only on a, and not the particular orthonormal basis {n;}.

4.15 DEFINITION (Trace class). Let ¢ be a separable Hilbert space. For positive a € #(5),

we define
o
Z UIE an]
7j=1

where {7;} is any orthonormal basis of J#. If Trja] < oo, we say that a is trace class. More
generally, 7 (), the set of trace class operators on A is defined by

T(H)={aecB(AH) : Tr[la]] < o0 }. (4.22)

Note that 7 () C €(): To see this, let a € T (), and for € > 0, let pe = 1 ||q|(a). Then
if {¢1,...,¢y} is an orthonormal subset of ran(|al),

n

> (G lalg) e = ne

=1

and since the sum cannot exceed Tr[|a|] < oo, n < Tr[|a|]/e. Hence |a| = pc|a| + pt|a| where pc|al
is finite rank, and where ||p|a||| < e. However, not all compact operators are trace class:

4.16 EXAMPLE. We have seen in Example 4.12 that if {);} is a sequence of complex num-
bers Such that lim; oo A; = 0, and {n;} and {{;} are any two orthonormal sequences of 7,

a= Z)\ |nj)(n;] is norn convergent. It is easy to see that |a| = Z IAjlnj)(n;|, and thus a € T ()

Jj=1 Jj=1
oo

if and only if Z |Aj| < co. Thus, there exist compact operators that are not trace class.
j=1
It turns out that the set of trace class operators in () is an ideal in Z(). The following
lemma is useful for showing this:

4.17 LEMMA. Let of be a unital C* algebra, Then every element a of o/ can be written as a
linear combination of four unitaries, each of which belong to C*(a), the smallest C* subalgebra of
& that contains a and 1.

Proof. Let y € o be self-adjoint with |ly|]| < 1. Define z = y + i1/1 — 32, which clearly belongs to
C*(y) C o/. Then z*z = zz* = 1 so that z is unitary, and y = (z 4+ 2*)/2 then displays y as a linear
combination of unitaries in C*(y). Assume a # 0, and let t = (2||a||) . Then

1 1
a= E:E—i-z%y where z =t(a+a") and y=—it(a—a").

displays a as a linear combination of two self adjoint contractions in C*(a). O



54

4.18 THEOREM. For any separable Hilbert space, T () is a (non-closed) x-ideal in B(H),
and for all a,b € T (),
Tr[|a + b|] < Tr[|a|] + Tr[|b]] - (4.23)

4.19 REMARK. [t is not the case that for all a,b € B(H), or even in Mz(C), that |a + b <
la| 4 |b|. Nonetheless, (4.23) is true in general.

Proof. We first show that 7 () is closed under addition. Let a,b € 7 (), and let a+b = ula+b|
be the polar decomposition of a + b. Then |a + b| = u*(a + b) and so for any orthonormal basis

{n;},

(e} (e}
Trlla+ 0] =Y (njutan;)e + Y (njubng)se - (4.24)
j=1 Jj=1
Hence it suffice to show that for all a € 7 () all partial isometries u, and all orthonormal
basis {eta;}, the series 3 72 (n;u*an;).» is absolutely summable. To this end, let a = v|a| be the
polar decomposition of a, and note that by Cauchy-Schwarz,

[(mju*an) e = |(|al 2o un;la]Yn;) 2| < (&lale)) ) < (&lalés) s

where &; = v*un;. Since {¢;} is orthonormal in J# (but not necessarily complete), one more
application of Cauchy-Schwarz yields

1/2 1/2
o0 o0

> lmjutang) el < | Y (&, lalé) e > nj,lalnj) e < Trflal] < oo .
7j=1

j=1 j=1

Using this twice in (4.24) shows that Tr[|la+ b|] < Tr[|a|] 4+ Tr[|b]] < oo, which is (4.23). This proves
that .7 (J€) is closed under addition, and it is now clear that .7 () is a vector subspace of #(J¢).

Next, recall from (4.18) that if @ = u|a| is the polar decomposition of a, |a*| = ul|a|u*, and
hence for any orthonormal basis {n;},

o0 o0
> i latni)e =Y (unslalu*ng) e < Trflal] <
j=1 Jj=1

since {u*n;} is orthonormal (though not necessarily complete).

Because (ba)* = a*b*, if 7 () is a left or right ideal it is a two-sided ideal. Hence it suffices
to show that for all @ € .7 () and all b € B(H), ba € T (). By Lemma 4.17, it suffices to do
this for b unitary in (). But is b is unitary, |ba| = |a|, and so it is evident that ba € T ()
when a € 7 () and b is unitary.

Example 4.16 shows that every finite rank operator belongs to .7 (%), but there are operators
in the norm closure of the set of finite rank operators that are not in .7 (). Hence .7 (5¢) is not
closed in B(I). O

Now let x be a self adjoint operator in #(.7). Then let x4 and z_ be the positive an negative
parts of z, defined vis the spectral calculus, so that z = 4 — x_. Then |z| = x4 + x_. Applying
the previous theorem, we conclude that x € .7 () if and only if both x; and x_ belong to .7 ().
Now consider any a € #(s) and write a = x + iy where z = (a + a*)/2 and y = (a — a*)/2i.
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Then, applying the previous theorem once more, a € .7 () if and only if each of x4, z_, y; and
y— belong to .7 (). It follows that for a € 7 () and any two orthonormal bases {n;} and {;}

of 72,
o o
Z njani) e = Z §jaki)
j=1 j=1

and both sums are absolutely convergent.

4.20 DEFINITION (Trace). For all a € 7 (J), the trace of a, Tr[a], is defined by
= (mjan;)or
J=1

where {7;} is any orthonormal basis of 7. The trace norm is the norm || - ||; on 7 () by

lally = Tr[la]] , (4.25)

which is a norm since it obviously satisfies || Aall1 = |A|||a||1, and for a,b € T (), and it satisfies
the triangle inequality on account of (4.23).

4.21 THEOREM (Properties of the trace). The functional a — Trla] is linear on T () and
Tr[a*] = Trla]* for all a € T (). Moreover:

(i) For all a € 7(A) and all b € B(HA)
Tr[ab] = Tr[ba] (4.26)
(ii) For all (,€ € A, and all b € B(H),
Tr[[C)(€la] = (€ b¢)r - (4.27)
(iii) For all a € T (A) and all b € B(H),
| Tr[ad]] < [lall1[b]] - (4.28)

Proof. The linearity is evident, and since (n,an)» = (n,a*n)%,, it follows that Tr[a*] = Tr[a]*. In
view of the linearity and Lemma 4.17, to prove (4.26) it suffices to show that when u is unitary and
a € T (), Trlau] = Tr[ua]. To prove this, let {n;} be any orthonormal basis. Then {{;} = {un;}
is another, and

u] = Z nj, aun;) Z (u*&;, aé;) Z (&5, ua&;) » = Trlua) .
7j=1

Jj=1 Jj=1

Next, we prove (4.27). For any (,& € 2, |()(£| is rank-one and hence trace class. Let a €
HB(A). Then by Theorem 4.18, |()({|a € T (). Since (4.27) is trivially ture if ¢ = 0, we may
suppose ¢ # 0. Choose any orthonormal basis {n;} of J with 7, = HCH;}C Then

o0

Te[|C) (€la] = (ny, 1) (Elans) e = (m, Q) (Elam) e = |IC] e (Elam) e = (€, al)re

j=1
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and this proves (4.27).
To prove (4.28) note that
(ba)*(ba) = a*b*ba < ||b||*a*a
By the operator monotonicity of the square root function, |ba| < ||b]||a|, and hence (4.28) follows
from the linearity of the trace. O

4.22 THEOREM. Let a € € () have the norm convergence expansion

a=>Y_o;l¢) (]
j=1

where {0}} is a monotone non-increasing sequence of positive numbers and {(;} and {(}} are two
orthonormal sequences in 7. Then for each k € N, let Uy, denote the set of rank-k partial isometries

on J€. Then

k
Zaj = max{R(Tr[ua]) : wely } .
j=1
In particular, the sequence {o;} is uniquely determined by a.

k
Proof. The general element u of U}, has the form u = Z |€0) (ne| where {&1,...,&} and {m,...,nk}

(=1
are two orthonormal sets in J#. Then by (4.27),

R (Tr[ua]) = R ( <€e,aﬁe>%>

R

ZU_] gZaC] C3a77€>

J=1

Mw
¢ T -

(Vail{&e Groel) (Vail (&G me) el)

(=1 j=1
. N 2 k 1/2
< Z%Z’QCJ #)? ZJJZ‘W’CJ ol
o j=1  ¢=1

Define the numbers p;, p};, j € N by

k k
pi=Y & Gwl* and pj =" | (ol
=1 =1

By Bessel’s inequality, for each j, p; < [|¢;]|* < 1, and p;- < HCJ’HZ < 1. For the same reason,
Db S l= 1%)|&,]%, < k and likewise, > p; < k.

It is a classical inequality of Hardy, Littlewood and Polya that under the conditions that {o;}
is a non-increasing sequence and {p;} is a sequence of non negative numbers such that p; <1 for
all j, and Z?;pj <k,

) k
D 0P < 0k
=1 j=1
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and there is equality in case p; = 1 for j < k and p; = 0 for j > k. There is equality only for this
case if o411 < 0. Applying this inequality to the two sums obtained above yields the result. [

4.23 DEFINITION (Singular values). Let a € € () have the expansion
D ILA (4.29)
j=1

where {0} is a monotone non-increasing sequence of positive numbers and {¢;} and {(}} are two
orthonormal sequences in J#. The sequence {o;} is called the sequence of singular values of a.
When more than one operator is under consideration, we write o;(a) to denote the jth singular
vlaue of a € € (7).

Evidently, when a has the form (4.29),
lal = > o;1G)Cl (4.30)
j=1

and hence Tr[la|] = 3772, 0. That is, a € €(J) is trace class if and only if its sequence of singular
values is summable.
Theorem 4.25 has a useful corralary:

4.24 COROLLARY (Corroloary of Theorem 4.25). Let a,b € € (). Then for all k € N,

k

k
> ojla) = oi(b)| < VElla—1b] . (4.31)
j=1

J=1

Proof. Let u be a rank-k partial isometry. Then |RTr[au] — RTr[bu]| < |la — b|[||ull; = k*/?|ja —b|.
By Theorem 4.22, there is a choice of u so that RTr[au] = Z§:1 oj(a), and then by Theorem 4.22
again, for this u, RTr[bu] < Z§:1 0j(b). Therefore,

k k
Y oila) =Y o;(0) <EJa—b|| .
j=1 j=1
By the symmetry in a and b, (4.31) follows. O

4.25 THEOREM. 7 (5) is a Banach space in the metric given by the trace norm Moreover:
(i) For every a € T () define a linear functional ¢o on € () by

¢a(x) = Tr[ax] for all =€ € (H) . (4.32)

The mapping a — ¢4 s an isometric isomorphism of T (H) onto € (H)*.
(i) For every b € B() define a linear functional ¢y, on T () by

op(x) = Trbz] for all xe€ T () . (4.33)

The mapping b — 1y is an isometric isomorphism of B(H) onto T (H)*.
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Proof. Once we have proved (i), the completeness of .7 () follows since the dual of a Banach
space is always complete. The proofs of (i) and (ii) are almost the same:
For any (, (" € 4, consider the rank-one operator |¢)(¢’|. Then

NS = S = I I e - (4.34)

Hence, if ¢ € € ()%,

SO DI < el = el e -

Define the sesquilinear form g4(¢, (") by ¢4(¢,¢") = ¢(|¢)(¢’']). We have seen that this is bounded,
and so by the Riesz Lemma, there is an a € B() with |la|| = ||¢| such that for all {,{’ € 2,

46(¢,¢") = (¢, al’") . But then for ¢,{" € 2,
P(IO)(C']) = (¢, al"y e = Tr[al¢)(C']]

and then by linearity, ¢(z) = Tr[ax] for all finite rank x. Since finite rank operators are dense in
€ (), this is valid for all z € € ().

We now show that a € 7(7°). Let a = ula| be the polar decomposition of a. Let
{m,...,mn} be any set of n orthonormal vectors in J#, and define the finite rank partial isom-

etry v =37, [n;)(un;|. Then

(nj; laln;) #Trlav] = ¢(v) < [[gll[[v] = ll¢] -
1

n
J:
Since n is arbitrary, a € .7 (4¢). This shows that a — ¢, is an isomorphism of .7 (7¢) onto € ()*.
By (4.28), ||¢all < |lal|1. By Theorem 4.22, ||¢q| > ||al|i. Hence ||¢q|| = ||al|1, and the isomorphism
is isometric.

Next, let ¢ € T ()*. As above, define a sequilinear form gy, on 5 x5 by q4(¢, (") = ¢(|C)(¢'])
for all ¢,(’ € . By (4.34,

S DE< LI T = Il IS Nl -

By the Riesz Lemma, there is an b € () with ||b|| < ||¢|| such that for all {,{" € 2, qy((, () =
(¢, b¢") . But then for (, (' € A,

P(IO(C]) = (€, 0 ) e = Tx[bI (L]

and then by linearity, ¢ (z) = Tr[bx] for all finite rank x. Since finite rank operators are dense in
T () in the trace norm, this is valid for all z € .7 (). This shows that a — ¢, is an isomorphism
of B(H) onto T ()" By (4.28), ||op| < ||b]|. Since |[b]] = sup{ (¢,bC") e : [IClloes ICNlr =1}
and since

(6, 0¢" sl = ITe[al (] = Wa (IO D < IallliCle IS e

we also have ||b|| < |[1)q. Hence ||¢p]| = ||b||1, and the isomorphism is isometric. O
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4.6 Hilbert-Schmidt operators

Let a € #() and let a = ula| be the polar decomposition of a. Then aa* = ua*au* so that
whenever a*a € T (H), aa* € T (). By symmetry, a*a € 7 () if and only if aa* € T ().

4.26 DEFINITION (Hilbert-Schmidt operators). An operator a € B() is Hilbert-Schmidt in
case a*a € .7 (), or equivalently, in case aa* € .7 (). The set of all Hilbert-Schmidt operators
on 7 is denoted €5(H7).

It is evident that %5(s7) is self adjoint; i.e., a € €2(H) if and only if a* € €, (H#). We now
show that %2(7) is a two-sided *-ideal in Z(#). Suppose that a € €2() and b € B(H#). Then

(ba)*(ba) = a*(b*b)a < ||b|*a*a € T (), (4.35)

and hence ba € ¢2() for all a € 6() and all b € AB(H). Since 62(H) is self adjoint,
ab € 65() for all a € €2(S) and all b € B(H). To see that € is closed under addition, note
that

(a+b)"(a+b)+ (a—b)*(a—b)=2a"a+2b"b .

When a,b € 65(7), the right hand side is in 7 () by definitionm and then a+b € 62(). This
proves that 2(.7) is a two-sided *-ideal in Z (7).
If a € 63(H), then |a|> € T (), and hence |a|? is compact. It follows from the Spectral
Theorem that for all € > 0,
llaftio.zy(Jaf?)  lall < €

and 1y 2(|al?) is finite rank. Hence |a| and then a belong to € (). Let a = Zaﬂ@ﬂg\ be a

j=1
[e.e]
singular value decomposition of a. Then a*a = Z 0]2|CJ’><CJ'| and hence
j=1
[ee]
Trla*a] = 20]2- . (4.36)
j=1

This proves that a € 62(J¢) is and only if {0} € l2, and since o1(a) = ||a||, it proves that for all
a € %2(%),

lall < flallz - (4.37)

Note that for all a,b € €3(J), (a + ib)*(a + ib) = a*a + b*b + i(a*b — b*a) and hence that

a*b—b*a € T (). Also, (a+b)*(a+b) = a*a+b*b+ (a*b+b*a) and hence that a*b+b*a € T (7).

It follows that for all a,b € 62(), a*b € T (). Therefore, we may define a sesquilinear form

(-, )2 on €2(), called the Hilbert-Schmidt inner product and the associated Hilbert-Schmidt inner

norm by

(a,b)y = Tr[a*b] and |a|? = (a,a)s . (4.38)
By (4.35) for all a € .7 () and all b € B(H),

[lablla < {lal2]|o]] - (4.39)
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4.27 THEOREM. The space ¢2(F ), equipped with the Hilbert-Schmidt inner product, is a Hilbert
space.

Proof. We need only show the completeness. Suppose that {a,} is a Cauchy sequence in %5(.7)
for the Hilbert-Schmidt norm. By (4.37), {a,} is a Cauchy sequence in the operator norm. Since
PB(H) is complete, there exists a € HB(.#°) such that lim,_, ||an, — al| = 0. Since each a,, is
compact, a is compact.

By Corollary 4.24 of Theorem 4.22, for each k € N, nhﬁr{.lo or(an) = ox(a). Consequently,

o0 o0
2 .. 2 .. 2
Zok(a) < hnniggf <Z or(an) ) = hnniggf llanll; < oo .
k=1 k=1
Thus, a € 6€2(J).
Now choose € > 0 and n € N such that for all j,k > n, ||a; — ax|l2 < e. Then for any j > n and
any finite rank projection p,

I(a; —a)pllz < l[(aj — ax)pllz + [[(ax — a)pll2 -

By (4.39), ||(ar — a)p|l2 < |lax — al||[p]|2 so that limy_,« ||(ar, — a)p||2 = 0. Hence ||(a; — a)p|l2 < e.
Note that

I(a; — a)pll3 = Tr[p|a; — al*p]

and we may choose p to make the right hand side arbitrarily close to Tr[|a; —a|?]. Hence ||aj—all2 <
€, and this shows that lim;_, a; = a in the Hilbert-Schmidt norm. [l

Positive linear functionals on () may be written in terms of the Hilbert-Schmidt inner
product in a useful way. By Theorem 4.25, if ¢ is any conitnuous linear functional on €(.¢), then
there is an operator a € .7 () such that ¢(x) = Trlaz] for all z € € (). Taking x = |n)(n| for
n inA’, we see that the positivity of ¢ implies the positivity of a. Let b = y/a, and observe that
b € €(H). Then Traz] = Tr[bbxz] = Tr[b*bx] = (b, xb)2, so that for all x € € (),

o(x) = (b, zb)a .

4.7 The o-weak topology

We introduce one more topology on Z (), namely the weak-+ toplogy. By Theorem 4.25, this is
the weakest topology making all of the maps z +— Tr[az], x € F(J), continuous. By Theorem 4.7,
this topology is stronger than the strong operator topology. It is often called the o-weak topology
on B(H) or the ultraweak topology on B(H), though this last name is somewhat ambiguous:
The weak-* topology lies “beyond” the weak operator topology in that it is a stronger topology,
not weaker.

A basic set of neighborhoods of the origin for the o-weak topology is given by the sets

Wai.ane =12 B(H) : |Trlajz]| <e, j=1,...,n} (4.40)

where a1, ...,a, € () and € > 0.
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4.28 THEOREM. Every linear functional ¢ on B(H) that is o-weakly continuous is of the form
¢(z) = Trlbz] for some b€ T (). That is, linear functionals on B(H) that are continuous with
respect to the o-weak topology belong to the predual of B(H).

Proof. Let ¢ be a non-zero linear functional on % () that is o-weakly continuous. Let U be the
open disk of radius 1/2 in C centered at 1. Let x € %(.#) be such that ¢(x) = 1. Then ¢~ (U)
contains Wy, 4. ¢ for some ay,...,a, € 7 () and € > 0. Since T () C €2(H°) we may apply
the Gram-Schmidt algorithm in %5(7¢), and may therefore assume without loss of generality that
{ai1,...,a,} is orthonormal in €, (57).

Now observe that for all € Z(H), if Tr[za;] = 0 for j = 1,...,n, then every multiple of x
belongs to Wa,,..a,., and hence ¢(x) = 0. For all z € B(H), define y = 377, ¢(a;)Tr[za;] and
z = x —y. Note that Tr[za;] = 0 for j =1,...,n,and hence ¢(z) = 0. Therefore, for all x € B(),

n

n
o(x) = Z ¢(aj)Tr[za;] = Trbx] where b = Z o(aj)a;j. O
=1 =1
4.29 DEFINITION. A positive linear functional ¢ on B(.) is completely additive in case when-
ever {p;} is a familay of mutually orthogonal projections with Z;’;l =1, then

> o) =o(1) . (4.41)
j=1
4.30 THEOREM. A positive linear functionla ¢ on B(H) is completely additive if and only if
it is o-weakly continuous.

Proof. Let {¢;} be any set of mutually orthogonal projections such that Z;’;l p; = 1, and let
Gn = Z}l:l pj. Suppose that ¢ is o-weakly continuous. Then for some positive b € .7 () and all
x € B(H), ¢(x) = Trbz]. Then each ¢, is an orthonormal projection and lim;,_,~ ¢, = 1 in the
strong operator topology. It follows easily that
lim ¢<Qn) = lim Tr[an] = Tr[b] = ¢(1) )
n—oo

n—oo

and hence ¢ is completely additive.

Suppose next that ¢ is completely additive. Let {p;} be any set of mutually orthogonal finite
rank projections such that Z(;il pj = 1, and let ¢, = Z?lej as above. Let © € #(J) be positive.
Then é(z) = d(zqn) + ¢(z'/%2'/2¢ ), and by the Cauchy-Schwarz inequality, |¢(z!/2x/2¢h)| <
o(z)" (g xgy)'/?. But

O(an2ay) < |lzllé(an) = |2[|(é(1) — ¢(gn) -

and hence lim,, o ¢(zqy) = ¢(z).

By Theorem 4.25, the restriction of ¢ to € () has the form ¢(z) = Tr[bz| where b € 7 (7).
Since for all x € B(H°) and all n, zq, € € (), ¢(xq,) = Trlbrq,]. It now follows that ¢(z) =
lim,, 00 ¢(2gn) = Trbx]. O
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5 Representations of C* algebras

5.1 Irreducible representations

5.1 DEFINITION. A representation of a C*-algebra &/ is a x-homomorphism 7 from & into
PB(H) for some Hilbert space . For any subspace £ of 5, we define

() ={nm(a)n : acd ,neX }.

A subspace & of J is invariant under 7 in case w(/ )% C £ . The representation 7 is irreducible
in case no non-trivial subspace J# of 7 is invariant under 7. The representation 7 is non-degenerate
in case Tr(,ng ) = A . Let m and my be two representations of 7 on Hilbert spaces .7 and .74,
respectively. Then m; and o are equivalent representations of o/ in case there exists a unitary
transformation from u from 574 onto 75 such that for all a € <7,

ma(a)u = um (a) .

The notion of the commutant of a subset S C ZA(H) plays a crucial role in the study of
irreducibility.
5.2 DEFINITION. Let J# be a Hilbert space, and S C (). The commutant S’ of S is the
subset of B(H°) given by
S'={acB(H): ab—ba=0 forall beS}.

5.3 LEMMA. Let 5 be a Hilbert space, and S C AB(H). The commutant S’ of S has the

following properties:

(1) 8 is a closed in the weak operator topology on B(H), and contains the identity 1.

(2) 8" is a subalgebra of B(H).

(3) If S is closed under the involution, then so is S, so that 8’ is a weakly closed *-subalgebra of
PB(F) that contains the identity.

Proof. Tt is evident that for all S, 1 € §’. Moreover, for any (,£ € 7 and b € S, define the linear
functional ¢¢ ¢, on () by

peep(a) = (G (ab = ba)§)r = (¢, a(b€))n — ((b°C), al) »

Since ¢ ¢ p is weakly continuous, 4,04_% »,({0}) is weakly closed. Then since

"= (W ects{0}) : G Eer besSt,

(1) is proved. (2)is evident, and the (3) follows from the fact that (ab — ba)* = (b*a™ — a*b¥)
together with (1) and (2). O

5.4 DEFINITION. A von Neumann algebra is a x-subalgebra .# of Z(#) for some Hilbert
space ¢ such that 1 € .# and such that .Z is a weakly closed subset of #(.7¢)
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By Lemma 5.2, the commutant of any #-subalgebra of () is a von Neumann algebra. Note
that every von Neumann algebra .# is generated by the projections it contains. Indeed, .Z is
generated by is self adjoint elements, and by the Spectral Theorem, each self adjoint a € .Z is
the strong limit os a sequence of finite linear combinations of the spectral projections of a, which
themselves belong to .#, being strong limits of polynomials in a.

5.5 LEMMA. Let & be a C* algebra, and let m be a non-zero representation of it as an algebra
of operators on some Hilbert space €. Then a closed subspace & of H is invariant under (<)
if and only if the orthogonal projection of A onto K belongs to (w(<7))’.

Proof. First, # is invariant under m(%) if and only if #* is invariant under 7(<). To see this,
let ( € #+ and € € #, and a € &/. If A is in variant, m(a*)¢ € %, and hence

(m(a)¢, &) = (¢, m(a*)E) s =0 .

Thus the invariance of # implies the invariance of # 1, and then by symmetry, the reverse
implication is valid as well.
Now let p be the orthogonal projection onto £ . Then when # is invariant, for all a € &7,

0 =pm(a)(1 —p) = pr(a) — pr(a)p = pr(a) — 7(a)p

where the last equality is true since the range of w(a)p lies in #. Therefore, p € (7(«))’. Con-
versely, if p € (7(«7))" and € ', then for all a € &7,

m(a)¢ = m(a)p§ = pr(a)§ € X,
which shows the invariance of ¢ . O
Lemma 5.5 permits us to make the following definition:

5.6 DEFINITION. For a representation m of a C* algebra & on a Hilbert space ¢, and a
non-zero projector p € (mw(47))’, mp is the subrepresntation obtained by restricting 7 to ran(p).

5.7 THEOREM. Let & be a C* algebra, and let m be a non-zero representation of it as an algebra
of operators on some Hilbert space 7 . Then m is irreducible if and only if (7(/)) consists of
scalar multiples of the identity.

Proof. If (m(<7))’ consists of scalar multiples of the identity, then (7(<7))" contains no non-trivial
orthogonal projections, and hence by Lemma 5.5, 7 is irreducible. On the other hand, if (7 (<))’
contains some operator that is not a multiple of the identity, then it contains a self adjoint operator
a that is not a multiple of the identity. Any such a € (7(47))" has a non-trivial spectral projection
that is also in (7(&))’ since (7(<7))" is a von Neumann algebra containing a. O

5.8 THEOREM (von Neumann Double Commutant Theorem). Let o7 be a x-subalgebra of B(.7)
that contains the identity. Then <" is the weak operator topology closure of < .

Proof. Since of is convex, the weak and strong operator topology closes of .27 coincide. Hence is
suffices to show that for all a € &/”, every strong neighborhood of a contains some b € 7. That is,
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it suffices to show that for all n € N and all {n;,...,n,} C S, and all € > 0, there is some b € o
such that ||[(b —a)n;|| < eforall j=1,...,n.

Let A = A & --- @® A, the direct sum of n copies of . The elements of Z() are n x n
matrices [b; ;| with entries in A (7).

Let &/ be the algebra of all operators on . the form [ad; ;] with a € o/. Evidently, its
commutator &/ consists of all [b;,;] with each b; ; € &/’. Thus, for all a € &7”, [ad; ;] € "

Let =1 @ --- @® 1y, and define # = &/n which is a closed subspace of # that is invariant
under <. By Lemma 5.5, the orthogonal projection p of 5 onto J# belongs to o’ , and hence
to &/"". Then by Lemma 5.5 again, for a € &”, J# is invariant under «”. In particular, for all
a€ ", X is invariant under [ad; ;|.

Since &7 contains the identity, n € 2, so that an; @ --- ® an, € # . Therefore, for all € > 0,
there exists b € &7 such that

o @ - Dby —am @ - D angl|%p < €.
0

In particular, the weak operator topological closure of any x-subalgebra of Z(s#) containing
the identity is again a *-algebra containing the identity, and hence is a von Neumann algebra,
though this can be seen directly.

For any self-adjoint operator a in Z(.#), note that {a}' = (C(a))’ where C(a) is the C* algebra
generated by a. Hence {a}” is the smallest von Neumann algebra that contains a. That is, {a}" is
the von Neumann algebra generated by a.

5.9 THEOREM. On a separable Hilbert space , every abelian von Neumann algebra & is
generated by a single self adjoint operator; i.e, for some self adjoint a € &, Z = {a}".

Proof. Recall that subsets of separable spaces are separable. Let {p,} be a sequence of projections
in 2 that is dense for the strong operator topology in the set of all projections in 2. Define

oo
a = 23_jpj .
j=1

The sum converges in operator norm, and hence belongs to 2°. Note also that || 72, 377p;|l < 2/9,
and hence |la — 37 pq|| < 2/9.

Pick Ao € (2/9,1/3) and let ¢ = 1(5,1)(a). Then g and p; are commutng projections, and hence
gtp1 and pig* are projections.

If qpll = 0, there is a unit vector n with ¢n = n and pfn = 1. Then since qaq > A\oq,

Xo < (nqagn)» = (nan)x = (npiapin)e < (n(a =3""p1)n)r <2/9 .
This is a contradiction, and so qpf = 0.
If ¢-p1 # 0, there is a unit vector n with ¢*n =7 and p1n = 1. Then since A\og™ > ¢agq™,
Xo > (ngaqn)e = (nan)r = (prapin)e > (3 pr)n)e > 1/3 .

This is a contradiction, and so ¢gtp; = 0.

Then since ¢*p; = qpi = 0, ¢ = qp1 + qpi = qp1 = qp1 + ¢-p1 = p1. This shows that the
spectral projection of a for the interval (Ao, 1) is pi. Inductively, one finds that each p; is a spectral
projection for a, and hence belongs to {a}”. O
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5.2 Central covers

Let m be a non-degenerate representation of a C* algebra 7 on a Hilbert space . If ¢ is any
projection in the center of (7())’, which is (w (<))’ N (7(«7))”, the range of ¢ is invariant under
both 7(47) and (7(<))" and thus the restriction of 7, is a subrepresntation of .

5.10 DEFINITION (Central projection for a representation). Let m be a non-degenerate repre-
sentation of a C* algebra o7 on a Hilbert space 7. A central projection for m is a projection in
the center of (mw(&))’

5.11 LEMMA. Let w be a non-degenerate representation of a C* algebra </ on a Hilbert space
A, and p be a projection in (w(«/)). There exits a central projection P that is dominated by every
central projection that dominates p. Moreover, D is the projection onto

(w (7)) ran(p) .
Finally, if m, is irreducible, p is the central cover of every projection q € (w(</))" dominated by p.

Proof. If ¢ is a projection in the center of (7w(47)) that dominates p, then the range of ¢ contains
J, and since ¢ commutes with (7(«))’, (7(<))'# is contained in the range of q.

For the final part, suppose that ¢ € (7(«))’ is dominated by p. Since p is a central projection
that dominates ¢, ¢ < p. It suffices to show that p < 7.

Note that pg and pg are projections in (7(7))’ that are dominated by p. Since m,, is irreducible,
one must be zero, and the other must be p. If pg- = p, then pg" is a central projection dominating
p, and hence pg+ = p. This is impossible since ¢ < p. Hence it must be the case that pg = p, which
is what we needed to show. O

5.12 DEFINITION (Central cover and central subrepresentations). Let 7 be a non-degenerate
representation of a C* algebra o/ on a Hilbert space 4, and let o be a subrepresentation of 7
on a subspace % of . Let p be the projector onto J#. Then the central cover of o is the
representation & = 7. A subrepresntation o of 7 is a central subrepresentation in case o = &.

Unless o is already a central representation, its central cover is a strictly larger subrepresentation
of . The precise sense in which it is larger makes notion of central representations fundamentally
important in the study of the structure of representations.

5.13 LEMMA. Let 7w be a non-degenerate representation of a C* algebra on a Hilbert space 7.

Let p and q be two projections in (w(<7))" and suppose that they have the same central cover; i.e.,

/

P =7q. Then there is a partial isometry u € (w(/)) such that uu* < q and u*u < p.

Proof. Let %1 and %5 denote the ranges of p and ¢ respectively. Since (w(&7)) % = (w(o)) Ha,
thereisan a € (w(«)) and vectors n; and 79 in %] and J#, respectively so that (92, anz) ,» # 0. This
means that z = gap is a non-zero element of 7(<7))". Let z = u|z| be its polar decomposition. Then
u is a partial isometry in 7(&))’, such that vu* < ¢ and u*u < p. Thus, 7.+, is a subrepresentation
of m, that is equivalent to my,~, a subrepresentation of g. O

Lemma 5.13 has the following consequence: Since for any partial isometry v u*u and wu*
are, respectively, the projectors onto the final and initial spaces of u, my+, and my,+ are non-zero
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equivalent subrepresentations of the representation 7, and 7, discussed in the lemma. In particular,
if 7, is irreducible, there is a partial isometry u € (7(47))" such that u*u = p and wu* < g, so
that m, is equivalent to a subrepresentation of m,. The fact that the equivalence is due to a partial
isometry in 7(&7))" is important in what follows.

5.3 The structure of type I factors of von Neumann algebras

5.14 DEFINITION. Let 57 be a Hilbert space, and let .# be a von Neumann algebra on 7.
M is a factor in case .# has a trivial center.

Note that the center of .#Z is .# N.#', which by the Double Commutant Theorem, is the same
as A'N.H", so that .# and .#' have the same center.

The center 2 of .# is evidently an abelian von Neumann algebra, and therefore, by Theo-
rem 5.9, when .# is a von Neumann algebra on a separable Hilbert space 7, its center & is
generated by a single self-adjoint a € 2, and every spectral projection of a is a central projection
for the identity representations of .# and .#’.

Now suppose that this operator a happens to have finite spectrum, as it must in case ¢ is finite
dimensional. Then there is a finite set {pi,...,p,} of central projections. For each j = 1,...,n,
let 7 denote the range of p;. Then J# = @?:1 J;, and defining #; = A p;,

M= é///] . (5.1)
j=1

Evidently, each .#; has a trivial center; its center is spanned by the identity on .#;. The Spectral
Theorem can be used to give a “direct integral” decomposition on .# without making any assump-
tion on the spectrum of 7, as was shown by von Neumann. This line of reasoning reduces the
investigation of the structure of von Neumann algebras on a separable Hilbert space that that of
von Neumann algebras with trivial center, which motivates the following definition:

5.15 DEFINITION (Factor). A factor .# is a von Neumann algebra .# with a trivial center. A
factor is type I in case it contains a non-zero minimal projection; i.e., a non-zero projection p such
that the only projection in .# that is dominated by p is the zero projection.

Evidently every factor on a finite dimensional Hilbert space contains a minimal projection — any
projection whose range has minimal dimension — and so every factor on a finite dimensional Hilbert
space is type I. This is not true for infinite dimensional Hilbert spaces, and we shall return to a
classification of types of factors and investigate their structure later. For the rect of this subsection,
we focus on the structure of type I factors.

Looking at (5.1), one might think “summand” would be better terminology than “factor”, but
the following theorem justifies the terminology:

5.16 THEOREM. Let £ be a separable Hilbert space, and let A be a type I factor on & . Then
there exist Hilbert spaces 76 and 56 and a unitary u : X — J4 & 5 such that

uMu = B(H) R 1y . (5.2)



67

5.17 REMARK. The commutant of M of M = B(FQ) @ 1y in B(F4 @ H3) is evidently
1y @ B(H3), and hence M (M consists of mutiples of the idenetity. Hence B(F4) @ 14 is a
factor in B(FA4 ® H#3). The theorem says that all factors are of this type, and when A is a factor
on a separable Hilbert space J , B(K') is the closed span of elements of the form ab where a € A
and b € A", which may be viewed as a kind of factorization of B(X').

Proof of Theorem 5.16. If .# consists of multiples of the identity, then we may take 4 = C, and
the conclusion is obvious. Therefore, let us us assume that .# does not consist of multiples of the
identity, or, what is the same thing by Theorem 5.7: the identity representation of .#” is reducible.

Let 7 denote the identity representation of .#’, whose commutant is .#. Let p; be a minimal
projection in .#. We now apply Lemma 5.13 in this setting. Since the center of .Z is trivial,
the central covers of both p; and p;* are the identity in .#, and since p; is minimal, Tp, 1S an
irreducible representation of .#’. Hence by Lemma 5.13, there is a partial isometry u € .# such
that u*u = p; and uu* < pi. Since p; = p? = u*(uu*)u, uu* is also minimal.

Define %; = p; & for j = 1,2. If & = 4 © 5, we have decomposed % as a direct sum of
subspaces on which .#" acts irreducibly and equivalently. If not, repeat the argument made above
with pf- replaced by 1 — p; — po, thus producing a minimal projection pz in .# with p3p; = 0 for
j =1,2, and ug, an isometry in .# that maps 4 onto the range of p3. If after some finite number
n of such steps, J is exhausted, we have produced a set {p1,...,pn} of minimal projections in .#
with p;p; = 0 for i # j, and a set {u1,...,uy} of partial isometries in .# where u; maps . onto
J;, the range of p;. (Note that u; is py itself.)

Consider any a € .#. We claim that there is a matrix [a] € M, (C) such that

a= Z [a]i jujuy . (5.3)

ij=1

To see this observe that . .
a= Z piap; = Z ui(ufauj)u; .
ij=1 ij=1
However, for each 14, j, ujau; € p1.#p;, and since p; is minimal, p;.#p; = Cp;. Hence for some
Aij € C, wfauj = X\; jp1. Define [a]; j = A; j to obtain (5.3).
Let {¢1,. .., ¢y} denote the standard basis of C". Define a linear transformation u from C" ® 4
to & by

n n
wl Y Gen | => um;.
j=1 j=1

It is evident that this map is unitary. Moreover, for any a € .#, using (5.3), we have

n

n
au (D> Gon | = > lalijuguiuen =

j=1 1,5,0=1

D lalijumi=u > (Z[a]i,y’@) @n | =u | lalg @

ij=1 j=1 \i=1
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That is, with 544 = C" and 4% = 54,
uau® = [a] ® 1 .

This proves (5.2) in case the procedure for producing a sequence of orthogonal minimal projections
terminates in finitely many steps.

When this process does not terminate, a simple application of Zorn’s Lemma shows that there is
a sequence {p, } of minimal projections in .# such that p,,p, = 0 for m # n and & = @, pnH,
and moreover, there is a sequence {u,} of partial isometries in .# such that w, maps 4 onto J,.
Then the strong closure of the set of operators of the form (5.3) for some n € N is easily seen to be
dense in ., and then with 4 = {3, we obtain (5.2) in this case as well. O

Theorem 5.16 has an important corroalary:

5.18 COROLLARY. Let 7 and 2 be separable Hilbert spaces, and let m be an injective repre-
setnation of B(HA) on K . Then there exists a Hilbert space A and a unitary u: X — A Q A"’
such that for all a € B(IH),

um(a)u® =a® 1 . (5.4)

Proof. Since 7 is injective, by Theorem 2.26 7 is an ismetric *-isomorphism from Z(J) onto
w(B(A)). Then evidently w(ZB(H)) is a type I factor in Z(#"), and Theorem 5.16 applies.

In the setting of Corollary 5.18, we can be somewhat more explicit about the construction used
in the proof of Theorem 5.16, and this leads to (5.4). Let {n;} be any orthonormal basis for JZ,
and for each j, let ¢; be the orthognal projection onto the span of n;, For each j, define p; = 7(g;).
This gives us a family of ortogonal projections in 7(%()) that are minimal and satisfy p;p; =0
for all 7,5. A simple maximality argument shows that j=1Pj =1

Let ' be the range of p;. By Lemma 5.13 there are partial isometries u; € w(#(#)) such
that u; has ' as its initial space and ran(p;) as its final space, and p; = ujuji. Now pick any
orthonormal basis {(;} of #”. Note that {u;(} is an orthonormal basis of #". Define the unitary
uw: A — QA by u(n @ (k) = uj,. Then for all j, &k, ¢,m,

(W (e @ G ), um (@)™ (0j @ Cr))t = (G (wem(@)u) i) e

As noted in the proof of Theorem 5.16, uym(a)uj € p(m(%(H))p1, and then since p; is minimal, it
acts trivally on J#”. Therefore, if we define [a]; € C by wm(a)u} = [a]s 1, we have

((ne @ Gm), um(@)u™(nj @ Ce))r = lalejOm,p - (5.5)

Now for each j let @; = 7 !(u;). Then evidently uju; = q; and Uju; = g1. Hence, up to a complex
multiple of modulus 1, @; is the rank one transformation sending 7; into 7;, and we can absorb
this multiple into the definitition of our basis {n;}. Hence with this choice,

uem(a)uj = m (i) (a)m (i) = w(teati;) = m((ne, ang) s qi) = (ne, anj) wpr -
Going back to (5.6), we have that [a],; = (7, an;) », and thus we may rewrite (5.6) as
(e ® Gm), um(a)u™ (n; @ Ge))or = (e ® Cm)a @ Lygr(0; @ C))r (5.6)

and this proves (5.4). O
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5.4 States on a C* algebra

5.19 DEFINITION. Let &/ be a C* algebra. A linear functional ¢ on &/*, the Banach space
dual to & regarded as a Banach space, is positive in case p(a) > 0 for all a > 0. If &/ has an
identity 1, a state on &/ is a positive linear functional ¢ such that ¢(1) = 1. We denote the set
positive linear functionals by &7 and the states by &/f ;. A state ¢ € &/, is faithful in case

pla*a) =0 = a=0. (5.7)
Evidently, for all ¢ € &7, the map
(a7 b) = @(a*b> - <a’7 b)‘ﬂ

defines a (possibly degenerate) inner product on ¢; this inner product is non-degenerate if and
only if ¢ is faithful. In any case, the fact that (a,a), > 0 for all a € & yields the Cauchy-Schwarz
inequality:

[(a,b)g| < {a,a)/*(b,0)y/* . (5.8)

5.20 THEOREM (Positivity and continuity). Let o/ be a C* algebra with identity 1. Then:
(1) Every ¢ € o/ is bounded, and ||¢| = ¢(1).
(2) Every bounded linear functional ¢ such that ||| = ¢(1) is positive.

Proof. Let ¢ € &/. For all a € &7,

lp(@)] = [p(la)] = {1, a)y| < (1, 1)J*(a,a) % = p(1)p(a"a)'/? .

Since 0./ (a*a) C [0, lal|?], |al/*1 — a*a > 0, and hence p(a*a)'/? < |lall¢(1)'/2. Combining these
inequalities, we have |¢(a)| < ¢(1)||a|| which proves (1).

For the second part, suppose that ¢ € & and p(1) = [|¢]|. If ¢ — 0, it is positive. If ¢ # 0, we
may divide by [|¢|| and thus may suppose that ||¢|| = ¢(1) = 1.

We claim that for all ¢ € & such that ¢(1) = ||¢]|, ¢(a) belongs to the convex hull of 0. (a)
for all @ > 0 in /. To see this suppose that the closed disc of radius r centered on A contains
o(a). Then A1 — a is normal, and its spectrum is continued in {A\ —¢ : ¢ € 04(a)}, and hence
the spectral radius of A1 — a is at most 7. Since A1 — a is normal, ||\l — a|| < r. Therefore,

A =p(a)] = lp(Al —a)| < AL —al| <7

Thus for all > 0 and X\ € C, ¢(a) is contained in the closed disc of radius r centered on A\ contains
0. (a). The intersection over all such discs is the convex hull of o/ (a). O

5.21 LEMMA. Let & be a C* algebra with identity 1. For all self adjoint a € <, there exists a
state ¢ such that |p(a)| = ||al|.

Proof. Consider the C* algebra C(a) generated by a and 1. This is a commutative C* algebra, and
so there is a character ¢y of C(a) such that |pg(a)| = ||a||, and since ¢ is a character p(1) = 1.
Then by Theorem 5.20, ¢g € &7}, and so ¢ is a state on C(a).

By the Hahn-Banach Theorem, there is a norm preserving extension ¢ of ¢g (as a linear func-
tional) to o#. Then (1) = (1) = 1, and hence by Theorem 5.20, ¢ is a state, and since ¢ extends

wo, o) = ||z O
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Lemma 5.21 says, in particular, that </ ; is not empty. It is evidently a closed subset of the
unit ball in &/ in the weak- topology, and hence is compact. &/} is also evidently convex. The
Krein-Milman Theorem says that every non-empty convex set in «/* that is compact in the weak-x
topology is the convex hull of its extreme points. Hence there exist extreme points in &/ ;.

5.22 DEFINITION (Pure state). Let &/ be a C* algebra with identity 1. A pure state is an
extreme point of ,Q{_;_':l.

5.23 THEOREM. Let &7 be a C* algebra with identity 1. For all self adjoint a € o7, there exists
a pure state ¢ such that |p(a)| = ||a]|.

Proof. By Lemma 5.21, the set S of states ¢ such that p(a) = ||a|| is non-empty, and evidently it is
convex and closed in the weak-* topology. By the Krein-Milman, S has at least one extreme point
¥. We now show that ¢ is extreme in &7 | as well as in S.

Suppose that ¢1,%2 € /], and that ¢ = thy + (1 —t)1b2 for some ¢ € (0,1). Evaluating both
sides at a,

lall = v(a) = t1(a) + (1 = t)iha(a) < tllall + (1 = t)[|al] = [lal| -
Hence 91,12 € S, and so ¥ = 1ho = 9. O
5.24 DEFINITION. Let m be a representation of a C* algebra &/ on a Hilbert space . A

vector n € # is cyclic for 7 in case a — 7(a)n has dense range, and is a separating vector for 7 in
case a — m(a)n is injective. If a cyclic vector exists, then 7 is a cyclic representation.

For any representation 7 of &/ on J#, and any unit vector n € J, the functional 7, € &/~
defined by

pn(a) = (n,m(a)n).n (5.9)

is a state. Evidently, ¢, (a*a) = (n,7(a*a)n)» = ||r(a)n|/%,, and hence 7 is separating for  is and
ony if ¢, is faithful. The next theorem links gives an cyclicty an irreducibility.

5.25 THEOREM. Let 7 be a representation of a C* algebra &/ on a Hilbert space 7€, and let n
be a cyclic unit vector for w. Then with ¢, denoting the state defined in (5.9). Then w is irreducibly
iff and only if ¢, is pure.

The heart of the matter is the following lemma:

5.26 LEMMA. Let 7 be a representation of a C* algebra </ on a Hilbert space 7€, and let n be a
cyclic unit vector for w. Then with ¢, denoting the state defined in (5.9). Suppose that 1) € d—;-k,l?
and that for some r € (0, 00),

P(a) <rpp(a) forall aco .

Then there is a positive operator x € (nw(/))" such that ||z|| < r and for all a,b € <,

P(a*b) = (n,m(a), zm(b)n).e - (5.10)
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Proof. Define a sesquilinear form ¢ on m(</)n by ¢(m(a)n, 7(b)n) = 1 (a*b). We have

lq(m(a)n, w(0)n)| < r|(w(a)n, m(b)n)w| < rlm(a)llelm @)l -

Since 1 is cyclic, ¢ is densely defined on ¢ and extends to a sesquilinear form on all of J7, still
denoted by ¢, that satisfies |q((,&)| < 7||C||#||E]|# for all (,§ € . By Reisz’s Lemma, there
exists a self adjoint operator z € Z(.°) such that ¢((,&) = ({,x€) » for all (,£ € €, and ||z|| < 7.
Since ¢(¢,¢) > 0 for ¢ in the dense set 7(o/)n, x is positive.

Finally, note that for all a,b,c € &7, a*(bc) = (b*a)*c, and hence 1 (a*(bc)) = ¥ ((b*a)*c). This
means that ¢(7(a)n, 7(b)m(c)n) = q(7(b*)w(a)n, w(c)n) which is the same as

(m(a)n, zm(b)m(c)n)e = (m(a)n, w(b)zm(c)n) -

Thus for all {,¢ in a dense subset of 2, ((,zm(b)&),r = (¢, m(b)x&)» and this shows that z
commutes with 7(b) for arbitrary b € 7. O

Proof of Theorem 5.25. Suppose that 7 is irreducible. Let 11,12 be two states such that ¢, =
th1 + (1 —1t)1s for some ¢t € (0,1). By Lemma 5.26, applied to 91, which satisfies 11 < t~1¢,, there
is a positive z € (w (<))’

P1(a*d) = (n,m(a),zmw(b)n)» forall a,be o . (5.11)

Since 7 is irreducible, x must be a scalar multiple of the identity. Since ¢y is a state, taking
a=>b=11in (511), 1 = ¢(1) = (n,xn) », which shows that = 1. Then taking a = 1 in (5.11)
shows that ¢(b) = ¢, (b) so that 1 = ¢,. By symmetry, ¥» = ¢, as well, and this proves ¢, is
extreme.

For the converse, suppose that 7 is not irreducible. Then there exists a projection p € (7w(<)’)
such that neither p nor pt is zero. Suppose that pn = 0. Then for all a € <7, 7(q)pn = p(7(a)n) =0
and this would mean that p vanishes on a sense subspace, which is not the case. Hence ||pn||» > 0,
and the same reasoning shows that |[ptn|l,» > 0. Define n1 = ||pn||;;pn and no = |[p*0| p*n.
For all a € &7,

(m, m(a)n2) e = {pm. 7(@)p ) e = (m, pp=m(a)m) e =0 .

Define ¢ € (0,1) by t = [pn[|%. Since |pnll%, + lp™nl% = 1, [p*nll% = 1 —¢. Then by the
orthogonality proved just above, for all a € <7,

onla) = ([Vim + V1 —tna], m(a)[Vim + V1 —tn])»
= t(m, m(a)m)e + (1 —t)(n2, m(a)ne) e ,

and this displays ¢, as a non-trivial convex combination of states. Hence ¢, is not extreme. O

5.5 The GNS construction

A construction due to Gelfand, Naimark and Segal, known as the GNS construction, associates to
every state ¢ on an C* algebra &7 a representation 7w of o7 on a Hilbert space built out of &7 itself
and the state .
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5.27 THEOREM (The GNS construction). Let o/ be a C* algebra with identity 1, and let ¢ be
a state on o7 . Then there exists a Hilbert space F and a cyclic representation m of o/ on € with
a distinguished cyclic unit vector n such that for all a € &,

p(a) = (n,m(a)n)ne . (5.12)
The representation m is irreducible if and only if ¢ is a pure state.

Proof. Let (a,b), be the possibly degenerate inner product on &7 defined by (a,b), = (a*b).
Define
N ={acd : (a,a),=01}.

Since ¢ is continuous, .4 is closed. In fact, .4 is a closed left ideal. To see this, consider b € &
and a € 4. Then

(ba,ba), = p(a*b*ba) = (a,b*ba), < (a, a}}/%b*ba, b*ba)}/2 =0.

A similar but simpler argument shows that .4 is a subspace.
Now consider the vector space o/ /4. With ~ denoting equivalence mod 4", we have

a~d and b~V = (a,b),=(d,V),,

and hence we may define a non-degenrate inner product on <7 /.A4" by ({a},{b}) = (a,b),. Let
¢ be the completion of o/ /.4 in the corresponding Hilbertian norm, and let (-,-),» denote the
resulting inner product on 7.

For a € o/, let m(a) denote the linear operator on o7 /.4 defined by 7(a){b} = {ab} which is
well-defined since .4 is a left ideal. Next note that since b*a*ab = ||a||?b*b + b*(||la*a||1 — a*a)b,
and b*(|la*al|l — a*a)b is positive,

Iw(a){b} 15 = @(b*a*ab) < [lal®@(b"b) = [lal*[{b} 13 -

Since 7 /.4 is dense in €, m(a) extends to a bounded operator on .7 with ||7(a)| < |lal. It is
evident that 7 is a homomorphism of &7 into (%), and note that for all z,y € 7,

{a}, m(a){yh) e = p(a”ay) = p((a’2)"y = (w(a){z}, {y})r

showing that m(a*) = m(a)*, and thus 7 is a *-homomorphism.

The representation 7 is cyclic since for all a € o7, {a} = {al} = w(a){1}, showing that n := {1}
is a cyclic vector for 7. Finally, note that (n,m(a)n)» = ¢(1*al) = ¢(a), and this proves (5.12).
The final statement now follows from Theorem 5.25. O

5.28 COROLLARY. Let &7 be a C* algebra with identity 1. For every non-zero a € of , there is

a representation ™ of </ such that ||w(a)|| = ||al.

Proof. By Lemma 5.21, there exists ¢ € «/f such that [p(a*a)] = [al|>. Let 7 be the GNS
representation of 7 associated to ¢, and 7 the associated distinguished cyclic unit vector. Then

lw(a)nl% = (nm(a*a)n)e = p(a”a) = |l

showing that ||7(a)|| > ||a||, and since it is automatic that ||7(a)| < ||al|, [|7(a)] = |la||. O
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We now arrive at the Non-Commutative Gelfand-Naimark Theorem:

5.29 THEOREM (Non-Commutative Gelfand-Naimark Theorem). Every C* algebra </ with an
identity is isometrically x-isomorphic to a C* algebra of operators.

Proof. For each a € &7 choose an irreducible representation 7 of <7 such that ||7(a)| = |jal|. Now
form the direct sum of all of these representations. O

5.6 The GNS construction for M,(C) and the normalized trace
Fisn € N, n > 2, and let & = M,,(C). Define ¢, € &/* by

pus(a) = - Tr(a)

Since ¢ (a*a) = 377, |la; j|?, it is evident that ¢ (a) is a state, called the normalized trace. It
is also evident from the same computation that the normalized trace is faithful. It has one more
important property: For all a,b € o7,

oir(ab) = o (ba) | (5.13)

as one readily verifies.
Since ¢y, is faithful, the left ideal .4 that arose in the GN S construction is simply {0}, and so
the Hilbert space S is simply & itself equipped with the inner product

(a,b) = %T&"[a*b] , (5.14)

which is a normalized form of the Hilbert-Schmidt inner product.

In this finite dimensional setting, no completion is needed; J# is simply M, (C) itself, with the
inner product (5.14). For all x € &7, let (,, denote = regarded as an element of 7.

Let m denote the GNS representation of 7 determined by ;. Then 7(a)n, = az, so that if we
define the operator L, on 5 by L.(; = (az, then w(a) = L,, the operation of left multiplication
by a. Since ¢y, is faithful, ker(w) = {0}, and then by Theorem 2.26, (<) is a C* algebra, and
79/ — (/) is an isometric *-isomorphism.

In this finite dimensional setting 7(</) is not only a C* algebra, but also a von Neumann
algebra. Let us use .# to denote 7(</). Now observe that since the center of o7 is trivial, and
since 7 is a isomorphism of &/ onto .#, the center of .# is trivial, so that .# is a factor. By
Theorem 5.16, there is a unitary u from Z(5¢) onto C" @ C™ such that u.Zu* = M,(C)® 1. (We
are also using the fact that M,,(C) and M, (C) are not isomorphic for m # n.) The commutant
A" of A then consists of all elements of Z() of the form u(l ® b)u*, with b € 7.

We can make this more explicit as follows. For ( ® £ € C" ® C", define v(¢ ® £) to be the n x n
matrix /n[(;¢}] which we regard as an element of JZ. It is evident that

[o(¢ @ &)l = lICllen lEllen = lI¢ @ Elleracn -

Extending v by linearity, we obtain an isometry from C" ® C™ into %, which is necessarily unitary
since the dimensions of the domain and range are equal. We again denote the extension by v. Now
observe that for all a € &7, Lyv(( ® &) = v(al ® £), or what is the same thing,

v'L,v=a® lcn .
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In particular, v.Zv* = M,(C) ® 1cn, and thus u = v* is one choice of the unitary provided by
Theorem 5.16. In the same way we see that

V*Rv = 1cn @a” .
Since (M, (C) ® 1cn)' = 1cn ® M, (C), it follows that v*.Zv = 4.
Define a conjugate linear transformation J from 7 to itself by
JCa = Ca*

for all a € «/. Note that ||.J(,%, = 1 Tr[aa*] = LTr[a*a] = ||(al|. That is, because of (5.13), J is
an isometry. Moreover, J?2 =1 and so J = J* = J~ 1.
For each b € & define the operator Ry on JZ by

RyCe = Cap

for all ¢ € &/. That is, Ry is the operator of right multiplication by b. Now observe that for all
a,z € o, J(LoCy) = JCax = Curar = Ra+J(;. In short,

JLoJ = Ry (5.15)

and hence J.ZJ = 4.

To bring out the symmetry between .# and .#’, let us introduce #* to be the Hilbert space
that is the same set as 7 with the same law of vector addition, but with the scalar multiplication
(A,¢) = A*¢ and the inner product (¢,&) — (£,()% =: ((,§)w~. Note that B(H™) = B(X),
and so we may regard each Ry« as an element of %(.#*). Then it is easy to check that the map
a — Rg+ =: 7(a) is a representation of & on J#*. The map J is then unitary from 57 to J¢*
(though no longer self adjoint), and now (5.15) can be written as

JrnJ* =7, (5.16)

and we have that (7(«)) = 7'(&). The fact that the GNS construction in this simple case yields
not one, but two commuting isometric representations of &/ will turn out to be very useful later
on.

6 Completely positive maps

6.1 Some important isomorphisms

Let 2 and . be two Hilbert spaces with J# separable. Let {n;} be an orthonormal basis for % .
Then the general element £ of the Hilbert space 5 ® % has the form

dim.zZ” dim.z”
E=Y Gon  and  |Eer = D 1¢I5 (6.1)
j=1 =1

For n € N, let 77, denote the direct sum of n copies of 77,

~—_——

n times
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Let J% denote the direct sum of countably infinitely many copies of . We write {(;}1<j<n to
denote the general element of J7;,, and we write {(;};en to denote the general element of J4:.

When dim(.#) = n < oo, we define an isomorphism from .7, onto ¢ ® £ by choosing an
orthonormal basis {71, ...,n,} of & and then define the map

{Gljen = Y G om; . (6.2)

Jj=1

This gives a unitary map from 7, onto ¢ @ . When ¢ is infinite dimensional and {7;} is an
orthonormal basis of %, the map given in (6.2) is unitary from J& onto " ® .

6.1 DEFINITION. Let % be any Hilbert space and let .# be a separable Hilbert space. Let
{n;} be an orthonormal basis of .#". Define V; : # — 5 ® % by

Vi¢=C®mn; . (6.3)
Note that Vj is an isometry from ¢ into ¢ ® %, and that

dim(57)
ViVi=1x. (6.4)
=1

Next, for every ¢ € % and n € £ we define the rank-one operator |()(n| from S to .# by

1O (nlg = ((n,&)x) C -

Let {n;} be an orthonormal basis for .#". Define the sesquilinear map

dim.#" dim.z2”

YoGen = D IGml-
j=1 =1

On the right we have the general element of 65( ¢, .7), the Hilbert space of Hilbert-Schmidt
linear maps from J# to J¢; that is, the space of linear maps x : # — J# such that Tr[z*z] < oco.
Moreover, this map is easily seen to be an isometry; i.e.,

dim.#" 2 0o dim.#" 2
o Gen = D G = || D2 1)l
=1 wox  I=1 =1 Co(H )

Next, still under the assumption that J# is separable, consider the algebraic tensor product
B(AH) @ B(H). The general element of B(H) ® AB(#) is a linear combination of elements of
the form x ® y. We may regard these as operators on 4 ® . through

(z@y)¢@n = (x¢) @ (yn) - (6.5)
This gives us a natural embedding of #(#) @ #( %) into B(H @ HX')
6.2 LEMMA. For Hilbert spaces 7 and J , and any (1,(s € F, and any n1,1n2 € A,

G @ M) (G2 @ na| = [C)(m| @ [C2) (2] (6.6)

where the right hand side is regarded as an element of B(H @ HK') through the natural embedding
of B(H) @ B(X ) into B(H @ K)



76

Proof. 1t suffices to check that for all (3 € # and 13 € 2, both sides have the same action on
(3 ® 3. By the definitions,

(G2 ®@m2, (3@ M3) x| Gt ®m
(G2, Ca) e (n2:m3) ] C1 @M
(€2, G3) e (C1] @ [(m2, m3) ]
|G (m[¢s) @ (1¢2)(m2lms) -

€1 @ 11) (G2 @ n2l(3 @ m3

=
[
[
(

O

Now we specialize to a case that will be important in what follows. Let .# be finite dimensional,
and identify it with C" for n = dim(.#"). We may then identify Z (%) with M, (C). Let {n1,...,nn}
be any orthonormal basis of C". Then {|n;)(n;| : 1 <4,j < n} is a basis for for M, (C). It is easy
to check that

[76) (5l 17k} (el = 05 i) (el - (6.7)
For any a1 ® m1,as ® mg € B(H) x B(X), we define the product (a1 ® m1)(az ® ma) by

(a1 @ m1)(ag @ ma) = araz ® mima,

and extend this by linearity. Likewise, for any a € () and any m € M, (C), the involution
(a®@m)* = a* @ m*, and also extend this by linearity.
Since { [m;)(nj| : 1 <14,j < n}is a basis of My,(C), the general element a of () ® M,(C)
n

can be written as @ = Z a; j @ |ni)(n;|. By (6.7),

ij—1
n n n n

S ag@ )l | | D] e el | =D D aigbie | © ni)(nel - (6.8)

ij—=1 k=1 if=1 \ j=1

We define M,,(%(7)) to be the set of n xn matrices with entries in #(). Let [a; ;] denote the
element of M.(A()) with i,j entry is a; j. Define a linear transformation from #() ® M,,(C)
onto My (A () by

n
a=) ai; ® m)nl = laig] (6.9)
ij=1
The transformation in (6.9) is evidently injective, and hence is a vector space isomorphism. In fact,
the inverse map is simply given by

n

laig) = > aij @ i) (n;] - (6.10)
i =1

By (6.8), vector space isomorphism is also a algebra isomorphism where M, (Z(5)) is given

the natural product, and one easily checks that [a; ;]* = [a},], so that it is a x-isomorphism.

1,

Jsi
Another identification will be useful in what follows: There is a natural *-isomorphism of

B(AH @ C") with My, (B(H)). Let {n1,...,n,} be an orthonormal basis of C". For j =1,...,n,



7

let V; be the isometry from . into into . ® C™ given by (6.3). Define a linear transformation
from #(# @ C") to M, (#A(H)) by
a— [Vi'aVj] . (6.11)

for all @ € B(H @ C").

This too is also a vector space isomorphism. To see this, let [a; ;] € M, (B(H)), and {n1,...,7,}
an orthonormal basis of C", consider » ;_,[ai ;] ® |n:)(n;| as an element of Z(7# @ C") through
the natural embedding of #(#°) @ M,,(C) into Z(H# @ C™) that is given by (6.5). Then for all
a€ B(AH @C"), and all ¢ € # and all n € C™,

n n

doWravile i)l | Con =" (mp,m)Viavi @ m

i,j=1 i,j=1

= > mpmlViag o)) en
ij=1

=Y VraConen=alen)

,j=1

That is, the transformation (6.10), followed by the natural embedding of #A(.#°) ® M, (C) into
PB(H @ C"), is inverse to the map defined in (6.11). Finally, using (6.4), one readily checks that
the map in (6.11) is a x-algebra isomorphism as well as a vector space isomorphism. We have
proved:

6.3 THEOREM. For any Hilbert space . and any n € N, B(H) @ M,(C), M, (B(H)) and
B(AH @ C"), equipped with their natural x-algebra structures, are all x-algebra isomorphic. More-
over, for any orthonormal basis {m,...,n,} of C", and:

(1) The map in (6.9) is a x-isomorphism of B(H) @ My, (C) onto M,(B(F)), and the map in
(6.10) is its inverse.

(2) The map in (6.11) is a x-isomorphism of B(H @C") onto My (#(H)), and the map in (6.10),
followed by the natural embedding of B(H) @ M, (C) into B(H ® C"), is its inverse.

Since s ® C" is a Hilbert space, #(# @ C™") is a C*-algebra. We may use the x-algebra
isometries provided by Theorem 6.3 to transfer the operator norm in Z(.° ®C") to ()@ M, (C)
and to M, (A(), thus making them C*-algebras, isomorphic to B(# @ C").

The isomorphism is basis dependent, but the norm is not since the norm on a C* algebra is
unique.

6.2 The C* algebras &/ ® M, (C).

There is a natural family of C* algebras associated to every C* algebra o7, namely the C* algebras
o/ @ My (C) for each n € N, which we now define. As a vector space, &/ ® M,(C) is the algebraic
tensor product of the vector spaces o/ and M, (C). Let {n1,...,n,} be any orthonormal basis for
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C". Since the {|n;)(n;| : 1 <1i,j < n}is a basis for M,(C), the general element a of &/ ® M,(C)
has the form .
a= > ai; ®m)mnl (6.12)
ij=1

where for each i, j, a; j € 7.

We give it the natural algebraic structure by defining (a1 ® mi)(a2 ® mg) = (a1a2 ® mims),
and then extending this by linearity. If @ = >7",_; a; ; ® [n;) (n;| and b= >t j=1bij @ |mi)(n;| as in
(6.12), then one checks as above that

ab = Zaz‘,jbj,z & [13) (el - (6.13)
j=1
Defining (a ® m)* = (a* ® b*), makes &7 ® M, (C) a x-algebra.
Let M, (<) denote the set of n x n matrices with entries in /. We write [a; ;] to denote the

element of M, (%) whose i, j entry is a; j. M,(</) is a *-algebra with the obvious operations. Then
by (6.13), the map
n
Z ;5 ® €(i7j) =a — [am']
ij=1
is a * isomorphism of &/ ® M,,(C) onto M, (<), and we use this isomorphism to identify .«# @ M,,(C)
with M, ().

We now claim that there is a norm on & ® M, (C) that makes it a C* algebra. To see this
easily, suppose first that o/ is a C* sub algebra of J# for some Hilbert space 7. Then M, (/) is
evidently a closed subspace of M, (#(.#)) on which we have a natural C*-algebra norm through
the identification of M, (#(.#)) with HAB(7#,) as explained in the previously. Thus, M, () is a
C*-subalgebra of M, (#()).

In general, we can always use the Gelfand-Naimark Theorem to identify o/ with a C*-algebra
of operators, and thus the above discussion applies to the general case.

6.4 DEFINITION. Let & and & be C*-algebras, and let ® be a bounded linear map from &/
to #AB. Then for all n € N, define ®,, := & ® 1¢=», so that

O, (a®@m)=®(a) @m
for all a € o and all m € M, (C). In particular, for any orthonormal basis {n1,...,n,} of C",
n n
O | Y i@ m)ml | = (aiy) @ mi) (] -
ij=1 ij=1
so that for a given by (6.12), ®,(a), considered as an element of M, (<), is given by

[@n(a)i] = [®(ai;)] -

That is, the action of ®,, on [a; ;] € M, (<) is given by the action of ® on each entry of [a; ;].
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6.3 Positive and completely positive maps

6.5 DEFINITION. Let &/ and & be C* algebras. A linear map ¢ : &f — £ is positive in case
®(a*a) > 0 for all @ € . If & and £ have identities 1, and 14 respectively, then ® is unital in
case ®(1y) = 14.

In any C* algebra </, we can write the general element a as a = (a1 — ag) + i(by — ba) where
ai,as,b1,by € 427_;,_. Then

®(a*) = @((a1 — az) —i(b1 — b)) = (®(a1) — P(az)) —i(P(b1) — @(b2)) = ®(a)" .

That is, ¢ automatically respects the involutions on &/ and .
If ® is any *-homomorphism of & into A, then for all a € o7, ®(a*a) = ®(a)*P(a) > 0, and
since every element of &7, if is the form a*a, it follows that every s-homomorphism is positive.
Here is another important example: Let &/ = % = M, (C), and for a € <7, let ®(a) = a”, the

)T TT(I)

transpose of a. Then evidently ® : @ — a” is positive. Since for all a1, as € &7, (aja2)? = aal,

is not a *-homomorphism.

6.6 DEFINITION (n-positive and completely positive). Let &7 and & be C* algebras. A linear
map @ : &/ — A is n-positive in case P, : F KC" — B C" is positive. A linear map ¢ : & — A
is completely positive in case ®,, is positive for all n € N.

6.7 THEOREM. Let o/ be a C*-subalgebra of B(H) for some Hilbert space . Let A be a
second Hilbert space, and let ® : of — B(H") be given by

O(a) =Y WraW, (6.14)
j=1
where for each j = 1,...,m, Wj is a bounded linear transformation from & to 7. Then ® is

completely positive.

Proof. Since a sum of completely positive maps is evidently completely positive, it suffices to
consider the case ®(a) = W*aW for a bounded linear transformation W from .#" to . But for
any n € N, if a = [a; ;] is any element of M, (%),

*

Pn(a) = [Wrai ;W] = (Z W ® \m><m!> > aig @ menel | | YW@ |ny)(n]
i=1 Kkt

j=1
which is clearly positive. O

We will see later that this is essentially the only example: All completely positive maps have
such a form, at least when the Hilbert spaces are finite dimensional.

6.8 LEMMA. Let o be a C* algebra with identity 1. Then for all a,b € &7, a*a < b if and only

if [ ;* Z ] is positive in My(2).



80

Proof. By the Gelfand-Naimark Theorem, we may suppose that o/ is a C* subalgebra of Z(¢)
for some Hilbert space 2.
Suppose b > a*a, and define ¢ = b — a*a. Then

tal_ [t a] Joo]_[1a 1 a oo
at b | | a a'a 0 c| |00 00 0 ¢ |’
which displays the left hand side as a sum of positive operators.

*

<<§>,[; Z]<i>>%®%:Wﬂ%44%@ﬂm%+4%mbf20.

For £ = —an, this becomes (n, [b — a*a|n) » > 0, and this shows that b > a*a. O

For the converse, supose that [ Z ] is positive. Then for all £, € 7,

6.9 THEOREM (Kadison’s Inequality). Let &/ and B be C* algebras with identities 1, and 14
respectively. Let ® be a unital 2-positive map from < to B. Then for all a € o,

®(a)*®(a) < P(a*a) . (6.15)
. 1 .
Proof. Since [ >0in My(«),
a* a*a
o, 1 a _ 1 ®(a) >0,
a* a*a ®(a)* P(a*a)
and by Lemma 6.8, this implies (6.15). O

Associated to every completely positive map ® from a C* algebra to Z(7¢) for a Hilbert space
A is a non-negative sesquilinear form on &/ ® ¢ that we now describe.

6.10 DEFINITION (The Stinespring inner product). Let &/ be a C*-algebra and let J# be a
Hilbert space. Let ® : o — () be completely positive. Consider two arbitrary elements of
o/ @ ¢ which we may take to be of the form

n n
Z“J@mﬁ and ij ®fj
j=1 j=1

for some common value of n € N by allowing some terms to be zero.
Then the sesquilinear form (-,-)g on &/ ® S given by

n

<Zaj®nj,2bj®§j> = Z(m,@(afl)j)fﬁjf (6.16)
j=1 j=1

o ij=1

is the Stinespring inner product on o/ ® .
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The Stinespring inner product is non-negative (as the name suggests): Let Z;”:l a; ®Mn; €

m
of ®@ H, and define a = [afa;] € M,(</). Also define = : € J,, the direct sum of n
U
copies of 7.
Note that .
al a2 o oe. an al 0/2 e an
0 0 --- 0 0 0 --- 0
l@ias] =1 . . . . .. . . |=0
0O 0 --- 0 0 0 --- 0

Therefore, ®,,([afa;]) = [®(afa;)] is positive in M, (#(H)), and

n

> i ®(agaz)n) e = (7, @n(aia;))i) s >0
ij=1

6.4 The partial trace

Recall that every linear functional ¢ on M, (C) is of the form ¢(x) = Tr[zz] for some uniquely

determined z € M,,(C). This is because if we equip M, (C) with the Hilbert-Schmidt inner product

(x,y) = Trlz*y], it is a (finite dimensional) Hilbert space, and then we may apply the Riesz Lemma.
Now suppose that a € (C" ® CP). Define a linear functional ¢, on M, (C) by

z = Tr[(z ® 1)a] =: ¢q(x)

Since this is a linear functional on M, (C), it has the form ¢,(xz) = Tr[bz] for some uniquely
determined b € M,,(C). This brings us to the following definition:

6.11 DEFINITION. Let a € B(C"™ ®C"™). The partial traces of a on C"™ and C” respectively are
the operators Trafa] € M,,(C) and Try[a] € M,,(C) such that for all z € M,,(C) and all y € M,,(C),

Tr[zTre[a]] = Tr[(z @ 1)a] and Tr[yTrifa]] = Tr[(1®@ y)a] . (6.17)

By using an orthonormal basis of C™ @ C™ of the form {n; ® ; : 1 <i<n,1<j<m}, itis
evident that for all y € M,,(C) and all z € M,,(C),

Trly ® z] = Tr[y]Tr[2] . (6.18)
Therefore, when a = y ® z with y € M,,(C) and z € M,(C),
Tr[(z ® 1)a] = Tr[zy @ 2] = Tr[zy|Tr[Z]

where on the right the traces are taken in M,,(C) and M,,(C) respectively. Thus, Tra[y®z] = Tr[z]y.
Likewise, Tri[y ® z] = Tr[y]z.
By Theorem 6.3, the general element a of Z(C™ @ C") has the form

a=Y_ ViaV;®|m)(nl

1,j=1
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where {n1,...,n,} is an orthonormal basis of C", the the isometries Vj, j = 1,...,n, are defined in
(6.3). Then by linearity of the trace and the obvious identity Tr[n;)(n;|] = i ;,

n
Trofa] = >  ViaVj . (6.19)
j=1
By symmetry, the same reasoning applies to a — Try[a]. Let {(1,...,(n} be an orthonormal

basis of C™. For j = 1,...,m, define W; : C" — C™ ® C" by W;n = (; ® n, then we have
Tri[a] = >77_; WraW;. By Theorem 6.7, the maps a — Tri[a] and a +— Trz[a] are both completely
positive.

6.12 EXAMPLE (The partial transpose). As our terminology suggests, not every positive map
is completely positive. Here is an important example. Let &7 = M(C), and let ¥ be the transpose
map ¥(a) = a’. Then ¥ is positive, but ¥y is not. Indeed, identifying .o7 @ Mo (C) = M3(C)® M (C)
with Ma(M5()) ad above, we have that for any a,b,c,d € M3(C),

w(|1i])- -]

need not be positive. To see this, consider the choice a = e p=e12) ¢ =e@land d = (22,

1 0 01
(L1 (1,2) 0000
e e . "
Then L2 o22) ] =100 0 0 is positive, but
1 0 0 1
1 000
v e(bD)  e(1:2) - e 21 10 0 10
2 e(21)  o(2,2) Tl e 22| T o1 0 0
0 0 01
is not positive.
(11 o12) . ,
The fact that @1) 22 | = D=1 e(7) ® e19) revealed the failure of ¥ to be 2-positive
e b e b 2.

is no accident, as we explain in the the next section.

6.5 Choi’s Theorem

Choi’s Theorem gives a complete description of completely positive maps in finite dimensions.
Let Z(M,(C), My,(C)) denote the space of linear transformations from M, (C) to Mj,(C). Let
¢ € L (M,(C), M,(C)) for some n,p € N, and then for any m € N, let ®,, : M,(C) ® M,(C) —
M,(C) ® M,,(C) be defined as above.

We may identify M, (C) ® M,,(C) with Z(C" ® C™) as in Theorem 6.3, and thus may regard
®,, as a linear map from #(C" ® C™) to M,(C) ® M,,(C). To show that ®,, is positive, one
has to show that for all positive a € Z(C" ® C™), ®,,(a) is positive in M,(C) ® M, (C). By the
Spectral Theorem, every positive element a of Z(C™ ® C™) may be decomposed as a sum of rank-
one projections, and thus ®,, is positive if and only if it positive on every rank-one projection in
PB(C" @ C™). Let |£)(£] be such a rank-one projection.
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The general element of £ of C” ® C™ has the form

n
E=D 1@ (6.20)
j=1
for some set {(1,...,(,} of n vectors in C™.
Now define a linear transformation a from C™ to C™ by an; = /n(j for j = 1,...,n, and define
the vector w € C" ® C™ by
1 n
w:\/ﬁj;nj@)nj . (6.21)
Note that w is a unit vector in C" ® C™ and that
E=1,®aw. (6.22)
We now claim that
P (1€)(€]) = (1n ® @)y (|w){w])(1n @ a)* . (6.23)

This is true since ®,, acts on the first factor of M, (C)® M,,(C), while multiplication by (1, ®a)
on the left and by (1, ® a)* on the right act on the second factor of M,,(C) ® M,,(C). To write it
out explicitly, note that by (6.21), |£)({¢] = [(1, ® a)w)((1, ® a)w| = (1, ® a)|w){w||(1, ® a)*. By
Lemma 6.2, (6.20) and (6.21), it follows that

= 3 Il @ GGl and wiel =+ S )il @ o) (o]

1,j=1 1,j=1

Then

i (1€)(ED) = ), (Ina)(njl) @ 1) (Gl

j:
1 n
*52 (In:)(n;1) @ lams) (an;]

= @eea) | = 3 ®(m) o)) © il | (1a )

i,j=1
= (1n ® a)Pp(|w)(w])(1n ® a)*

which proves (6.23). By (6.23), whenever ® (|w><w|) > O then for all £ € C"®@C™, ®,,(|¢)(£]) > 0.

Note that w is a unit vector in C" ® C", and so — Z 17:) (5] @ |ms)(n;| = |w)(w]| is a rank-one

1,j=1
projector, and in particular, is positive. .

We can use any orthonormal basis for form w and the projector onto its span, but at this level
of generality, we might as well use the standard basis:

6.13 DEFINITION (Choi projector and Choi matrix). Let {n,...,n,} be the standard basis of
C™ so that |n;)(n;| is the i, jth matriz unit; i.e., the element of M, (C) with 1 in the ¢, j place and
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0 elsewhere. The Choi projector in M, (C") ® M,(C") is the element

1 n
pe =~ D lm)(ml @ n) (] (6.24)
ij=1

As we have seen above, it is the orthogonal projection |w)(w| onto the span of the unit vector w
given in (6.21).
Let ® be any linear transformation of M,,(C) to M,(C). The Choi matriz of ® is the the element
of M,,(My,(C)) given by
1 n
®u(pe) = — > @(mi)(nl) @ |mi)(ny - (6.25)

n =
1,j=1

We can now restate the conclusion that whenever ®,,(Jw)(w|) > 0, then for all £ € C* ® C™,

O (16)(E1) = 0:

6.14 THEOREM (Choi’s Theorem). Let ® be a linear transformation from M, (C) to My(C).
Then ® is completely positive if and only if @, (pc) is positive where pc is the Choi projector given

by (6.24).

Choi’s Theorem says that ® € £ (My(C), M,(C)) is completely positive if and only if ®,, is
positive, but it says much more than that: To check this, we need only look at ®,, applied to the
single positive element pc.

This proof turns on two essential points: First the extreme points of the unit ball of Z(C"*®C")
are the rank one projectors in Z(C" ® C™), and thus it suffices to consider ®,,(|£)(¢|) for such a
projector. Next, every vector £ in C" @ C™ can be written in the form £ = (1,, ® a)w for some
a € Z(C" C™). That is, acting only on the right factor, one can “steer” w into a general position
in C" ®@ C™. This fact has important consequences in quantum mechanics to which we shall return,
but it for m = n it is something familiar to us: We know that the representation 7 of M,,(C) on
C"®C" given by 7(a) = 1,, ® a is irreducible, and w is a cyclic vector for it. We now give a second
proof of Choi’s Theorem that provides additional information.

Second proof of Theorem 6.14. Suppose that a linear map ¢ from M,,(C) to M,(C) is such that
®(po) is positive. We then apply the Spectral Theorem to write

np
®u(pe) = Y AlG) (]
j=1

where the \; are the (non-negative) eigenvalues of ®(e()), and the (; are the eigenvectors.

n
Each ¢; has an expansion (; = Z Cjk ® nj for vectors (5, € CP and where {n;} is the standard

k=1
basis of C™. Then by Lemma 6.2,

GG =D 16w (Gl @ k) (el -

k=1
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n np
Therefore, ®,(pc) = Y > Ajl¢ix)(Giel @ [me) (mel- Tt then follows from (6.25) that
ké=1j=1
np
(i) (mel) = 1Y AjlGia) (Gl (6.26)
j=1
Now define V; to be the p x n matrix whose k column is (;z, so that Vjn, = (jx. Then

1Gik) (Gl = Vilme)(nelV;". Therefore, if we define W; = (/nA;V}" for each j, we can rewrite
(6.26) as ®(|nx) (nel) = >°52, Wilnk) (ne|W;. But then by linearity, for all a € M,(C),

np
O(a) = WjaWj . (6.27)
j=1
such maps are completely positive by Theorem 6.7. O

The second proof has also yielded another result of Choi:

6.15 THEOREM. Let ® € Z(My,(C),My(C)) be completely positive. Then there is a set
{Wh,...,Wyp} of n x p matrices such that for all a € M, (C), ®(a) is given by (6.27).

6.16 DEFINITION (Krauss operators). If & € Z(M,,(C), M,(C)) is completely positive, then a
set of of n x p matrices {W1, ..., W,,} such that

®(a) = i WraW; (6.28)
j=1

are called a set of Krauss operator for ®, and (6.28) is a Krauss representation of ®.

We shall discuss minimality of Krauss representations in the next section. Note that if the
completely positive map @ given by (6.28) is unital; i.e., ®(1,,) = 1, if and only if

S Wrws =1, (6.29)
j=1

6.17 EXAMPLE (The partial transpose in Z(C" ® C™)). Let ¥ be the transpose map on M, (C),
and let ¥, be its extension to M, (C) ® M,(C) which, upon identifying M, (C) ® M, (C) with
PB(C™ @ C™), we refer to as the partial transpose on B(C" @ C™). We compute

Walpe) = = S bl © Iy ol - (6:30)
ij=1

We now show that ¥, (pc), while self-adjoint, is not positive. Here is an easy way to see this:
Using (6.7) and (6.30), we compute that

1 < 1
(Wn(pe))® = = > i) (mil @ [ns) (nj| = —adn -
ij=1
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Hence all of the eigenvalues of ¥,,(p¢) are all +1/n. By (6.18) and (6.30),

TU(pe)] =+ > Tl il =1
i,j=1

Hence 1/n is an eigenvalue of multiplicity n(n + 1)/2 and —1/n is an eigenvalue of multiplicity
n(n—1)/2.
6.6 Stinespring’s Theorem

6.18 THEOREM. Let o/ be a C* algebra with identity 1, and let ® : of — B(H) be a completely
positive map. Then there exists a Hilbert space # and a unital x-homomorphism 7 : of — B(H")
and a bounded operator V : H# — cK such that ||V ||?> = ||®(1)|| and for all a € <,

®(a) =V*r(a)V and |w(a)] < |al - (6.31)
When ® is unital, V is an isometry, and
7 (@)|* > (a*a) . (6.32)
Proof. Equip the vector space &/ ® s with the Stinespring inner product (-, -)¢. Define
N ={{ed @A : (e =0},

Then .4 is a subspace of & ® 5, and for all £, € & @ H we write £ ~ & incase {—¢ € N
We define an inner product, again denoted (-, )¢ on the quotient space & ® /A" by

{eh{che = (€ 0w

for all £, € & ® /4 and note that by the Cauchy-Schwarz inequality, the inner product is
independent of the choice of representatives. Let % be the Hilbert space completion of & ® 5/ A
in the metric associated to this inner product.

The general element £ of &7 ® 7 has the form & = ij ® ¢ where {(1,...,(n} C A, Let
j=1
a € &/, and define

m(a)é = Zabj ®C .
j=1

Then |7(a)¢|% = (G®(bia*ab;)(;) . Since {(i,...,¢,} is orthonormal, [bia*ab;] € M, (<) is
given by

bl bg bn a*a 0 bn b1 b2 bn

o o0 --- 0 0 aa --- O 0o 0 --- 0
[bia*abj] = | . . . . ) ) : S .| =0 (6.33)
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Since
0 a 0
lal® | R
0 o« o a*a

the factorization (6.33) implies that ||a||?[b}b;] > [bja*ab;], and then since ® is completely positive,
lal®®n ([6b;1) > P ([b;a”abs]) -

Therefore

lall*(€, &o = > Nal®(G@MBb)G) o = Y (GR(bia*ab)()w = (w(a)é, m(a)s)e . (6.34)

i,j=1 i,j=1

In particular, whenever £ € 4, then 7(a)¢ € A4, and conseqeuntly for all £,¢' € & ® A,
E~E = m(a)f ~m(a)f .

Therefore, 7(a) induces a linear transformation on & ® /.4 through the definition

m(a){¢} = {m(a)¢}

and as a further conseqeunce of (6.34), this linear transformation on & ® /.4 is bounded
with norm no greater than ||a||. It therefore extends to an element of % (%), still denoted m(a),
that has the same norm. It is easy to show, mimicking the corresponding argument form the
GNS construction, that a — m(a) is a *-homomorphism from &/ to (), and we have proved the
inequality on the right in (6.31). To prove the inequlaity in (6.32), suppose also that ® is unital, and

let ¢ € . Then |{1y ® (}% = ((, ®(1)C)r = €15 and [[7(a) {1 @ C}HIZ = (¢, ®(a*a))e-
Hence for all non-zero ( € 7,

Im(a){ls ® % _ (G, P(a*a)C)or
H{1le ® CHI% [/

and this proves (6.32).
Next, define V : 7 — & by

Vi={lg®(led /N .
Then [[V¢|[%, = (¢, ®(1s)¢) s0 that

IVIi= sup {[[VCI%}= sup {{¢@(1s)Csr} =201l -

<l =1 <l =1

Next, for all (1,(s €

(€, Vim(@)Vi)w = {1l @ 1}, m(@){ley @ (}a = (C1, P(a)C2)

and this proves (6.31). O
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Now let us specialize to the case in which that o/ = () for a separable Hilbert space JZ.
and in which ® a completely positive map from Z# () to HB(°) that is faithful, meaning that
®(a*a) = 0 only for a = 0. We also suppose that ® is unital.

Then by Stinespring’s Theorem, there exists a Hilbert space %", and an isomerty V : 3¢ — 7,
and a represetnation m of () on B(*%"). By (6.32), when ® is faithful, 7 is injective. Therefore,
by Theorem 2.26, 7 is an isometric isomprphism of (%) otno its image in A(A).

Let % denote w(HB(H)), the image of AB(H°) usnder 7. We may apply Corollary 5.18 to
show that there is a Hilbert space #” such and a unitary W : ¥ — J# ® ' such that 7(a) =
W*(a ® 1 )W, and then

P(a) = (WV)* (a® 1p )WV .
Moreover, since V' is an isometry, the range of WV may be identified with .#°. Then choosing
any unit vector ¢ € #”, the map V;, : € — J ® J# is an isometry, and its range may also be
identified with J#. Let U be any unitary extnding the map n ® ( — WVn, and then we have that
UV, =WV so that finally we obtain ®(a) = VyU*(a ® 1,#)UV,. We have proved:

6.19 THEOREM. Let 5 be a separable Hilbert space and let ® be a fiathful unital completely
positive map from B(H) to B(H). Then there is a Hilbert space ', a unit vector ¢ € ' and
a unitary U on A & ' such that for all a € B(H),

®(a) = VW*U*(CL ® 1)UV, (6.35)
where V¢ is the isomentry from € to 5 @ ' given by Ven =n® (.

Now let p be a density matrix on J¢’; i.e., a postive trace class operator with Tr[p] = 1. Define
a linear functional on A (%) by
a — Trp[pP(a)] .

By Theorem 6.19, we can write
Tror[p®(a)] = Trp[pV; U (a @ 1y ) UV
= Troren[(p @ [O{CU(a ® 1)U
= Troren[(U(p® Q) {CNU)(a @ 1))
= Trp[Tre [U(p @ [(){C)U]a]

Therefore, we may define ®*(p) by
% (p) = Trow [U(p @ |O(CHUT] - (6.36)

Then we have

Tx[0* (p)a] = Trlp®(a)] (6.37)
for all a € #(°). Recalling the Krauss representation for the partial trace Tr - that is associated
to any orthonormal basis {(;} of ##”, we have the Krauss representation of ®*(p):

®*(p) = Y _ Vi lU(p@ [O(CNU* Ve, = Y (U V) (VepVE) (U™ Vy) - (6.38)
i

J
That is,

Tr[®*(p)a] = ZA;ij where A; =V U™V, . (6.39)
J
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6.7 Fixed points

6.20 LEMMA. Let & be a C* algebra. Then

. Z] > 0 in My() if and only if a =0 and
a

a

b > 0. Likewise, [ b
a* 0

] >0 in Ma(<7) if and only if a =0 and b > 0.

Proof. We compute

<(Z>[° Z](Z>>%=m<n,as>w<s,bg>,~f.

If a # 0, choose £ so that a& # 0, and then, for ¢ > 0, n = —ta&. Then

2R(1, af) y + (€, 0€) 5 = —2t[|a€||* + (&, b€) e

For sufficiently large ¢, the irght hand side is negative. Hence positivity of implies that

0 a
a* b
a = 0, and then it is clear that b > 0. The converse is evident, and the statement for the matrix
with 0 in the lower right position follows in the same way.

O

Let o and % be unital C* algebras, and let ® : o — % be completely positive and unital.

*

Since @4 is 2-positive, Kadison’s inequality applied to ®9 at g yields

(o[58 ) (el 6 ])) el ])

®(a*a) — ®(a)*P(a) P(a*d*) — P(a)*P(b)*
®(ba) — @(b)®(a) D (bb*) — D(b)P(b)*

By Lemma 6.20, if either ®(a*a) = ®(a)*®(a) or ®(bb*) = ®(b)P(b)*, then ®(ba) = ®(b)P(a).
Conversely, if for some a € o7, ®(ba) = ®(b)®(a) for all b, then taking b = a*, we have ®(a*a) =
®(a)*®(a), and if for some b € o7, P(ba) = P(b)P(a) for all a, then taking a = b*, ®(bb*) =
O(b)®(b)*. We obtain:

and this is

6.21 THEOREM. Let &/ and B be unital C* algebras, and let ® . &7 — PB be completely positive
and unital. Then

(i){aca : ®(a*a)=P(a)*P(a) } ={a € F : P(ba) = P(b)P(a) for all b € & }, and this set
s a subalgebra of <, and ® is a homomorphism when restricted to this set.

(i) {a€ o : Plaa*) = P(a)P(a)" } ={ac T : ®(ab) = P(a)P(b) for all b € & }, and this set
s a subalgebra of <, and ® is a homomorphism when restricted to this set.

(iii) the set

{aed : ®a%a)=P(a)"Pa)}N{aca : P(aa*)=P(a)P(a)" } (6.40)

is a C* subalgebra of <, and ® is a *-homomorphism when restricted to this set.
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6.22 DEFINITION (Multiplicative domain). The set in (i) of Theorem 6.21 is the left multi-
plicative domain of ®, and the set (i) of Theorem 6.21 is the right multiplicative domain of ®.
Their intersection is the multiplicative domain of ®.

6.23 DEFINITION (Invariant states). Let </ be a unital C* algebras and let ® : &/ — % be
completely positive and unital. A state ¢ € &7, 1 is invariant under ® in case for all a € &7,

$(®(a)) = ¢(a) - (6.41)
6.24 THEOREM. Let & be a unital C* algebras and let ® : & — B be completely positive and
unital, and suppose that ¢ is a faithful state on < that is invariant under ®. Define

C={ced :P(c)=c}.
Then € is a C* algebra of o, and for all a,b € o and all c € €,
®(ach) = P(a)cP(b) . (6.42)

Proof. By Kadison’s inequality, for ¢ € €,

O(c*c) —c*c>0.
Applying the faithful invariant state ¢ yields

d(P(c"c) — c*c) = ¢(c*c) — Pp(c*e) = 0.

Since ¢ is faithful, ®(c*c) = c*¢, and so c¢*c € €. We now have that ®(c*c) = ®(c)*®(c). Since ¢ is
closed under the involution, the same applies with ¢ replaced by ¢*. Thus % is in the multiplicative
domain of ®, and is a C* subalgebra of & by Theorem 6.20, which then also yields (6.42).

0

7 Quantum Measurement

7.1 Measurement in the early days of the Schrodinger equation

In Quantum Mechanics, the state of a system is given by a positive trace class operator p on a
Hilbert space ¢ such that Tr[p] = 1. The state is a pure state in case p is rank-one.

This is more or less consistent with the terminology that we have previously introduced since
we may regard p as a linear functional on %B(.#) through the identifincation of p with that linear
functional a — Tr[pa]. Not all states on HB(.#°) are of this form, but all o-weakly continuous states
are: The totaliy of these may be identified with the set

{peT(H): p>0 and Trjp]=1}.

By the Spectral Theorem, the extreme points of this set is precisely the set of rank-one projections.

The time evolution of states in quantum mechanics is given by the Schroddinger equation: There

is a one parameter unitary group u; on . of the from u; = e~ " where h is a self adjoint operator

on . If at time ¢ = 0 the system is in the state p, then at time ¢ it is in the state upu;.
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The evolution of states is completely deterministic. However, the outcomes of experiemnts are
intrinsically random. The observable of a quantum system; i.e., the quantifiable properties of the
system that may be measured in the laboratory correspond to self adjoint operators a on 7. The
totality of these observables generate a subalgebra of Z#(7#) called the algebra of observables.

von Neumann gave the first mathematical treatment of quantum measurement in his 1927 paper
[25]. This followed the 1926 paper of Born [3] which contains in a footnote the “Born interpre-
tation” of the meaning Schrodinger’s wave function: Born studied scattering in the new quantum
mechanical framework and concluded that the only possible interpretation of Schéedinger’s wave
function ¢ (z,t) was that the outcomes of quantum measurements were inherently probabilistic, and
that with ¢(z,t) normalized so that [, |1 (x,¢)[*dz = 1, the probability of finding the position of
the particle described by this wave function 1 in a (Borel measurable) set B C R is [}, [¢(x, t)|*dz,
and likewise, if z/p\(k, t) is the Fourier transfrom of ¢ (x,t), then [ |1Z(k:, t)|2dk is the probability of
finding the momentum of the particle described by this wave function % in a (Borel measurable)
set B C R3 is In 1952, Max Born was awarded the Nobel Prize in Physics for the content of this
footnote among other contributions.

In 1927, von Neumann [25] developed this statistical interpretation further. In von Neumann’s
theory of measurement, observables correspond to self adjoint operators a on a Hilbert space 7,
and a measurement of such an observable a always yeilds a value in the spectrum of a. One of
the triumphs of Schrédinger’s work on his equation was that he was able to solve the eigenvalue
problem

(=A = [z|™Dd (@) = Xp(z)

for the energy of a hydrogen atom; here A denote the Laplaician and = € R3. The differences
between the eigenvalues that he found corresponded precisely to the energies of spctral lines ob-
served in the light emitted from hydrogen atoms in scattering experiment: In the “old quantum
mechanics”, the possible energy levels of a hydrogen were quantized by fiat. In the “new quantum
mechanics”, they were quantized because the energy was reprentend by a self adjoint operator, not
a function on “phase space”, and the possible vlaues one coul observe were precisely the eigenvalues.

Extrapoloating form this and other early experiments, and Born’s interpretation, von Neumann
proceeded to a more general formulation.

The probability that the experiment measuring the observable represented by a self-adjoint
operator a, yields a value in a Borel set B C o(a), is givin by

(¥, 15(a))

if the system is in the state given by the orthogonal projection onto the normalized vector ¢ € J7.
von Neumann’s theorey was only deleoped in the context of observales (self adjoint operators) with
discrete spectrum. However, it went further than the Born interpretation in an important way:
von Neumann went on to describe the state of the system after a measurement, and the matter of
repeated measurements.

von Neumann’s discussion of measurement applied to self adjoint observable with discrete spec-
trum. Let a be such an observable, and let

a = Z)\j@j (7.1)
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be its spectral decomposition so that e; is the orthoongnal projector onto the jth eigenspace.
During the measurement process, the state p is transfromed into

*(p) = > _pipj
j

where
P}lrjpej pj #0

pj = Trlejp;] and p; = .
j iPj j 0 —

By the cyclicity of the trace, p; = Tr[e;pe;] > 0 since ejpe; > 0. Moreover,

D pi=Tr|> pej| =Tr[p] =1.
j J

Thus, the p; specify a discrete probability distribution. In agreement with the Born interpretation,
for each j, p; is the probability that the measurement of a yields the value A\; when the sytem is
prepared in the state p.

For each j with p; > 0, p; = ejpej is a density matrix, and it gives the state of the

1
Tr[pej]
system after the measurement process in the case that ); is the observed value of a.

The map ®* is the predual of the map ® defined by

O(x) = Zejmej .

Notice that ® is completely positive and unital. Moreover, since eje, = d; re;,

O(P(x)) = Z erejreje, = Z ejre; = O(z)) ,
Jk J

® is idempotent, and likewise, ®* is idempotent.

This is a direct reflection of von Neumann’s repeatibitly hypothesis: If a measurement is repeated
a second time, the same result is obtained both times. Though this hypothesis fit well with the
experiments done in the early days when von Neumann made his proposal, efforts to extend it his
measurement theory to observables with continuous spectrum indicated that this hypothesis might
not be applicable in general, and Wigner [27] gave physical arguments agiaits its general validity.

7.2 Quanum instruments, operations and channels

Important progress was made by Davies and Lewis [5] who introduced the notion of a quantum
instrument, dispensed completely with the repeatibility hypothesis, and treated measurement of
variables with continuous spectrum. The following version of their definition is taken from Ozawa
[20].

7.1 DEFINITION (Quantum instrument). Let X be a complete, separable metric space, and let
A(X) denote its Borel o-algebra. Let .# be a von Neumann algebra on a separable Hilbert space
H, and let A, be its predual. Let & (.#.) denote the set of all positve linear transformation of
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M into itslef. Let (-,-) denote the dual pairing between .#, and .#. Then a quantum instrument
is a map & : B(X) = P (M) such that
(i) For each p € A, (F(X)p,1u) = (p,14).
(i1) For each disjoint sequence {B;} in #A(X),
oo
J(U2iB)) =Y 7 (B))
j=1
where the sum is convergent in the strong operator topology on Z(.#,).
A quantum instrument is called a completely positive quantum instrument in case
(i) for each B € B(X), #(B) is completely positive.
Every von Neuman measurement is given a completely positive quantum instrument. Indeed,

for a self adjoint operator a with discrete spectrum and spectral decomposition (7.1), let X be the
spectrum of a; i.e., X = {\;}. For each j, define @ by

®5(p) = ejpe; -

Finally, for any B C X, define
Ip)=Y_ ®ip).

Jj:\;€B

Two other definition are central to the theory of quantum measurement:

7.2 DEFINITION. Let .# be a von Neumann algebra. A quantum operation is the predual of
a completely positve map ® from .# to .# such that ®(1) < 1. A quantum channel is a unital

quantum operation.

Note that if .# is a quantum instrument for the metric space X, the .#(X) is a quantum channel.

7.3 The Mean Ergodic Theorem

In the next section we shall need von Neumann’s 1931 Mean Ergodic Theorem. We begin with
some preliminaries.
Recall that for any Hilbert space ¢ and any a € #(5),

ker(a*)* = ran(a) . (7.2)

To see this, note that for any ¢ € ran(a)*, and any n € 2, (a*C,n)r = (C,an)» = 0, which
implies that ran(a)® C ker(a*), and therefore ker(a*)* C ran(a)** = ran(a).

On the other hand, for any ¢ € ker(a*), and any n € 5, 0 = (a*(,n)» = ((,an)» = 0, which
implies that ker(a*) C ran(a)*, and therefore ran(a) = ran(a)**+ C ker(a*)*.

Now let u be unitary on s#. Then ker(u — 1) is precisely the sets of vectors in J# that are

invariant under u. Notice that
neker(u—1) <= un=n < n—u'n < necker((u—1)%).
That is, ker(u — 1) = ker((u — 1)*), and then from (7.2), for any unitary wu,

ker(u — 1)T =ran(u — 1) . (7.3)
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7.3 THEOREM (von Neumann’s Mean Ergodic Theorem). Let u be any unitary on a Hilbert
space J, and let p be the orthogonal projector onto ker(u — 1). Then

1 N
lim — "=
AL%OO]V'jiqu p
n=1
where the convergence is in the strong operator toplogy.

Proof. We must show that for all n € J2,

N
D A
Ry nz_l wn=pn - (7.4)

Write 7 — 01 + 12 where 0y = pn and 1y = ptn. By (7.3), 7o € Tan(u — 1). Since u™n = n; = pm
for all n, (7.4) is trivially true with n; in place of 7.
N

1 -
Since the operator N Zu” is a contraction, it converges to zero strongly on ran(u — 1) =
n=1

ker(u — 1)+ if and only if it converges to zero strongly on ran(u —1). Let (u —1)¢ € ran(u — 1), By
the telescoping sum identity, for each IV,

1 Y 1 nas
NE un(u—l)C:N(u o),
n=1

and this tends to zero as N tends to infinity. Since pne = 0, it follows that (7.4) is true with 7, in
place of 7. O

We need a more general result that is obtained by combining Theorem 7.3 with a dilation
theorem of Sz.-Nagy. We introduce the concept of a dilation theorem with the sinplest example:

Let 7 be a Hilbert space and let v be a partial on 7. Let p = (vv*)* = 1, — vv* be the
projector onto ran(v)*. Define an operator u on # @ # by

v p
_ 7.5
u [ - (75)
0 1, 0
Then since v*v = 14 and pv = 0, vu* = vop v = 7 = lpqgw. This
0 o* p W 0 1y,

02

shows that u is unitary on ¢ @ . Also, u?> = ! 0 so that for all m € N, u?™ =

0
(U*)2 )

2m
0
UO (w2 |- Therefore, of we define U : 5 — 5 @ 5 by Un = (1,0), we have that for all
v
n € N,

ot =U"U . (7.6)

Note that U is one of the obvious embeddings of 77 into Z ® 7, and U* is the correpsonding
projection back onto .#. When u and v are related in this way, we say that the unitary u is the
dilation of the isometry v, and that v is the compression of the unitary u.
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We now explain how to dilate a contraction into an isometry. Let a € Z(5) be an arbitrary
contraction; i.e., ||a|| < 1. The Hilbert space 2 ®.#” may be identifed with the space of all sequences
{n;}, m; € A for j € N such that Y j = 1°°||n;|%, < oo, and equipped with the inner product

{1 A Y o = D5 G) o
j=1
Define w : lo ® 7 — lo @ € by

)1/2

w(771777277737~-) = (0”717(1 m,n2, 7737"‘) .

Then w is evidently an isometry, and if we define W : 5 — # by Wn = (n,0,0,...), we have
that for all n € N,

= W*w"W . (7.7)
Note that W is one of the obvious embeddings of 7 into ¢ ® 7, and W* is the correpsonding
projection back onto .77.

7.4 THEOREM (Sz.-Nagy’s Dilation Theorem). Let J# be a Hilbert space, and let a be a con-
traction on €. Then there is a Hilbert space & and an isometry V : I — &, and a unitary u
on X such that for alln € N, n € N,

= V"V (7.8)

We now combine Theorem 7.3 and Theorem 7.4: Let 7 be a Hilbert space, and let a be a
contraction on #. Then with V and u as in Theorem 7.4,

P v (R v

By Theorem 7.3, hm N Za ) exists and is equal to V*pV where p is the projection onto

ker(u — 1). Clearly,

N 1 N
I = i "Na=lim (=S a"] .
g () = g (3o (20

n=1

It follows that aV*pV = V*pVa = V*pV, and then for all n € N,
a"V*pV =V*pVa" =V*pV .
Averaging over n = 1,..., N and taking the limit N — oo, we obtain (V*pV)? = V*pV, and
hence V*pV is an orthogonal projection. If n € ker(a — 1,¢), then an = n for all n, and hence
V*pVn = n. That is, ker(a — 1) C ran(V*pV). Next, using aV*pV = V*pV once more,
V*pVi(a— 1) (a —1,)V*pV =0, and hence ran(V*pV) C ker(a — 1,~). This shows that V*pV
is the orthogonal projection onto ker(a — 1,-). We have proved:

7.5 THEOREM (Mean Ergodic Theorem for Contractions). Let ¢ be a Hilbert space. Let a be
a contraction on €. Let q be the orthogonal projectz'on onto ker(a — 1,¢). Then

hm—ga
N—ooo N

where the convergence is in the strong operator topology.
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7.4 Lindblad’s No Cloning Theorem

In this section, following Lindblad, we consider quantum copying in a finite dimensional quantum
system: The Hilbert space 7 is simply C" for some finite n, and the algebra of observables .#
is a sub-algebra of M, (C). In fact, following Lindblad, we make the further assumption that
M = M, (C), so that all self adjoint n X n matrices are observable.

Let ® : # — .# be a quantum channel. Since .# = M, (C) we may apply Choi’s Theorem,
and can write

O(a) =) ViaV; where » ViV;=1, (7.9)
j=1 j=1

where m < n2.

We are also interested in the predual action of ® on states: For a state p, define ®.(p) by
D.(p)(a) = p(®(a)) for all a.

More genrally, @, is defined on the set of all self adjoint linear functionals on ., which we
regard as a real Banach space X. Then the positive linear functionals are a convex cone K in X
and X = K — K. Since K is invariant under ®,, it follows from the Krein-Rutman Theorem that
the spectral radius of @, is an eigenvalue A of &, with an eigenvector in K. That is, there exists
po € K such that ®.(pg) = Apo. Since py is not zero, we may normalize it so that po(1) = 1.

Since @ is unital, for all n, (1) =1, and so

1= po(1) = po(@1) = Ap(1) .

Therefore, A = 1. Thus, pg is an invariant state for ®.
Let S¢ denote the set of invariant states:

Se={pc#} : p(1)=1 and P,p=p}

We have just seen that Sg is not empty, and clearly it is a compact, convex set in ..
For each p € Sy, let p, denote the support of p; i.e., the smallest orthogonal projector such that
p(pp) =1, and it has the property that doe all a € .Z,

pla) = p(ppap,) -

In fact, identifying p with the density matrix such that p(a) = Tr[pal, p, is the projection onto the
range of the density matrix rho, in which case p = p,pp,.

By taking convex combinations, we find a pg € Sy with maximal support pg. Then the range
of py contains the range of p, considered as a density matrix, so that

puppy =p forall pe Sy . (7.10)
By Kadison’s inequality, ¥(py) = ¥(p3,) > ¥(py)?, and hence ¥(py) is a contraction. Next,

1= po(pw) = po(¥(pw))

and hence py < ¥(py).
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Now consider the map \T/(a) = py(¥(pw(a)py))pw. This is completely positive and ff’(pq,) = py.
By (7.10), for all @, and all p € So,

p(¥(a)) = p(pa¥ (puaps)ps) = p(¥(puapy)) = p(puaps) - (7.11)

Note that py is the identity in the algebra M = pw.# py, and if we regard all operators in this
algebra as opaerators on % = ran(pg), it is a von Neumann algebra and U is a unital completely
positive map on .#. By (7.11), for all a € .4, p(¥(a)) = p(a), and thus every state in Sp is
invariant for U.

In the other direction, suppose that p is invariant for ¥ on .. Define a state p on A by

pla) = p(peaps) ,
and note that for all a € .#, p(a) = p(psaps). Then for all a € .#,

pla) = plpeape) = p(¥(psaps)) = p(pe¥ (poaps)pw) = p(¥(poaps))
Then p is an inavariant state for the completely positive but non-unital map a — ¥(pgapg.
In summary, every invariant state for ® is an invariant state for another completely positive
unital map ® on smaller algebra for which there is a fiathful invariant state pg.
Now assume that we have made this reduction and the S¢ contains a faithful state pg.

7.6 LEMMA. Let € be the fived point algebra of ®. Then € is the commutant of {V1,...,Vin}.

Proof. Since 7% VIV =1, if a € {Vi,...,V;,} than evidently a € €. That is, {V1,...,Vin}' C
©.

The other containment more work to prove and makes use of the faithful invariant st pg. For
a € M,(C), define p(a) = n~'Tr[a]. By Theorem 6.24, the existence of py ensures that ¢ is a C*
algebra. Next, for all a € M, (C),

n n

> e, Vil*la, V] =Y (Via® — a* V) (aV; — Via)
j=1 j=1

I
MS

1
(a*a) — ®(a)'a — a*P(a) —a*a

|
S

Because € is a C* algebra, When a € €, ®(a*a) = a®(a)* = a*®(a) = a*a. Therefore, when
a € % the calculuation we have made above yeilds >°%_,[a, V;]*[a,V;] = 0, and this shows € C
Vi, Vi) 0

For our second use of the faithful invariant state pg, we equip .# with the inner product

<a7 b>ﬂo = po(a*b) )

which makes it a Hilbert space, since pg is faithful. Now note that by Kadison’s inequality,

po(a*a) = po(®(a*a)) = po(®(a)"®(a)) ,

which shows that ® is a contraction in this Hilbert space.
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7.7 LEMMA. Let ® be unital completely positive map from M, (C) to M, (C) with faithful invariant
state pg. . Then

1 N
_— n
Jim > = Ea
n=1
exists and is a unital completely positive projection from M, (C) to M,(C).

Proof. Since ® is a contraction in the Hilbert space asociated to any faithful invariant state, this
is a direct consequence of Theorem 7.5. O

It is obvious that for all a € M,,(C), ®(Eg(a)) = Eg(a), so that the range of Fg is contianed
in ¢, the fixed point algebra of ®. But obviously if a € ¥, then Eg(a) = a, and hence the range
of Eg is exactly . Again by Theorem 6.24, for all ¢ € ¢ and all a,b € M, (C),

Eg(ach) = Eg(a)cEg(b) and Eg =PoEy =Ego® =FEgoEgp . (7.12)
We refer to Ep as the conditional expectation in M, (C) onto the subalgebra %

7.8 LEMMA. Let ® be a unital completely positive map on 4 with a faithful invariant invariant
state pg. Let Eg be the conditional expectation onto the C* algebra of fized points of ®. Then Sg
is the image of the set of all states on .# under (Eg)x.

Proof. Let p be any state on .#, and consider the state (Eg).p. Then for all a € #,

E®).p(®a)) = p(Ee(®(a)) = p(PEg(a)) = p(Es(a)) = (E)«p(a) -
Thus, (Eg)«p is an invariant state. On the other hand if p is an invariant state, (Eg)s«p = p. O

We now apply our knowledge of the structure of € It is evidently a finite sum of type I factors.
Thus, our Hilbert space .57 = C" is the direct sum of finitely many subspaces

N
At =D
n=1

each of which is invariant under %, and such that for each n, the center of the restriction of € to
J;, is trivial. Let p, be the projection in J# onto 4, and define €,, = €pn = ppEpn.
Since each %, is a type I factor, each 77, can be factored as

% = %,6 ®%L,T

and we have that
Cn = B(H0) @ L, -

7.9 THEOREM. Let ® be a unital completely positive map on A with a faithful invariant in-
variant state py. Let FEg be the conditional expectation onto the C* algebra of fized points of ®.
Then there are density matrices {o1,...,0N}, where oy, acts on I, ., such that for all y € B(H),

N
Eao(y) =Y Tr, (1, ® 0n)paypn] @ 1, , -

n=1
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Proof. Define Wy : B(H) — B(H) by U(a) = SN puap, which is unital and completely
positive. Since each %, is invariant under ®, it is clear that

E@ZE(I,O\I’OZ\I/()OEq).

Therefore, Fg has the form
N

E(a) =Y (Es)n(pnapn)

n=1
For each n, let u,, be the partial isometry embedding %, into .7 so that w, is the projection
pn, considered as a map from % to .7, and not as an elelment of Z (7). Then for any n and any
a € B(Hpp), un(a® 1y, Juy € 6, C €, and hence Eg(un(a® 1y, ,)uy,) = un(a® 1, , )uy,, which
we can write more simply as
(Eq,)n(a X 1j;f;w) =a® 1jfnm .

Since Eg has the properties listed in (7.12), so does each (Es )., and by what we have remarked
just above, since

a®@b=(a®ly, )Ly, @b) =y, Qb)(a®ly,,) ,
(Eo)n(a®b) = (a® 1y, ,)(Ea)n(lx,, ®b) = (Eo)n(l,, ®bJa®ly,, .
Thus (E)n(ls,, ® b) belongs to 6, = B(H#,0) ® 1, , and commutes with every element of
B(Hnp) @ 1y, .. 1t follows that (Eg)n (1, , ®b) is a multiple of the identity on J7; i.e.,
(Ee)n(l,, @) = Ab) L, -

Since (Eg)y is completely positive and unital, the map sending b to \(b) is evidently a state, and
thus there is a positve matrix o, on ¢, , with Tr[o,] = 1 such that A(b) = Tr[o,b] for all b.
Therefore,

(E@)n(a X b) = Tr[onb]a X 1'%‘;m .

This in turn shows that for all x € Z(7,,),
(E(I))n(x) = Tr%n,r[(l'-%(fn,ﬁ ® O-n)x] ® 1jﬁb,’l' .
O

7.10 THEOREM. Let ® be a unital completely positive map on .# with o faithful invariant
invariant state py. Then there are density matrices {o1,...,0N}, where oy, acts on J,,, such
that for all whenver p € Sg, there are positive numbers {w1,...,wy} summing to 1 and density
matrices {p1,...,pn}, where p, acts on €, such that

N
pzzwnpn(g)o'n .

n=1

Proof. Let p be any state on .#. Then for all y,

N
(Eo)sp(y) = p (Z T, (1, , © 0n)pnypn] © 1%;1,T> :
n=1
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Considering p as a density matrix, we may wrte this is

N
(Ba)wp(y) = > TrlpTr, (1, , © 00)pnypnl © L, ]

n=1

N
= Z Tr[(Tr,%ﬂn,r [pnppn] ® Un)pnypn] .

n=1

For each n = 1,..., N, define w,, = Tr[p,ppn]. Then if w, = 0, define p,, to be an arbitrary
density matrix on .74, y, and in case w, > 0, define

pn = wy, " Tty [Pnppn) -

N
Then we have (FEg)«p(y) = Z wpTr[(pn, ® 0p)y], and if p € S, p = (Es)«p- O

n=1

A finite dimensional quantum copying machine is a particular sort of completely positive unital
map VU from B(74 @ H#3) to B(H). The predual U, of ¥ maps states on HB(.#]) to states on
B @ H3).

Associated to ¥ are the two maps ¥y and ¥,y given by

Ui(a) = U(a®@1ly) and Wa(b) = U(ly, D) .

For j = 1,2 let U, ; denote the predual of ¥;. Then W, ; maps states on H(J) to states on
B(H;)-

7.11 THEOREM. In the notation established above, let € be the C* subalgebra of B(H) con-
sisting of elements that are invariant under V1. Then for all b € B(H3),

‘lfg(b) €¢ .

Proof. Let W(z) =, W zW); be the Krauss representation of . Let {ny} and {{} be orthonor-
mal bases of A and S respectively. Define A, : 5 — 74 ® 4 by Ay = ( ® &, and define
By, : 5 — JA ® I by Br( =, ® (.

Then for all a € B(JA), a® 1 =Y, AjaAy and for all b € B(H3), 1,1, @b =), BiaBy.
Therefore, ¥1(a) = EM Wi AjaAWj, and then by Lemma 7.6,

& = {AW;}).

Hence, for a € €,
aAW; = AWj;a and anAZ = W;AZ(I i
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Therefore, for all a € ¢ and all b € #B(.4),

V(ia®b)=Y((a®lum)(ly b))

= U((Ajadi(ly ® b))
l
= "V AjaA(Ln ®b)V;
7.0
= aVi A A1y ®b)V;
7,0
=" Vi (Ly @ b)V; = als(b)
J

Since it is also true that a®b = (1,4 ®b)(a®1,4), a similar computation shows that V(A®b) =
Uy (b)a. Altogether, we have a¥s(b) = Uy (b)a. O

Now we specialze to the case in which J# = % = 5, and consider a unital completely postive
map VU from B(H) @ B(H) to B(). Then the predual ¥, maps states on ZB(I) to states on
B(H) @ B(H). We say that U, successfully clones a state p on B(H) in case

Tes[W(p)) = p and Tru[T.(p)] = p .

This is the same as U, jp = p for j = 1,2. For j = 1,2, let % be the fixed point algebra of ¥;. By
Theorem 7.11, the image of Ws is contained in %], and hence %, C %]. Likdewise, 1 C %5. The
larger the invariant algebra, the larger the set of invariant states, and hence the set of invariant
states is larges when 4] = ;. But in this case, every state p that is invariant under both ¥, , and
Vs . has the form

N
P = Z W Pn @ On,
n=1

for two fixed sets {pi1,...,pn} and {o1,...,0n} of sensity matrices determined by ¥; and Wq
respectively. This is a comuting set of density matries. Thus, a quantum copying machine is
strictly limited in what it can successfully copy.

7.5 Majorization

Let a be a self-adjoint n X n matrix. Let (A1,...,\,) be the eigenvalues of a, repeated according to
multiplicity, and arranged into a vector in R™. Let {n1,...,n,} be an orthonormal basis of C", and
define the vector (au, ..., ay) where for each j, a; = (n;,an;). (This is the diagonal sequence of a
in the basis {n1,...,m,} ; i.e., the sequence of diagonal entries of the matrix representing ¢ in this
basis.) For any vector x = (z1,...,2,) in R", let * be the vector obtained from z be rearranging
its entries in non-decreasing order: ] > 25 > --- > z,.

By the variational principle for the eigenvalues of a, for each k =1,...,n,

k k
dar<) N, (7.13)
j=1 j=1
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and since the traces may be computed in any orthonormal basis,

ay =) N (7.14)

n
=1 7=1

J

7.12 DEFINITION (Majorization in R™). Let o« = (av,...,a,) and A = (A1,...,\,) be two
vectors in R™ Then \ weakly majorizes o in case (7.13) is valid for all K = 1,...,n, and in this case
we write a <, \. We say that A majorizes o in case v < \ and moreover, (7.14) is satisfied.

Note that the decreasing rearrangement of —a is given by (—a)* = (—«

a < A if and only if —a < —A.
It is easy to see that for if p is any probability vector in R™, i.e., a vector in R™ with non-negative

*

v, --—aj), and therefore

entries that sum to 1, and we define

Pmin = (1/n,1/n,...;1/n) and ppax = (1,0,...,0) . (7.15)

then
Pmin < P < Pmax - (716)

As we shall see, majorization provides a useful measure of how “disordered” a probability vector
is, and by considering sequences of eigenvalues associated to density matrices, a useful measure of
how “disordered” a quantum state is.

Some caution is required in the passage from finite to infinite dimensions. Let J# be a separable
Hilbert space, and let a be a compact self adjoint operator on .. Suppose that a has infinitely
many positive eigenvalues and but also some negative eigenvalues. If we arrange the eigenvalues
in non-increasing order, then all of the negative eigenvalues, along with any that are zero, are
pushed infinitely far out in the sequence and are lost. Thus we cannot use rearrangement to define
majorization for infinite sequences in which both signs are present.

Let ¢9(N,R) denote the set of real sequences « indexed by N such that lim,_,~ o, = 0. Note
that if a is a self adjoint compact operator, then both its diagonal sequence and its eigenvalue
sequence belong to ¢g. For J C N, let |J| denote the cardinality of J. Let ¢1(N,R) denote the
subspace of ¢g(N, R) consisting of absolutely summable sequences.

7.13 DEFINITION (Majorization in ¢y(N,R)). Let o, A € ¢o(N,R). Then X\ weakly majorizes «
in case for all k € N

sup Z)\j : |J| =k 3 >sup Zaj | =k (7.17)
jeJ jedJ
and in this case we write o <, A.
In case a, A € £1(N,R), we say that A\ majorizes a in case both a <, A and —a <, —\ and

moreover,
o0 (o @]

D= o (7.18)
j=1 j=1

In this case we write o < .
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In contrast to the the finite dimensional case where in the presence of (7.14) either of o <y, A
or —a <y —A implies the other, this is not the case for infinite sequences. The definition is such
that it is still the case that o < A if and only if —a < —\, a basic symmetry that will be referenced
frequently.

The suprema in (7.17) need not be maxima. The simplest case is that in which all term in A
have a single sing; e.g., they are all non-negative. Then of course we can form the non-increasing
rearrangement \*, and

k
supQ Y Az [T =k =) A1, (7.19)
j=1

Jj€J
More generally, if we let )\;'f denote the jth non-negative term in A and there are m non-negative
terms in A, then (7.19) is valid for all & < m.
However, if there are only m non-negative terms in A, with m < oo, then for all & > m,

e}

sup{ > N =k =Y (A, (7.20)

JjeJ 7j=1
and the supremum is not obtained: After using all of the non-negative terms, one must start using
negative terms, and these can be chosen arbitrarily close to zero sine A € ¢o(N,R), but not equal
to zero.
Note that if @ has no positive terms, then for all k, sup{zjej a; - |J|= kz} = 0. More
generally, if a has only m positive terms, then for all £ > m

sup Zaj : |J|=kp=0=sup Zaj |JJ=mp=0,
jed j€J

and thus (7.17) is valid for all % if it is valid for & < m.

The following characterization of weak majorization is essential in what follows.

7.14 THEOREM. Let a, A € co(N,R). Then a <y, A if and only if for all t > 0,

o0

Doy =1y <> (A=) (7.21)
j=1

j=1
Proof. Suppose that a <, A\. If « is non-positive, then (7.21) is trivially true. If a has positive
terms, for any ¢ > 0, it can have only finitely many satisfying a; > ¢. Fix ¢ > 0, and let k be the
cardinality of { j : «; >t }. Then the identity is (7.19) is applicable and

Z i — 1)y = sup Zaj s | =k p —kt. (7.22)

j=1 JjeJ

Now fix € > 0, and pick K C N with |[K| = k such that »_A; >sup{ Y _A; : |[J| =k —e.
jEK jedJ
Then

i)\—t >3 Nt =) Nkt =supd Y Nz [T =k —e—kt.
j=1

JjeEK JEK jeJ
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Combining this with (7.22) and « <, A yields (7.21) for this, and hence all, ¢ > 0.
Conversely, suppose that (7.21) is valid for all ¢ > 0. Taking the limit ¢ | 0, we see that
o o
D (@) <D A+ (7.23)

J=1 J=1

Suppose that A has only m positive terms, where m may be finite or infinite. For any k& < m, let ¢
be the kth smallest positive term in A. Then using the identity (7.19) again,

o0

S (-t =supd > N ¢ |[J|=kyp —th
j=1 jeJ
However, for any set J C N with |J| =k, Z(aj —t)y > Z(ozj —t)y > Zaj — tk. Hence
j=1 jedJ jeJ

Zozjgsup Z)\j =k

jeJ jeJ

for all such J and all k£ < m. For k > m, (if m is finite) sup {ZjeJ Ao | J| = k} =021 (Aj)+s
and for all k,

sup Zaj | =k SZ(aj)+.

jed j=1

Hence the general conclusion follows from (7.23). O

7.15 COROLLARY. Let a, A € £1(N,R) with o < X\. Then

D) <> () and Y (—ay)y <Y (<A)4 -
j=1 j=1 j=1 j=1
Proof. This follows from (7.21) in the limit ¢ | 0. O

7.16 LEMMA. Let a,\ € ¢1(N,R) be non-zero and suppose that o < X, and that all of the
entries of A are non-negative. Then all of the entries of a are non-negative, and there is a sequence
A € £1(N,R) differing from X\ in at most two terms such that

a<\=<\

and such that max{a;} is equal to a term in . More specifically, there exist terms Ay and A, in
A such that Ay, < max{a;} < X\, and such that with

Am = max{a;} and A, := Ay, + A\, — max{a;} ,

and 5\j = \j for j #m,n, then a < A< A
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Proof. Since A is non-negative and —«a <, —A, it follows that « is non-negative as well. Consider
the set of terms in A that are greater than or equal to max{a;}. This set in finite since A € £1(N,R)
and non-empty since a < A. Let m be its cardinality. Let {\,,,..., A\, } be this set arranged in
non-increasing order.

Let Ap,,,, be a term in A with the next largest value which is necessarily non-negative but less
than max{a;}. We then have

Any =0 2> Ay > max{og} > Ay, -

If \p,,, = max{a;} we are already done, so suppose that this is not the case. Note that all terms in
A that are not included in {A,,,..., An,, ., } have a value that is no greater than A
Now define

Nm+1

A,
S\nm+1 = min{max{a;} , A\, + An, — max{a;}}, (7.24)

= maX{maX{OZj} ) Anm + Anm+1 - maX{aﬂ}}

and for all j # k, k + 1, define \; = \;. Note that P A= PINEPVEDPETS
Observe that for k < m, or k=m+1,

k

k
sup Z)\j:\ﬂ:kz :ZAnj:ZS\nj:sup Zj\j:\ﬂzk , (7.25)
j=1 j=1

jeJ jeJ

and for all & > m, sup Z)\j | J| =k ) =sup ZS\] :|J| =k p. This shows that that for all
jeJ jeJ
k expect possibly k = m.

sup Zaj:|J|:k < sup Zj\j:]ﬂ:k
Jj€J jeJ

To deal with the final case,

sup Zaj:]ﬂ:m < sup Zaj:|J|:m—1 + o
jeJ jed

< sup Z)\j:\J]:m—l + a; = sup ZS\]-:|J|:m—1 +ap
jeJ jeJ
71~ m
= )\nj+a1§ A -
J

3

(7.26)

1 j=1

This proves that o <, A. Since none of the negative terms of A\ have been changed, the fact that
—a <y —A follows directly from —a <, —A.
To see that A < A, note that

N> M 0,0 F < {ms A, 0,0 }
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and then by Theorem 7.14, for all ¢ > 0,

(S\mn - t)+ =+ ()‘nmﬂ - t)Jr < ()‘mn - t)+ + ()\nm+1 - t)+ .

Since all other terms in the two sequences are equal,

S—t <Y (-t
j=1 j=1
for all ¢ > 0, and then A < A by Theorem 7.14 once more. O

7.17 THEOREM (Horn-Gohberg-Marcus Theorem). Let h be a positive semidefinite trace class
operator on a separable Hilbert space €. Let {n;}jen be any orthonormal basis of H . Define
A € l1(N,R) by

Aj =g hmjloe  JEN. (7.27)

Let o € ¢1(N,R) be non-negative and non-increasing and such that o < .
Then there ezists a closed subspace 4 C A and an orthonormal basis {(;} for 4 such that

aj = (¢j, h¢j)e forall jEN. (7.28)
If 74 is a proper subspace of H, its orthogonal complement lies in ker(h).

Proof. We build the orthonormal basis recursively using a method of Gohberg and Marcus. Since
a is non-increasing, max{a;} = a;. By Lemma 7.16 there exist terms \,, and A, in A such that
Am < a1 < A, and such that with

A i=a1 and Ay = Am + Ay — max{a;} ,

and 5\]- = \j for j # m,n, then o < .

Consider the parameterized unit circle 7(t) := cos t1,,+sin tn,, in the real span of {n,, 7, }. Since
(n(t), hn(t)) # is equal to Ay, for t = 0 and to A, for ¢ = /2, continuity ensures that there is some
to such that (n(t), hn(to)).» = max{c;}. Define (1 = n(to), and & = n(to + 7/2). Then {(1,&1} is
orthonormal with the same span as {7, nm}. Replace 7 with the orthogonal complement of (i,
and now let {n;} denote the the orthonormal basis for this space in which &; is the first element,
and the rest is given by the sequence {n;} with the terms 7, and 7, deleted.

Replace a with the sequence obtained by deleting o1 and shifting the other terms up. Replace
A by the sequence S\j = (n;, hn;) » using the new orthonormal basis. By Lemma 7.16, the new «
and \ again satisfy a < A.

We may now repeat the procedure to find, in the orthogonal complement of (;, a unit vector (s
such that ({2, h(2) » = a2, and again get an orthonormal set of vectors such that the corresponding
sequence of diagonal entries of h majorizes the sequence am now with a; and «g split off, and the
other terms moved up.

Evidently, this operation may be repeated indefinitely, thus producing the orthonormal set {¢;}
such that (7.28) is satisfied. Let %] be the span of the orthonormal set {(;}. If S = # we are
done. It remains to show that if 77 is a proper subspace of 7, its orthogonal complement lies in
ker(h).



107

Let {&;}rex be an orthonormal basis for J% = ,%”ﬁ. Define the compact positive operator a
by

oo

- Z<CJ7hCJ>ﬁ” GG+ Z (&ks h&k) e

Jj=1 keK

&) (k|

8 I

= |GG+ D Gk héi) e 1€e) (]

j=1 keK

Since a has the same diagonal elements as h in the orthonormal basis {(;} U {{x}, and since we
may compute the trace in any orthonormal basis we choose,

Tr[h Z aj+ Y (& hék)
keK
Computing the trace of h in the original {n;} basis, using using the fact that o < A, we find

:Z/\jzzaj .
7=1

=1

<.

It follows that (&x, héx).» = 0 for all k € K, and then since h is positive, this means that h&, = 0
for all k € K. Thus, h vanishes on J%3. O

7.18 COROLLARY. Let S be a separable Hilbert space, and let h be a positive semi-definite
trace class operator on F. Let X\ € £1(N,R) be the sequence of eigenvalues of h repeated according
to multiplicity and arranged in non-increasing order. Let o € £1(N,R) be arranged in non-increasing
order. Then an necessary and sufficient condition for there to exists an orthonormal basis {(;} of
HC and a unitary u on € such that for all j € N,

o = (G, (W hu)()» and  Aj = (G, h¢j) e - (7.29)
1s that o < \ .

Proof. Because u*hu and h have the same eigenvalues with the same multiplicities, when (7.29) and
{n;} is an orthonormal basis of ¢ consisting of eigenvectors of h, then a < X by the variational
principle for sums of eigenvalues. In the other direction, let {eta;} and {(;} be the two bases
constructed in the theorem, and let u be the unitary such that un; = ¢; for all j. O

7.19 COROLLARY. A necessary and sufficient condition on two non-negative and mnon-
increasing sequences a, X in £1(N,R) for ae < X is that there exist non-negative numbers

{wj,k : j,k c N}
such that

> wjg=1forallk and » wj=1"forallj. (7.30)
j=1 k=1

and

aj = ij,k)\k for all j . (7.31)
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Proof. Suppose o < . Let {n;} be any orthonormal basis for /¢, and define the operator

h=">"Ajlnj)(njl -
j=1

Then X is the eigenvalue sequence of h. By Corollary 7.18, there to exists an orthonormal basis {(;}
of 7 and a unitary u on J¢ such that for all j € N, such that for each j, h = > ;21 A |Cm) (Gl
and
o o
aj = (G uhuGy) e =Y AelGu™, Co o (Go uls) e =D Ml (G uly) e
=1 =1
Define wj, = (s, u¢j) »|*. Note that since u is unitary, both (7.30) and (7.31) are satisfied.
Conversely, suppose that both (7.30) and (7.31) are satisfied. Then for each k € N,

0= 3 (Suve 3 o)

j=1 j=1 l=k+1
k k 0o
> Z ij,g A¢ + Z ( Z wj,é) Ak+1
=1 \ j=1 j=1 \l=k+1
k [e's) k 00
= Z 1— wie | Ao+ Z ( Z wj,e) Ak+1
(=1 j=k+1 J=1 M=k+1
k: k;
ZZ Z(Z wﬂ) — Ait1) ZZ
=1 l=k+1 (=1

This proves that o <y, A, and —a <y, — A is trivially true. It follows immediately from (7.30) and
(7.31) that 3272, a; = »72, A, and thus a < A, O

7.20 THEOREM. Let f be a concave function on [0,00). Let o, X € £1(N,R) be non-negative and

non-increasing. If a < A, then

Zf(aj) > ) - (7.32)

If furthermore f is strictly concave, then there is equality in (7.32) is and only if oy = Xj for all j.
Finally, if f is not only concave, but also nondecreasing, then for all k € N,

oo

Zfay > f) - (7.33)
j=k

Proof. Note first of all that since f is concave on [0,00), f has a definite sign (0, d) for some § > 0,
and hence all but at most finitely many terms in the sequences { f(a;)} and {f();)} have the same
sign, and this both sums are well defined.

By Corollary 7.19, there exist non-negative numbers

{wjr : j,k €N}

such that (7.30) and (7.31) are satisfied.
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Then for each j
[e.e] o0
=f <Z wj,e)\z) > wief(N) - (7.34)
r=1 =1
Therefore,
o0 o0 (o]
> ) = > wiefh) =D (M)
=1 G=1 =1
If there is equality, then there must be equality in (?7?) for each j. In case f is strictly convex, this
means that for each j, there exists j, such that w;, = 1 for j = j, and w;, = 0 for j # j,. Since «

and A are both non increasing, this means that o = .
Finally suppose that f is non-decreasing as well as concave. For each k € N define

g9(x) = min{ f(z) , f(A) } -

Then g is concave, and by the first part.> 22, g(a;) > Z;’i
9(Aj) = g(Ak—1) > g(z) for all z, and since for j > k, g(\;) =

g(A

(Aj)
[e's) [eS) k—1
D glay) = g0) + [ D lgw) ) > Z FA
purt =k

j=1 J=1K

;). Therefore, since for j < k,

Then since g(x) > f(x) for all z, (7.33) is proved. O

7.6 Some open problems discussed in class

The Lindblad No-Cloning Theorem [15] is only proved in a finite dimensional setting. A crucial
part of the argument was a structure theorem for algebras of observables that are left invariant by
a quantum operation, the associated conditional expectation, and the associated set of invariant
states. Conditional expectations are studied in Arveson [2]; this paper discussions some aspects of
the construction in a more general setting.

Lindblad’s argument is central to another focus of current research activity that grew out of
fundamental work of Lieb and Ruskai [10, 11, 12] on Strong subadditivity of quantum entropy, as
discussed in class. As we have seen with Kadison’s inequality, knowing the cases of equality can
also be important. This is certainly the case with strong subadditivity. The cases of equality in the
finite dimensional case have been determined in a paper of Hayden, Jozsa, Petz and Winter, [7],
and the connection with Lindblad’s No-Cloning Theorem is made explicit. Again, it would be good
to go beyond the finite dimensional case. A new and interesting approach to these inequalities can
be found in the very recent paper of Sutter, Berta and Tomamichael [23].

With regard to Lin’s Theorem discussed earlier in the course, there is a very interesting recent
paper of Ogata [18] who proves an old conjecture of von Neumann, discussed in class, concerning
approximation of almost commuting operators. This is non-quantitative and non-constructive. The
very recent quantitative version of Lin’s Theorem due to Kachkovskiy and Safarov [8] may provide
some clues as to how to prove a quantitative and constructive version.

Also, Neilsen’s Theorem [16] which characterizes the pure states that can be reached form a
given pure state using only LOCC operations is a beautiful application of the theory of majorization,
but there is no such result yet for mixed states.
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The proceedings volume Entropy and the Quantum by Simms and Ueltschi [22] contains a

number of introductory lectures to open problems in the area. The lectures in this volume by

Luc Rey-Belet on quantum large deviations are particularly interesting in terms of the challenges

posed. There are many, many other interesting open problems, but this is a selection of problems

and references discussing problems that might be particularly timely.
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