
OPERATOR ALGEBRAS AND NON-COMMUTATVE

ANALYSIS:

An introductory course with application in quantum mechanics

Eric A. Carlen1

Department of Mathematics, Hill Center,

Rutgers University, 110 Frelinghuysen Road Piscataway NJ 08854-8019 USA

May 4, 2016

Contents

1 Introduction 2

1.1 Basic definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The spectrum and the resolvent set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Properties of the inverse function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Characters and the Gelfand Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Characters and spectrum in commutative Banach algebras . . . . . . . . . . . . . . . 15

2 The Spectral Theorem for C∗ Algebras 18

2.1 Spectral invariance and the Abstract Spectral Theorem . . . . . . . . . . . . . . . . 20

2.2 Continuity of the spectrum and the functional calculus . . . . . . . . . . . . . . . . . 22

2.3 Positivity in C∗ algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Homeomorphisms of C∗ algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Projections in C∗ algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Lin’s Theorem 28

3.1 Almost commuting and nearly commuting . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The finite spectrum problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Approximation of normals by normals with finite spectrum . . . . . . . . . . . . . . 31

3.4 The Bott invariant and obstructions to commutativity . . . . . . . . . . . . . . . . . 36

3.5 The Bott invarinat as a trace function . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Operators on Hilbert space 42

4.1 Topologies on B(H ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 The measurable functional calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1 c© 2016 by the author. This paper may be reproduced, in its entirety, for non-commercial purposes.

1



2

4.3 The polar decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Trace class operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Hilbert-Schmidt operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 The σ-weak topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Representations of C∗ algebras 62

5.1 Irreducible representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Central covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 The structure of type I factors of von Neumann algebras . . . . . . . . . . . . . . . . 66

5.4 States on a C∗ algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 The GNS construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 The GNS construction for Mn(C) and the normalized trace . . . . . . . . . . . . . . 73

6 Completely positive maps 74

6.1 Some important isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 The C∗ algebras A ⊗Mn(C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Positive and completely positive maps . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 The partial trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Choi’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Stinespring’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.7 Fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Quantum Measurement 90

7.1 Measurement in the early days of the Schrödinger equation . . . . . . . . . . . . . . 90

7.2 Quanum instruments, operations and channels . . . . . . . . . . . . . . . . . . . . . 92

7.3 The Mean Ergodic Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Lindblad’s No Cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5 Majorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.6 Some open problems discussed in class . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Abstract

We give an elementary introduction to the subject of operator algebras and non-commutative

analysis with the emphasis on material related to a number of open problems arising from

quantum mechanics.

1 Introduction

1.1 Basic definitions and notation

1.1 DEFINITION (Banach algebra). A Banach algebra is an algebra A over the complex num-

bers equipped with a norm ‖ · ‖ under which it is complete as a metric space such that

‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A . (1.1)
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1.2 EXAMPLE. Let X be a locally compact Hausdorff space, and let C0(X) denote the set of

continuous complex valued functions on X that vanish at infinity, and equip it with the supremum

norm. Then with the usual algebraic structure of pointwise addition and multiplication, A = C0(X)

is a Banach algebra. This is the canonical example of a commutative Banach algebra. There is a

multiplicative identity if and only if X is compact.

1.3 EXAMPLE. Let A = L1(Rn) equipped with the convolution product

f ∗ g(x) =

∫
Rn
f(x− y)g(y)dy .

Let the norm be the L1 norm. Then A is a commutative Banach algebra that does not have an

identity.

1.4 EXAMPLE. Let H be a Hilbert space, and let A = B(H ), the set of all continuous linear

mapping from H to H , equipped with the composition product and the operator norm

‖a‖ = sup{ ‖aψ‖H : ψ ∈H , ‖ψ‖H = 1 }
= sup{ <(〈ϕ, aψ〉H ) : ϕ,ψ ∈H , ‖ϕ‖H , ‖ψ‖H = 1 } , (1.2)

where ‖ · ‖H is the norm on H , and 〈·, ·〉H is the inner product in H . This is the canonical

example of a non-commutative Banach algebra.

1.5 EXAMPLE. Let A be the algebra of n×n matrices. The Frobenius, or Hilbert-Schmidt norm

on A is the norm ‖ · ‖2 given by

‖a‖2 =

 n∑
i,j=1

|ai,j |2
1/2

where ai,j denotes the i, jth entry of a. By the Cauchy-Schwarz inequality, for all a, b ∈ A ,

‖ab‖2 =

 n∑
i,j=1

∣∣∣∣ n∑
k=1

ai,kbk,j

∣∣∣∣2
1/2

≤

 n∑
i,j=1

(
n∑
k=1

|ai,k|2
)(

n∑
k=1

|bk,j |2
)1/2

= ‖a‖2‖b‖2 ,

and thus (1.1) is satisfied. Note that the algebra of n × n matrices with the operator norm is the

special case of Example 1.4 in which H = Cn.

1.6 DEFINITION (C∗-algebra). A C∗ algebra is a Banach algebra equipped with a conjugate

linear map ∗ : A → A , the action of which is written as a 7→ a∗, and which satisfies the properties

(i) The ∗ map is an involution; for all a ∈ A , a∗∗ = a.

(Ii) For all a, b ∈ A , (ab)∗ = b∗a∗ .

(iii) For all a ∈ A ,

‖aa∗‖ = ‖a‖2 . (1.3)

When discussing a C∗ algebra it is convenient and standard to refer to the map a 7→ a∗ as the

involution in A .
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In a C∗ algebra, the involution is always an isometry. This is because

‖a‖2 = ‖aa∗‖ ≤ ‖a‖‖a∗‖ ,

where we used (1.3) and (1.1) in succession. Then for a 6= 0, we have ‖a‖ ≤ ‖a∗‖, and then

‖a∗‖ ≤ ‖a∗∗‖ = ‖a‖, so that ‖a∗‖ = ‖a‖ for all a ∈ A . The condition (1.3) is much stronger than

the condition that a 7→ a∗ be an isometry.

1.7 EXAMPLE. In Example 1.2, take the involution to be pointwise complex conjugation of the

functions that constitute the algebra. The conditions (i), (ii) and (iii) are all clearly satisfied in

this case. Thus, C0(X) equipped with this structure is a commutative C∗-algebra.

Similarly, in Example 1.4, take define the involution by taking a∗ to be the Hermitian conjugate

of a. That is, for all ϕ,ψ ∈H ,

〈a∗ϕ,ψ〉H = 〈ϕ, aψ〉H .

It is immediate from this that a 7→ a∗ is conjugate linear and an involution satisfying (ii). Also, It

is immediate from this and (1.2) that ‖a∗‖ = ‖a‖ for all a. Moreover, for all ψ ∈H ,

〈ψ, aa∗ψ〉H = 〈a∗ψ, a∗ψ〉H = ‖a∗ψ‖2 ,

and hence

‖aa∗‖ = sup{ <(〈ϕ, aa∗ψ〉H ) : ϕ,ψ ∈H , ‖ϕ‖H , ‖ψ‖H = 1 }
≥ (sup{ ‖a∗ψ‖H : ψ ∈H , ‖ψ‖H = 1 })2 = ‖a∗‖2 = ‖a‖2 .

1.8 EXAMPLE. If we equip the convolution algebra of Example 1.3 with the convolution given by

pointwise complex conjugation, this innvolution is an isometry since for any f ∈ L1(R), ‖f‖L1(R) =

‖f∗‖L1(R). However, the stronger property (1.3) does not hold in general in this algebra. To see

this, let ρ and σ be two non-negative functions in L1(Rn). Fix λ ∈ R and define functions f and g

in L1(Rn) by

f(x) = ρ(x)eiλx and g(x) = σ(x)eiλx .

Then

f ∗ g(x) = eiλxρ ? σ(x) so that ‖f ∗ g‖L1(R) = ‖ρ ∗ σ‖L1(R) .

However,

f ∗ g∗(x) = eiλx
∫

R
ρ(x)σ(x− y)e−2iλydy ,

and now a simple argument using the Riemann-Lebesgue Lemma and the Dominated Convergence

Theorem shows that ‖f ∗ g∗‖L1(R) converges to zero as λ is taken to infinity. Hence (1.3) fails in

this Banach algebra.

Now consider Example 1.5, and again define a∗ to be the Hermitian conjugate of a. This is

a conjugate linear involution, and as above, (ab)∗ = b∗a∗ for all a, b. This involution is even an

isometry in the Frobenius norm since

‖a‖22 =
n∑

i,j=1

|ai,j |2 =
n∑

i,j=1

|a∗j,i|2 = ‖a∗‖22 .

However, the property (1.3) fails. Recall that this algebra has a multiplicative identity e, the n×n
identity matrix. Evidently, e∗ = e, and so were (1.3) to hold, we would have ‖e‖2 = ‖ee∗‖2 = ‖e‖22,

but for n > 1 this is false since ‖e‖2 =
√
n.
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The condition (1.3) is very strong. As we shall soon see, given an algebra A with a conjugate

linear involution ∗ satisfying (ab)∗ = b∗a∗ for all a, b ∈ A , there is at most one norm on A

that makes it a C∗ algebra. We shall also see that our two examples of C∗-algebras, given in

Example 1.7 are universal. In particular, a theorem of Gelfand and Naimark says that every C∗

algebra is isomorphic to a sub-algebra of B(H ) for some Hilbert space H that one constructs

from the algebra itself using the Galfand-Naimark-Segal construction, to which we sahll come.

An operator C∗algebra is an operator norm closed subalgebra of B(H ) that is closed under

Hermitian conjugation and closed in the operator norm. The term C∗-algebra was first applied in

this context by Irving Segal in 1947. The theorem of Galfand and Naimark shows that “abstract”

C∗-algebras, as defined here, are essentially the same thing.

There are other important topologies in B(H ) that are weaker than the topology given by the

operator norm. In particular, there is the weak operator topology on B(H ) which is the weakest

topology under which the maps

a 7→ 〈ϕ, aψ〉H
are continuous for all ϕ,ψ ∈ H . Every subset (and hence subalgebra) of B(H ) that is weakly

closed is norm closed, but not vice-versa in the case that H is infinite dimensional. A von Neumann

algebra is a subalgebra of B(H ) that is closed under Hermitian conjugation and closed in the weak

operator topology. Thus, von Neumann algebras are a special type of C∗ operator algebras, and

these shall be important to us also.

We shall be especially interested in von Neumann algebras, but every von Neumann algebra is

a C∗ algebra, and every C∗ algebra is a Banach algebra, and it is natural to begin developing the

theory at this general level, which we do in the next subsection.

1.2 The spectrum and the resolvent set

Let X be a locally compact Hausdorff space that is not compact. Then A = C0(X) equipped

with the usual structures is a Banach algebra without an identity. Let Ã be the larger algebra

obtained by adjoining to A the constant functions, λ1, λ ∈ C. Then every ã ∈ Ã has the form

ã(x) = λ+ a(x) where a ∈ C0(X). Then for λ+ a and µ+ b in Ã ,

(λ+ a)(µ+ b) = λµ+ (λb+ µa+ ab) .

The constant function 1 is the multiplicative identity in Ã .

The procedure can be done in general. Let A be any Banach algebra, with or without a unit.

Define Ã to be C⊕A with the multiplication

(λ, a)(µ, b) = (λµ, λb+ µa+ ab) , (1.4)

and the norm

‖(λa)‖ = |λ|+ ‖a‖ . (1.5)

By the definitions,

‖(λ, a)(µ, b)‖ = ‖(λµ, λb+ µa+ ab)‖ = |λµ|+ ‖λb+ µa+ ab‖
≤ |λ||µ|+ |λ|‖b‖+ |µ|‖a‖+ ‖a‖‖b‖
= (|λ|+ ‖a‖)(|µ|+ ‖b‖) = ‖(λ, a)‖‖(µ, b)‖ .
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This shows that (1.1) is satisfied, and hence that Ã is a Banach algebra. Now define e = (1, 0) ∈ Ã .

Then (1, 0)(λ, a) = (λ, a)(1, 0) = (λ, a) so that e is the identity in Ã .

The original algebra A is embedded in Ã as the subalgebra consisting of elements of the form

(0, a). None of these elements are invertible even when A itself has an identity. Indeed, if (λ, a)

has an inverse (µ, b), then

(1, 0) = (λ, a)(µ, b) = (λµ, λb+ µa+ ab) ,

and this is impossible if λ = 0. However, it will be important in what follows that if A has a unit

1, then 1− a is invertible in A if and only if (1,−a) is invertible in Ã .

1.9 PROPOSITION. Let A be a Banach algebra with unit 1. Then 1 − a is invertible if and

only if there exists b ∈ A such that

ab = ba = b− a . (1.6)

consequently, 1− a is invertible in A if and only if e− a is invertible in Ã .

Proof. Suppose that 1− a is invertible. Define b = (1− a)−1 − 1. Then (1− a)b = 1− (1− a) = a,

and hence ab = b− a. The proof of ba = b− a is similar.

Now suppose that there exists b ∈ A such that (1.6) is true. Then

(1 + b)(1− a) = 1 + b− a− ab = 1 and (1− a)(1 + b) = 1− b+ a− ba = 1 .

This proves the first part.

For the second part, suppose that 1− a is invertible in A . Then there exists b ∈ A such that

(1.6) is satisfied. Regarding a and b as elements of Ã , (1.6) is satisfied also in Ã , and hence (1,−a)

is invertible in Ã .

Finally, suppose that (1,−a) is invertible in Ã , and let (λ, b) be the inverse. Then

(1, 0) = (1,−a)(λ, b) = (λ, b− λa− ab) .

Evidently λ = 1, and then b− a− ab = 0. A similar argument shows that b− a− ba = 0, and now

the first part implies that 1− a is invertible in A .

1.10 DEFINITION (Spectrum and resolvent set). Let A be a Banach algebra, and let a ∈ A .

If A has a unit, the spectrum of a in A , σA (a) is defined to be the set of all λ ∈ C such that

λ1 − a is not invertible. If A does not have a unit, then σA (a) is defined to be the spectrum of

(0, a) ∈ Ã . The resolvent set of a in A , ρA (a) is defined to be the complement of σA (a).

Let A be a Banach algebra with a identity 1. Then we can still carry out the process of

adjoining an identity to form Ã , and can regard each a ∈ A also as an element of Ã . Since no

element of A is invertible in Ã , 0 ∈ σ
Ã

(a) for all a ∈ A . However, for λ 6= 0, λ1−a is invertible if

and only if 1− a/λ is invertible. Likewise, (λ− a) is invertible if and only if (1,−a/λ) is invertible.

Then by Proposition 1.9, λ1− a is invertible in A if and only if (1, 0)− (0, a/λ) is invertible in Ã .

This shows that for λ 6= 0, λ ∈ σA (a) ⇐⇒ λ ∈ σ
Ã

((0, a)). We summarize:

{0} ∪ σA (a) = σ
Ã

((0, a)) . (1.7)
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1.11 LEMMA (Spectral Mapping Lemma). Let A be a Banach algebra, and let p be a polynomial.

In case A has no identity, we suppose that p has no constant term. Then

p(σA (a)) = σA (p(a)) .

Proof. We may suppose that p is not identically constant. We first suppose that A has an identity.

Fix λ ∈ σA (a). We shall show that p(λ)1− p(a) is not invertible. The polynomial p(λ)− p(z) has

a root at z = λ, and hence

p(λ)− p(z) = (λ− z)q(z)

for some polynomial q(z). Replacing z by a,

p(λ)1− p(a) = (λ− a)q(a) .

Were p(λ)1 − p(a) invertible, we would have 1 = (λ − a)[q(a)(p(λ) − p(a))−1], and then since

polynomials in a commute, 1 = [q(a)(p(λ) − p(a))−1](λ − a). This would mean that λ1 − a is

invertible, with contradicts our hypothesis that λ ∈ σA (a). Hence p(λ)−p(a) is not invertible, and

hence p(λ) ∈ σA (p(a)). this shows that p(σA (a)) ⊂ σA (p(a)).

Next, fix µ ∈ σA (p(a)), and factor

µ− p(z) = α(λ1 − a) · · · (λn − z)

where α 6= 0 and n ≥ 1. For each j, µ = p(λj). We have

µ1− p(a) = α(λ11− a) · · · (λn1− a)

and if each λj1−a were invertible, then µ1−p(a) would be invertible, but this is not the case. Hence

Hence for some j, λj ∈ σA (a), and µ = p(λj) ∈ σA (p(a)). This shows that σA (p(a)) ⊂ p(σA (a)),

and completes th proof when A has an identity. The general case now follows by adjoining an

identity and then appealing to (1.7).

1.3 Properties of the inverse function

Now let A be a Banach algebra with an identity 1. Let a ∈ A be such that ‖1− a‖ = r < 1. Then

by the defining property (1.1), ‖(1− a)n‖ ≤ rn for all n ∈ N. For all n ∈ N, define

sn =
n∑
j=1

(1− a)j

where, as usual, we interpret (1−a)0 = 1. Then for all n > m, by the triangle inequality and (1.1),

‖sn − sm‖ ≤
n∑

j=m+1

‖(1− a)j‖ ≤
n∑

j=m+1

rj =
rm − rn

r − 1
.

Hence {sn}n∈N is a Cauchy sequence in A . Now for the first time we use the metric completeness

of A : There exists b ∈ A such that limn→∞ ‖b− sn‖ = 0. But then

ba = lim
n→∞

sna = lim
n→∞

sn(1− (1− a)) = lim
n→∞

(1− (1− a)n+1) = 1 .

The same reasoning shows that ab = 1, and so a is invertible. Let Ω denote the set of invertible

elements in A . This brings us to:
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1.12 LEMMA. Let A be a Banach algebra with a unit. Let Ω be the set of invertible elements

of A . Then Ω contains every a ∈ A such that ‖1 − a‖ < 1, and in this case a−1 is given by the

convergent series

a−1 =
∞∑
j=0

(1− a)j .

Moreover, if |λ| > ‖a‖, then λ1− a is invertible, with

‖(λ1− a)−1‖ ≤ 1

|λ| − ‖a‖
. (1.8)

In particular, σA (a) is contained in the closed disk of radius ‖a‖ ∈ C.

Proof. It remains to prove the final part. If |λ| > ‖a‖, the λ1−a = λ(1−λ−1a) and ‖1−(1−λ−1a)‖ =

|λ|−1‖a‖ < 1, so that (1− λ−1a) is invertible.

At this point, we do not know in general that σA (a) is not empty, but we do know this of

ρA (a). We now claim that Ω is open. This has the immediate consequence that ρA (a) is open,

and hence that σA (a) is closed, though at this point the possibility that σA (a) = ∅ has not yet ben

eliminated.

Let a0 ∈ Ω and a ∈ A . Then ‖1− aa−1
0 ‖ = ‖(a0 − a)a−1

0 ‖ ≤ ‖a− a0‖‖a−1
0 ‖ Therefore, for any

r ∈ (0, 1),

‖a− a0‖ ≤ r‖a−1
0 ‖
−1 ⇒ ‖1− aa−1

0 ‖ ≤ r ⇒ aa−1
0 ∈ Ω .

Since Ω is closed under multiplication, a = (aa−1
0 )a0 ∈ Ω. This shows that for all a0 ∈ Ω, the open

ball of radius ‖a−1
0 ‖−1 an center a0 is contained in Ω. In particular, Ω is open.

Now recall that a function F from a Banach space X to itself is Frechet differentiable at x0 ∈ X
in case there is a continuous linear transformation L from X to itself such that for all x ∈ X,

‖F (x0 + x)− F (x0)− Lx‖ = o(‖x‖) ,

and in this case, L is unique and is the Frechet derivative of F at x0. We now show that the inverse

function a 7→ a−1 is Frechet differentiable at every a0 ∈ A , and that the derivative is the linear

transformation

a 7→ −a−1
0 aa−1

0 .

This is a simple consequence of an important identity that we record in a lemma:

1.13 LEMMA (First resolvent identity). Let A be a Banach algebra with an identity 1. Let Ω be

the set of invertible elements. For all a, b ∈ Ω,

a−1 − b−1 = a−1(b− a)b−1 . (1.9)

Proof. Simply expand the right hand side.

Now suppose that a0, a0 + a ∈ Ω. Then

(a0 + a)−1 − a−1
0 = −(a0 + a)−1aa−1

0 = −a−1
0 aa−1

0 + [a−1
0 − (a0 + a)−1]aa−1

0 .
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By (1.1) once more and the continuity proved above,

‖[a−1
0 − (a0 + a)−1]aa−1

0 ‖ ≤ ‖a
−1
0 ‖‖a

−1
0 − (a0 + a)−1‖‖a‖ = o(‖a‖) .

We are now ready to show that for all a in any Banach algebra, σA (a) 6= ∅. Let ϕ be any

continuous linear functional on A , regarded as a Banach space. Such functionals exist (and are

plentiful) by the Hahn-Banach Theorem. Define a complex valued function f in the resolvent set

ρA (a) by

f(ζ) = ϕ((ζ1− a)−1) .

Note that the resolvent set includes {ζ : |ζ| > ‖a‖}, and that by (1.8),

lim
ζ→∞

f(ζ) = 0 . (1.10)

Next, by the identity (1.9),

f(ζ + η)− f(ζ) = ηϕ[((ζ + η)1− a)−1)(ζ1− a)−1] .

From this identity and the continuity of the inverse function, it follows that

lim
η→0

f(ζ + η)− f(ζ)

η
= ϕ[(ζ1− a)−2] ,

which shows that f is an analytic function on ρA (a).

If the resolvent set ρA (a) were all of C, f would be an entire analytic function, and on account

of (1.10), f would also be bounded. By Liouville’s Theorem it would then be constant, and by

(1.10), the constant would have to be zero. In particular, we would have f(0) = 0. Therefore, for

every continuous linear functional ϕ on A , it would be the case that ϕ(a−1) = 0. This contradicts

the Hahn-Banach Theorem. We summarize:

1.14 THEOREM. Let A be any Banach algebra with an identity 1. Then for all a ∈ A , σA (a)

is a nonempty closed set contained in the closed disc of radius ‖a‖ centered at 0 in C.

It is now a simple matter to prove:

1.15 THEOREM (Gelfand-Mazur Theorem). Let A be a Banach algebra with identity 1. If A

is a division algebra, then A is isomorphic to C. More specifically, each element a of A satisfies

a = λ1 for some necessarily unique λ ∈ C, and a 7→ λ is an isomorphism with C.

Proof. Suppose that A is a division algebra. By Theorem 1.14, there exists λ ∈ σA (a). Thus

λ1−a is not invertible. Since the only non-invertible element in a division algebra is 0, a = λ1.

1.16 DEFINITION (Spectral radius). The spectral radius of an element a of a Banach algebra

A is

ν(a) = max{ |λ| : λ ∈ σA (a) } . (1.11)

1.17 THEOREM (Gelfand’s formula). The spectral radius of an element a of a Banach algebra

A is given by

ν(a) = lim
n→∞

‖an‖1/n . (1.12)

In particular, the limit exists.
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Proof. Suppose that λ ∈ σA (a). Then by the Spectral Mapping Lemma, λn ∈ σA (an), and then by

Theorem 1.14 and (1.7) in case A lacks an identity, |λ|n ≤ ‖an‖. Taking the nth root, we obtain

ν(a) ≤ ‖an‖1/n for all n ∈ N.

It remains to show that

lim sup
n→∞

‖an‖1/n ≤ ν(a) . (1.13)

To this end, pick λ with |λ| > ν(a) so that λ ∈ ρA (a). Let ϕ be any continuous linear functional

on A . Then, as in the proof of Theorem 1.14, the function f defined by f(λ) = ϕ((λ1 − a)−1) is

analytic on ρA (a). Define ζ = 1/λ, g(ζ) = f(1/λ) = ζϕ((1− ζa)−1), which is analytic on the open

disc about 0 with radius 1/ν(a).

For ζ with |ζ| < ‖a‖−1, (1 − ζa)−1 has the convergent power series (1− ζa)−1 =
∞∑
n=0

ζnan.

Therefore, by the uniqueness of the power series representation, g(z) =
∞∑
n=0

ζn+1ϕ(an) is a conver-

gent power series for all ζ with |ζ| ≤ 1/ν(a). It follows that for all such ζ, limn→∞ ζ
n+1ϕ(an) = 0.

In particular, there exists a finite constant Cϕ such that

|ζn+1ϕ(an)| ≤ Cϕ for all n ∈ N . (1.14)

Now, for each n ∈ N define a linear functional Λn on A ∗, the Banach space dual of A , by

Λn(ϕ) = ζn+1ϕ(an) .

Then (1.15) says that

sup
n∈N
{ |Λn(ϕ)|} ≤ Cϕ . (1.15)

The Uniform Boundedness Principle then implies that there exists a finite constant M such that

‖Λn‖ ≤M for all n, and hence for all ϕ ∈ A ∗ with ‖ϕ‖ = 1,

|ζ|n+1|ϕ(an)| ≤M for all n ∈ N

. The Hahn-Banach Theorem provides ϕ ∈ A ∗ with ‖ϕ‖ = 1 such that ϕ(an) = ‖an‖. Hence we

have |ζ|n+1‖an‖ ≤M . Taming the nth root of both sides,

|ζ|‖an‖1/n ≤
(
M

|ζ|

)1/n

.

This proves that |ζ| lim supn→∞ ‖an‖1/n ≤ 1. However, ζ was any complex number with |ζ| <
1/ν(a), this proves (1.13).

We close this section with the following results that is trivial for commutative Banach algebras,

and familiar for the algebra of n× n matrices.

1.18 THEOREM (Spectrum of ab and ba). If A is a Banach algebra, then for all a, b ∈ A ,

{0} ∪ σA (ab) = {0} ∪ σA (ba) . (1.16)
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Proof. By passing to Ã , we may suppose that A has an identity. For each λ 6= 0, we must show

that (λ1 − ab) is invertible if and only iff (λ1 − ba) is invertible. Dividing through by λ, we may

take λ = 1. Therefore, suppose that (1− ab) is invertible, and let z = (1− ab)−1. Then

(1− ba)(1 + bza) = 1− ba+ bza− babza
= 1− ba+ b(1− ab)za = 1− ba+ ba = 1 .

Likewise, (1 + bza)(1− ba) = 1, and so (1− ba) is invertible with inverse (1 + bza).

1.19 THEOREM (Spectral Contraction Theorem). Let A and B be Banach algebras, and let

π : A → B be a homomorpism. Then for all a ∈ A ,

σB(π(a)) ⊂ {0} ∪ σA (a) . (1.17)

Proof. Adjoin identities to A and B, and define π̃ : Ã → B̃ by π̃((1, a)) = (1, π(a)). This is

a homomorphism, and takes the identity in Ã to the identity in B̃. Since adjoinng an identity

had no effect on non-zero spectrum, we may assume that A and B have identities 1A and 1B

respectively, and that π(1A ) = 1B.

Now suppose that λ ∈ ρA (a). Then 1A = (λ1A − a)(λ1A − a)−1. Since π is a homomorphism,

1B = π(1A ) = (λ1B − π(a))π((λ1A − a)−1) .

Thus π((λ1A − a)−1) is a right inverse of λ1B − π(a), and the same reasoning shows it is also a

left inverse. Hence λ ∈ ρB(π(a)). This shows that ρA (a) ⊂ ρB(π(a), which is equivalent to the

statement σB(π(a)) ⊂ σA (a), and even shows that when A and B have identities and π takes the

identity in A to that in B, it is not necessary to adjoin {0} on the right side in (1.17)

1.4 Characters and the Gelfand Transform

1.20 DEFINITION (Characters). A character of a Banach algebra A is a non-zero algebraic

homomorphism from A to C. The set of characters of A is denoted ∆(A ), and the set {0}∪∆(A )

is denoted ∆′(A ).

Though characters are defined with respect to the algebraic structure alone, they are necessarily

continuous:

1.21 LEMMA. If A is a Banach algebra and ϕ is a character of A , then ϕ(a) ∈ σA (a), and

|ϕ(a)| ≤ ‖a‖ (1.18)

for all a ∈ A . That is ϕ is a contraction from A to C. Moreover, if A has an identity 1, then

ϕ(1) = 1.

Proof. Suppose first that A contains an identity 1. We first prove the final statement. Since

ϕ(1) = ϕ(12) = (ϕ(1))2, ϕ(1) solves ζ − ζ2 = 0, so either ϕ(1) = 0 or ϕ(1) = 1. But if ϕ(1) = 0,

then for all a ∈ A , ϕ(a) = ϕ(1a) = ϕ(1)ϕ(a) = 0, and this is excluded by the definition. Hence

ϕ(1) = 1.
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Next, for any a ∈ A , ϕ(a)1 − a is not invertible, and hence ϕ(a) ∈ σA (a). To see this, note

that ϕ(ϕ(a)1− a) = 0, but if ϕ(a)1− a had even a right inverse b, we would have

1 = ϕ(1) = ϕ((ϕ(a)1− a)b) = 0ϕ(b) = 0 .

Then since σA (a) is contained in the closed centered disc of radius ‖a‖, (1.18) is proved.

Now suppose that A lacks a unit. Let Ã be the algebra obtained by adjoining an identity, and

let ϕ̃ be the character on Ã given by

ϕ̃((λ, a)) = λ+ ϕ(a) ,

which is easily seen to be a character. Since σA (a)) = σ
Ã

((0, a)) be definition, and ϕ̃((0, a)) = ϕ(a),

it follows from the above that ϕ(a) ∈ σ(a), and then that ‖ϕ(a)‖ ≤ ‖(0, a)‖ = ‖a‖.

Note that if ϕ ∈ ∆(A ), then for all a, b ∈ A ,

ϕ(ab) = ϕ(a)ϕ(b) = ϕ(b)ϕ(a) = ϕ(ba) .

Consequently, ϕ(ab − ba) = 0 for all a, b. When the algebra A is not commutative, this can be a

stringent constraint, and there may not exist any characters at all.

1.22 EXAMPLE. Let A be the algebra of 2× 2 matrices. The Pauli matrices are

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
and σ3 =

[
1 0

0 −1

]
.

Then with [a, b] denoting the commutator ab− ba,

[σ1, σ2] = i2σ3 , [σ2, σ3] = i2σ1 and [σ3, σ1] = i2σ2 .

It follows that for any homomorphism ϕ of A into C, ϕ(σj) = 0 for j = 1, 2, 3. Next, the identity

matrix I satisfies I = σ2
1, and so ϕ(I) = (ϕ(σ1))2 = 0. Thus, for all (z0, z1, z2, z3) ∈ C4,

ϕ(z0I + z1σ1 + z2σ2 + z3σ3) = 0 .

Since every evidently {I, σ1, σ2, σ3} is linearly independent and A is 4 dimensional, A is the span

of {I, σ1, σ2, σ3}, and hence ϕ vanishes identically on A . Thus, if A is the algebra of 2×2 matrices,

∆(A ) = ∅ and ∆′(A ) is the one-point space {0}.

Even when A is commutative, there may be no non-trivial characters. However, as we shall

see in the next chapter, when A is a commutative C∗ algebra, characters are plentiful enough to

justify our present considerations. In the rest of this chapter, commutativity of the algebras will

not play any role in the proofs, and so we shall state the results without making any reference

to commutativity. However, one should keep in mind that without commutativity, and even with

commutativity alone, ∆(A ) may be empty and ∆′(A ) may be a one-point space, as in the previous

example.

1.23 DEFINITION (Gelfand topology). For a Banach algebra A , the Gelfand topology on ∆′(A )

is the relative weak-∗ topology on ∆′(A ) considered as a subset of A ∗, the Banach space dual to

A . That is, the Gelfand topology is the weakest topology on ∆′(A ) that makes the functions

ϕ 7→ ϕ(a) continuous for all a ∈ A .
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1.24 LEMMA. Let A be a Banach algebra. Then ∆′(A ), equipped with the Gelfand topology is

a compact Hausdorff space. If A does not have an identity, then with the Gelfand topology, ∆(A )

is a locally compact Hausdorff space, and ∆′(A ) is its one-point compactification. If A has an

identity, ∆(A ) itself is compact and 0 is an isolated point in ∆′(A ).

Proof. Equip A ∗ with the weak-∗ topology; i.e., the weakest topology making all of functions

ϕ 7→ ϕ(a) continuous for all a ∈ A . The Banach-Alaoglu Theorem asserts that the unit ball in A ∗

is compact in the weak-∗ topology. For each a, b ∈ A , define a function fa,b on A ∗ by

fa,b(ϕ) = ϕ(ab)− ϕ(a)ϕ(b) .

This is evidently continuous for the weak-∗ topology. Now note that

∆′(A ) =
⋂

a,b∈A

{ϕ ∈ A ∗ : fa,b(ϕ) = 0 } .

This displays ∆′(A ) as an intersection of closed sets. Hence ∆′(A ) is a closed subset of the unit

ball in A ∗, and hence is compact.

For ϕ1, ϕ2 ∈ ∆′(A ) with ϕ1 6= ϕ2, there exists a ∈ A such that ϕ1(a) 6= ϕ2(a). Let U1 and U2 be

disjoint open sets in C that contain ϕ1(a) and ϕ2(a) respectively. Then {ψ ∈ ∆′(A ) : ψ(a) ∈ U1 }
and {ψ ∈ ∆′(A ) : ψ(a) ∈ U2 } are disjoint open sets in ∆′(A ) that contain ϕ1 and ϕ2 respectively.

In particular, for each ϕ ∈ ∆(A ), there disjoint open neighborhoods V1 of ϕ and V2 of 0, and then

since V1 ⊂ V c
2 , V c

2 is a compact neighborhood of ϕ. Thus, ∆(A ) is locally compact. If A has an

identity 1, ϕ(1) = 1 for all ϕ ∈ ∆(A ), while 0(1) = 0. Consequently, the zero homomorphism is an

isolated point of ∆′(A ) in this case.

1.25 DEFINITION (Gelfand transform). Let A be a Banach algebra. The Gelfand transform

is the map γ from A to C (∆′(A )) given by

(γ(a))[ϕ] = ϕ(a) . (1.19)

That is, γ(a) is the function of evaluation at a, and it is continuous by the definition of the Gelfand

topology.

1.26 THEOREM. Let A be a Banach algebra. The Gelfand transform is a norm reducing

homomorphism from A to C ((∆′(A )). That is, the Gelfand transform is a homomorphism of

algebras and for all a ∈ A ,

‖γ(a)‖C (∆′(A )) ≤ ‖a‖ .

Proof. The homomorphism property is evident since for all a, b ∈ A and all ϕ ∈ ∆′(A ),

(γ(ab))[ϕ] = ϕ(ab) = ϕ(a)ϕ(b) = (γ(a))[ϕ](γ(b))[ϕ] .

Next, suppose that A has an identity 1. If ϕ ∈ ∆(A ) and a ∈ A , then

ϕ(ϕ(a)1− a) = ϕ(a)− ϕ(a) = 0 ,

and so ϕ(a)1 − a is not invertible. This means that ϕ(a) ∈ σA (a), and this is contained in the

closed centered disc of radius ν(a) ≤ ‖a‖.
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If A lacks an identity, adjoin an identity to form Ã . For ϕ ∈ ∆(A ), define ϕ̃ on Ã by

ϕ̃(λ, a) = λ+ ϕ(a) .

It is easy to check that ϕ̃ ∈ ∆(Ã ). Let e = (1, 0) denote the identity in Ã . Then for all a ∈ A ,

ϕ̃(ϕ(a)e− (0, a)) = ϕ(a)− ϕ(a) = 0 ,

so that once again, we have that ϕ(a) ∈ σA (a).

This result, as it stands, does not take us far at all. The problem is that at this level of

generality, there may be no characters at all, and the transform may be a trivial homomorphism

into a trivial algebra. As indicated above, characters can only be expected to be plentiful for

commutative algebras. Even then, there may be too few characters for the Gelfand transform to

be of interest. However, afundamental theorem of Gelfand and Naimark says that for commutative

C∗-algebras, the Gelfand transform is an isometric isomorphism. This is explained in the next

chapter. We close this chapter with some examples, and then an important theorem on characters

in a commutative Banach algebra.

1.27 EXAMPLE. Let a0 be the n× n matrix, n > 1, with

ai,j =

{
1 j = i+ 1

0 j 6= i+ 1
.

That is a0 is the n × n matrix with 1 in every entry just above the diagonal, and zero elsewhere.

It is easy to see that an0 = 0,

Let A denote that subalgebra of the n× n matrices that are polynomials in a0. That is, every

a ∈ A has the form

a =

n−1∑
j=0

pja
j
0 , (1.20)

where higher order terms are zero. This is a commutative algebra with an identity. Let ϕ ∈ ∆′(A ).

Then 0 = ϕ(an0 ) = (ϕ(a0))n so that ϕ(a0) = n. Then for a given by (1.20), ϕ(a) = p0ϕ(I) = p0.

Thus, the only candidate for a character on A is the map ϕ0 given by

ϕ0

n−1∑
j=0

pja
j
0

 = p0 ,

It is readily checked that this is indeed a homomorphism and it is non-zero. Hence ∆(A ) = {ϕ0}
and ∆′(A ) = {ϕ0} ∪ {0}. Since ∆′(A ) consists of two isolated points, we may identify C (∆′(A ))

with C2 in the usual way, and then we may write the Gelfand transform as

γ

n−1∑
j=0

pja
j
0

 = (p0, 0) ,

which is indeed a norm reducing homomorphism, but not very interesting.
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Before leaving this example, we note that for elements of A , the spectrum is as trivial as

Theorem 1.14 allows: For all a ∈ A , σA (a) consists of a single point: σA (a) = {ϕ0(a)}. This is

true since when a is given by (1.20), then a is invertible if and only if p0 6= 0.

finally, note that while the algebra of all n× n matrices equipped with the usual norm is a C∗

algebra, this subalgebra is not closed under the Hermitian adjoint, and hence is not a C∗ algebra.

1.28 EXAMPLE. This example illustrates not what can go wrong when A is not a commutative

C∗ algebra, but what the utility of these considerations might be when A is a commutative C∗

algebra.

Let a0 be any n× n normal matrix; i.e., a0a
∗
0 = a∗0a0. Let A be the algebra of all polynomials

in a0 and a∗0. (We may unambiguously evaluate a polynomial p(η, ζ) in two the variables η, ζ at

η = a0 and ζ = a∗0 precisely because a0 and a∗0 commute.) This is a commutative algebra with an

identity.

The Spectral Theorem for n×n matrices says that there exists a orthonormal basis {φ1, . . . , φn}
of Cn such that each φj is an eigenvector of a0. Let λj be the corresponding eigenvalue. That is,

a0φj = λjφj . Then a∗0φj = λ∗jφj , and especially, for any polynomial p,

p(a0, a
∗
0)φj = p(λj , λ

∗
j )φj .

For each j = 1, . . . , n define a linear functional ϕj on A by

ϕj(a) = 〈φj , aφj〉 .

By what we have noted above, for any polynomial

ϕj(p(a0, a
∗
0) = p(λj , λ

∗
j ) .

It is evident that each ϕj is a character, and that if λj 6= λk than ϕj 6= ϕk.

In this case we have plenty of characters. We shall see in the next chapter that there are no

other characters besides these. Granted that, ∆(A ) can be identified with the set {µ1, . . . , µm}
of distinct eigenvalues of a0, and the Gelfand transform identities p(a0, a

∗
0) with the function on

{µ1, . . . , µm} given by µ 7→ p(µ, µ∗). Since the operator norm of a normal matrix is the maximum

of the absolute values of its eigenvalues, it is evident that the Gelfand transform is an isometry in

this case.

1.5 Characters and spectrum in commutative Banach algebras

The Hahn-Banach Theorem, which provides the existence of continuous linear functionals on a

Banach space, may be viewed as a theorem asserting the existence of maximal closed subspaces

containing a given subspace. In the Banach algebra setting, the kernel of a homomorphism of a

Banach algebra A to C is not only a closed subspace, it is a closed ideal, as we now explain, and

consideration of maximal ideals leads to a Banach algebra version of the Hahn-Banach Theorem

for commutative Banach algebras. Much of what is introduced here is also useful without assuming

the A is commutative. We therefore start in general, and shall be clear about the key point when

commutativity enters.
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1.29 DEFINITION. Let A be a Banach algebra. An ideal of A is a subspace of A such that

for all b ∈J and a ∈ A , ba ∈J and ab ∈J . An ideal of A is proper in case it is not equal to

A itself. An ideal of A is a closed in case it is topologically closed as a subset of A . If J is an

ideal, an element u of A is called a unit mod J in case

au− a ∈J and ua− a ∈J for all a ∈ A . (1.21)

An ideal J is called a modular ideal in case there exists a unit mod J .

Evidently if J is an ideal in A , and J is the norm closure of J , then J is also an ideal in

A .

Given a Banach algebra A and an ideal J , there is a natural equivalence relation ∼ on A

given by

a ∼ b ⇐⇒ a− b ∈J .

Let {a} and {b} denote the equivalence classes of a and b respectively. Let ã and b̃ be any other

representative of {a} and {b} respectively. Then for some x, y ∈J , ã = a+x and b̃ = b+ y. Then

ãb̃ = (a+ x)(b+ y) = ab+ (ay + xb+ xy) ∼ ab .

Even more simply one sees that ã+ b̃ ∼ a+ b and for all λ ∈ C, λã ∼ λa. Hence A /J , the set of

equivalence classes in A , equipped with the operations

{a}{b} = {ab} and {a}+ {b} = {a+ b} and λ{a} = {λa}

is an algebra, and a 7→ {a} is a homomorphism of A onto A /J .

Now introduce a norm on A /J by

‖{a}‖ = inf{ ‖ã‖ : ã ∼ a } = inf{ ‖a− b‖ : b ∈J } .

Note that ‖{a}‖ ≤ ‖a‖. To see that

‖{a}{b}‖ ≤ ‖{a}‖‖{b}‖ (1.22)

for all {a}, {b} ∈ A /J , let 0 < ε < min{‖{a}‖, ‖{b}‖}, and pick ã ∈ {a} and b̃ ∈ {b} so that

{a} > ‖ã‖ − ε and {b} > ‖b̃‖ − ε. Then

‖{a}{b}‖ = ‖{ãb̃}‖ ≤ ‖ãb̃‖ ≤ ‖ã‖‖b̃‖ ≤ (‖{a}‖+ ε)(‖{b}‖+ ε) .

Since ε can be taken arbitrarily small, (1.22) is proved.

Therefore, A /J will be a Banach algebra with this norm provided it is complete in this norm.

Consider a Cauchy sequence {{a}n}n∈N in A /J . A standard argument shows that this sequence

always has a limit if J is closed. Thus, when J is a closed ideal, A /J is a Banach algebra, and

the map a 7→ {a} is a contractive homomorphism of A onto A /J . This homomorphism is called

the natural homomorphism of A onto A /J .

It is possible for A /J to have an identity evan when A does not. Suppose that J is modular,

and that u is a unit mod J . Then for all a ∈ A , {u}{a} = {ua} = {a} and {a}{u} = {au} = {a}.
Thus, {u} is a multiplicative identity in A /J . Clearly if A has an identity 1, 1 is a unit mod J .

There is a close connections between closed ideals and kernels of continuous homomorphisms of

Banach algebras.
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1.30 PROPOSITION. Let A and B be Banach algebras, and let π : A → B be a continuous

homomorphism. Then J = ker(A ) is a closed ideal in A . Conversely, if J is a closed ideal in

A , then the map a 7→ {a}J , sending a to its equivalence class mod J , is a homomorphism of A

onto A /J .

Proof. Suppose that π : A → B be a continuous homomorphism. Then evidently J = ker(A ) is

a closed by the continuity of π, and it is a subspace by the linearity of π. Next, for all x ∈J and

a, b ∈ A , π(axb) = π(a)π(x)π(b) = π(a)0π(b) = 0. Hence axb ∈ ker(π), and so J is an ideal. The

converse is clear from the construction of A /J described above.

Now consider a commutative Banach algebra A . For any x0 ∈ A , we can define J (x0) to be

the subset of A given by

J (x0) = { x0y : y ∈ A } . (1.23)

Then for all yx0 ∈ J (x0) and all a, b ∈ A , ayx0b = (ayb)x0 ∈ J (x0), and evidently A is a

subspace of A . Hence J (x0) is an ideal, and it is called the ideal generated by x0.

In the non-commutative setting, one could consider the set { yx0z : y, z ∈ A } which is closed

under left and right multiplication by elements of A . However, without some additional hypothesis

on x0, such as that x0 commutes with all elements of A , it need not be a subspace, and the clousre

of its span might be all of A .

Let A be a commutative Banach algebra with an identity 1. Let x0 be a non-invertible element

of A . Let J (x0) be the ideal generated by x0. Then no element of J (x0) is invertible. Indeed,

if x0y were invertible, there would exist z ∈ A such that (x0y)z = x0(yz) = 1, and then (since A

is commutative), yz would be an inverse of x0, which is not possible. Hence, for all non-invertible

x0, J (x0) consists entirely of non-invertible elements. Since the open unit ball about the identity

consists of invertible elements, J (x0) does not intersect the open unit ball about the identity 1.

In particular, 1 does not belong to J (x0), the closure of J (x0).

Now we come to a crucial construction of characters in a commutative Banach algebra:

1.31 THEOREM. Let A be a commutative Banach algebra with identity 1. Then for all non-

invertible x0 ∈ A , there exists a character ϕ ∈ ∆(A ) such that ϕ(x0) = 0.

Proof. Since x0 is not invertible, J (x0) is a proper ideal in A , and in fact, as explained above, the

open unit ball about 1 does not intersect J (x0). Now consider any chain of proper ideals in A ,

ordered by inclusion. Since no proper ideal contains the identity, the union of this chain is again a

proper ideal. Hence by Zorn’s Lemma, there exists a maximal proper ideal M containing J (x0).

Since no proper ideal can contain any invertible elements, this ideal does not intersect the open

unit ball about 1. Hence its closure M also contains J (x0) and is proper. Since M is maximal

among such ideals, M = M . Hence in a commutative Banach algebra A with identity 1, for each

non-invertible x0 ∈ A , there exists a closed proper ideal M that contains any ideal in A that

contains J (x0).

We now claim that the Banach algebra B = A /M is a division algebra. Suppose not. Then

it contains a non-zero, non-invertible element {y0}M . Let N be the closure of the ideal in B

generated by {y0}M . Let π1 be the natural homomorphism of A onto B, and let π2 be the

natural homomorphism of B onto B/N . Then π2 ◦ π1 is a homomorphism of A onto B/N . By

Proposition 1.30, ker(π2 ◦ π1) is a closed ideal that contains M = ker(π1). The containment is
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proper since π2 ◦π1(y0) = 0, but y0 /∈M since {y0}M 6= 0. Finally, 1 /∈ ker(π1 ◦π1) since {1}M is a

unit B = A /M , and N does not contain any invertible elements, so π2({1}M ) = π2(π1(1)) 6= 0.

Thus, ker(π2 ◦π1) is a closed proper ideal that strictly contains M , which is impossible. Hence the

hypothesis that B = A /M contains a non-zero, non-invertible element is false. This shows that

B = A /M is a division algebra, and then the Gelfand-Mazur Theorem tells us that B = A /M is

canonically isomorphic to C. Hence π1 may be regarded as a character of A , and by construction

x0 ∈J (x0) ⊂M = ker(π1).

This theorem has the following important consequence:

1.32 COROLLARY. Let a ∈ A , where A is a commutative Banach algebra. Let λ ∈ σA (a).

Then there exists ϕ ∈ ∆(A ) such that ϕ(a) = λ. In particular, the spectral radius ν(a) of a is

given by

ν(a) = sup{ |ϕ(a)| : ϕ ∈ ∆(A ) } . (1.24)

Proof. Adjoining an identity if need be has no effect on the spectral radius, so we may assume that

A has an identity 1. We have already seen that for all ϕ ∈ ∆(A ), ϕ(a) ∈ σA (a). We now show

that for every λ ∈ σA (a), there exists ϕ ∈ ∆(A ) with ϕ(a) = λ.

Since λ1−a is not invertible, by Theorem 1.31, there exists ϕ ∈ ∆(A ) such that ϕ(λ1−a) = 0.

But ϕ(λ1− a) = λϕ(1)− ϕ(a) = λ− ϕ(a).

2 The Spectral Theorem for C∗ Algebras

Let A be a C∗ algebra. The involution ∗ allows us to to define certain classes of elements in A :

2.1 DEFINITION (Self-adjoint, normal and unitary elements of a C∗ algebra). Let A be a C∗

algebra. Then:

(i) a ∈ A is self-adjoint in case a = a∗.

(ii) a ∈ A is normal in case aa∗ = a∗a.

(iii) In case A has an identity a, a ∈ A is unitary in case a∗a = a∗a = 1.

This definition generalizes these notions from the basic example in which A is the algebra of

n× n matrices or the bounded operators on some Hilbert space H .

2.2 LEMMA. Let A be a C∗ algebra with an identity 1. Then 1 is self adjoint and ‖1‖ = 1.

Moreover, for any unitary u ∈ A , ‖u‖ = 1.

Proof. 1∗ = 1∗1. Applying the involution 1∗ = 1∗1, showing that 1 is self adjoint. The next

two parts use the strong condition on the norm in a C∗ algebra, which is that for all a ∈ A ,

‖a∗a‖ = ‖a‖2. We use this first in

‖1‖ = ‖12‖ = ‖1∗1‖ = ‖1‖2 ,

where the second equality is true since 1 = 1∗. Thus ‖1‖ = 1 or ‖1‖ = 0. The latter is impossible.

Finally, if u is unitary, 1 = ‖1‖ = ‖u∗u‖ = ‖u‖2, so that ‖u‖ = 1.
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2.3 THEOREM (In a C∗ algebra, self-adjointness implies real spectrum). Let A be a C∗ algebra,

and let a ∈ A then if a = a∗, σA (a) ⊂ (R).

Proof. It is no loss of generality to assume that A has an identity since we may adjoin one if need

be with out any effect on the spectrum apart from possibly adjoining 0 to it. Therefore, suppose

that A has an identity but contains some self adjoint element a with some λ ∈ σA (a) such that

λ /∈ R. Then taking a appropriate real multiple of a (so the the multiple is still self adjoint), we

may suppose that eiλ = 2 for some λ ∈ σA (a).

For each n ∈ N, define the polynomial pn(ζ) =
∑n

j=0(iζ)j/j!. By the Spectral Mapping Lemma,

for each n, pn(λ) ∈ pn(a). For n > m,

‖pn(a)− pm(a)‖ ≤
n∑

j=m+1

‖a‖j/j! ,

and hence by standard estimates on the exponential power series for numbers, {pn(a)}n∈N is a

Cauchy sequence in A . Therefore, there exist u ∈ A with u = limn→∞ pn(a). Evidently, for all

n, (pn(a))∗ = pn(−a), so that once again, by standard estimates for the exponential power series,

u∗u = uu∗ = 1; that is, u is unitary, and by Lemma 2.2, ‖u‖ = 1. Therefore, for all µ with |µ| > 1,

µ1− u is invertible. But

lim
n→∞

(pn(λ)1− pn(a)) = eiλ1− u .

Since |eiλ1| = 2, eiλ1−u is invertible. However, pn(λ)1−pn(a) is non-invertible for each n. Since the

set of invertible elements is open, it cannot be that a sequence of non-invertible elements converges

to an invertible element. Thus, the hypothesis that A contains some self adjoint element a with

some λ ∈ σA (a) such that λ /∈ R leads to contradiction.

2.4 DEFINITION (Hermitian character). Let A be a C∗ algebra. A character ϕ of A is

Hermitian in case for all a ∈ A ,

ϕ(a∗) = (ϕ(a))∗ .

2.5 LEMMA. All characters of a C∗ algebra are Hermitian.

Proof. For any a ∈ A define x =
1

2
(a+ a∗) and y =

1

2i
(a− a∗). Then x and y are self-adjoint, and

a = x+ iy. For any character ϕ of A ,

ϕ(a) = ϕ(x+ iy) = ϕ(x) + iϕ(y) and ϕ(a∗) = ϕ(x− iy) = ϕ(x)− iϕ(y) .

By Theorem 2.3, ϕ(x) and ϕ(y) are real, and hence ϕ(a∗) = (ϕ(a))∗.

The next theorem again makes use of the strong condition on the norm in a C∗ algebra, which

is that for all a ∈ A , ‖a∗a‖ = ‖a‖2.

2.6 THEOREM (Norm and spectral radius in a C∗ algebra). Let A be a C∗ algebra. Then for

all a ∈ A ,

‖a‖2 = ν(a∗a) (2.1)

and if a is normal,

‖a‖ = ν(a) . (2.2)
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Proof. Suppose first that a is normal. Then (a∗a) ∗ (a∗a) = a∗aa∗a = (a2)∗(a2). Then by the

C∗-algebra identitiy ‖b∗b‖ = ‖b‖2 applied twice, and the isometry propert of the involuton,

‖a‖2 = ‖a‖2‖a∗‖2 = ‖a∗a‖2 = ‖(a∗a) ∗ (a∗a)‖ = ‖(a2)∗(a2)‖ = ‖a2‖2 .

Therefore, ‖a2‖ = ‖a‖2, and by an obvious induction, for all m ∈ N, ‖a2m‖ = ‖a‖2m. Then by

Gelfand’s Formula,

ν(a) = lim
m→∞

(‖a2m‖)1/2m = ‖a‖.

This proves (2.1). Next, for any a ∈ A , a∗a is self adjoint and so ν(a∗a) = ‖a∗a‖. Then since

A is a C∗ algebra, ‖a∗a‖ = ‖a‖2, and this proves (2.2).

2.7 THEOREM (Commutative Gelfand-Naimark Theorem). Let A be a commutative C∗-algebra.

Then the Gelfand transform is an isometric isomorphism of A onto C0(∆(A )).

Proof. By Lemma 2.5, for all a ∈ A and all ϕ ∈ ∆(A ),

γ(a∗)[ϕ] = ϕ(a∗) = (ϕ(a))∗ = γ(a)∗[ϕ]

since the involution in C0(∆(A )) is pointwise complex conjugation.

Next, |γ(a)[ϕ]| = |ϕ(a)|. By the easy Lemma 1.21, sup
ϕ∈∆(A )

{ |ϕ(a)| } ≤ ν(a). By the deeper

Corollary 1.32 of Theorem 1.31, sup
ϕ∈∆(A )

{ |ϕ(a)| } ≥ ν(a). Combining these two inequalities with

Theorem 2.6, and noting that in a commutative C∗ algebra, every element is normal,

sup
ϕ∈∆(A )

{ |γ(a)[ϕ]| } = ν(a) = ‖a‖ ,

which proves that the Gelfand transform is an isometry, and hence is injective onto a subalgebra of

γ(A ) of C0(∆(A )). However, γ(A ) separates points, and does not vanish at any ϕ ∈ ∆(A ), and

is closed under complex conjugation. Hence by the Stone-Wierstrass Theorem, and the closure of

γ(A ), γ(A ) = C0(∆(A )).

2.1 Spectral invariance and the Abstract Spectral Theorem

Let A be a Banach algebra with identity, and let B be a Banach subalgebra. It can happen that

some b ∈ B is not invertible in B, but is invertible in A .

2.8 EXAMPLE. Let D denote the closed unit disc in C, and let C denote its boundary, the unit

circle. Let A = C (C), the algebra of continuous functions on C. Let B denote the algebra of

continuous functions onD that are holomorphic in the interior ofD. These functions are determined

by their values on C, and their maximum absolute value is attained on C. Therefore, restriction

to C is an isometric embedding of B in A , so we may regard B as a subalgebra of A .

Let b denote the function f(eiθ) = eiθ, the identity function on C, which evidently belongs to

B. Then 1λ − b is invertible in A if and only if λ /∈ C, in which case the inverse is the function

g(eiθ) = (λ − eiθ)−1. However, for λ in the interior of D, ζ 7→ (λ − ζ)−1 is not holomorphic in

the interior of D, and so the inverse of b in A does not belong to B. That is σA (b) = C, but

σB(b) = D.
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Now we specialize to C∗ algebras, first introducing certain minimal subalgebras:

2.9 DEFINITION. Let A be a C∗ algebra with unit 1. For all b ∈ A , C(b) is the smallest C∗

subalgebra of A that contains b and 1.

2.10 THEOREM. Let A be a C∗ algebra with unit 1, and let b ∈ A . if b is invertible in A ,

b−1 ∈ C(b), and hence b is invertible in every C∗ subalgebra of A that contians 1 and b. In

particular, if B is a C∗ subalgebra of A that contains 1 and b, then

σB(b) = σA (b) .

Proof. Suppose first that b is self adjoint and invertible in A . By Theorem 2.3, σC(b)(b) ⊂ R, and

consequently, for all n ∈ N, b−(i/n)1 is invertible in C(b). Since limn→∞(b−(i/n)1) = b in A , and

since the inverse is continuous, limn→∞(b− (i/n)1)−1 = b−1 in A . But since (b− (i/n)1)−1 ∈ C(b)

for all n, and since C(b) is closed,

b−1 = lim
n→∞

(b− (i/n)1)−1 ∈ C(b) .

Hence, b is invertible within C(b).

Now let b be any invertible element of A . Then b∗ and b∗b are invertible in A , and also belong

to C(b). Since b∗b is self adjoint, what we have proved above says that (b∗b)−1 ∈ C(b). Define

x = (b∗b)−1b∗ ∈ C(b). Evidently xb = 1. Thus, b has a left inverse in C(b). The same argument

shows that y = b∗(bb∗)−1 is a well defined right inverse of b in C(b), and then x = x(by) = (xb)y = y

so x = y is the inverse of b in C(b). In particular, for all λ ∈ C, λ1 = b is invertible in C(b) if and

only if it is invertible in A . Thus, λ1 − b is invertible in A if and only if it is invertible in C(b),

and this proves the final statement.

2.11 LEMMA. Let A be a C∗ algebra with identity 1, and let a ∈ A be normal. Then the map

ϕ 7→ ϕ(a) is a homeomorphism of ∆(C(a)) onto σA (a).

Proof. Since a and a∗ commute, the closure of the linear span of { am(a∗)n : m,n ≥ 0 } is a C∗

algebra that contains 1 and a. Evidently, it is C(a). Hence if ϕ ∈ ∆(C(a)), ϕ is determined by

its values on a and a∗. In fact, since ϕ is necessarily Hermitian, ϕ is determined by its value on a.

That is, for any ϕ,ψ ∈ ∆(C(a)),

ϕ = ψ ⇐⇒ ϕ(a) = ψ(a) .

We have also seen that for all ϕ ∈ ∆(C(a)), ϕ(a) ∈ σC(a)(a) = σA (a), and for all λ ∈ σA (a) =

σC(a)(a), there is a ϕλ ∈ ∆(C(a)) such that ϕλ(a) = λ. This shows that the map ϕ 7→ ϕ(a) is

a one-to-one map of ∆(C(a)) onto σA (a). This map is also continuous by the definition of the

Gelfand topology, and continuous bijections between compact spaces are homeomorphisms.

We now come to the Abstract Spectral Theorem:

2.12 THEOREM (Abstract Spectral Theorem). Let A be a C∗ algebra with identity 1, and let

a ∈ A be normal. Then identifying C∆(C(a)) and C (σA (a)) through the homeomorphism provided

by Lemma 2.11, we may regard the Gelfand transform as a homomorphism of C(a) into C (σA (a)).

Then the Gelfand transform γ is an isometric isomorphism of C(a) onto C (σA (a)). For all non-

negative integers m,n, γ(am(a∗)n) is the function on σA (a) given by

λ 7→ λm(λ∗)n . (2.3)
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Proof. The Commutative Gelfand-Naimark Theorem says that γ is an isometric isomorphism, and

if ϕ ∈ ∆(C(a)),

γ(am(a∗)m)[ϕ] = ϕ(a)m((ϕ(a))∗)n = λm(λ∗)n

for λ = ϕ(a) so that under the identification provided by Lemma 2.11, γ(am(a∗)m) is indeed given

by (2.3).

2.13 DEFINITION. For A a C∗ algebra with identity 1, a a normal element of A , and

f ∈ C (σA (a)), f(a) is defined by γ−1(f); i.e., f(a) is the inverse image of f under the isomet-

ric isomorphism of C(a) onto C (σA (a)) that is provided by the Commutative Gelfand Naimark

Theorem.

2.14 THEOREM (Spectral Mapping Theorem). Let A be a C∗ algebra with identity 1, a a

normal element of A , and f ∈ C (σA (a)). Then

σA (f(a)) = f(σA (a)) .

Proof. For all µ ∈ C, the function λ 7→ µ − f(λ) is invertible in C (σA (a)) if and only if µ does

not belong to the range of f , which is f(σA (a)). Then, using the isomorphism provided by the

Commutative Gelfand Naimark Theorem, we see that µ1 − f(a) is invertible in C(a) if and only

if µ /∈ f(σA (a)), and hence σC(a)(f(a)) = σA (a). Finally, by Theorem 2.10, the spectrum of f(a)

is the same in all C∗ subalgebras of A that contain f(a) and 1. In particular, σC(a)(f(a)) =

σcA(f(a)).

2.2 Continuity of the spectrum and the functional calculus

2.15 THEOREM (Newburgh’s Theorem). Let A be a Banach algebra and a ∈ A . Let U be an

open subset of C with σA (a) ⊂ U . Then there exists a δ > 0 such that if ‖b− a‖ ≤ δ,

σA (b) ⊂ U .

Proof. First note that for all b ∈ A with ‖b− a‖ < 1, ‖b‖ < ‖a‖+ 1, and hance for all λ ∈ C with

λ ≥ ‖a‖+ 1, λ ∈ ρA (b). Hence when ‖b− a‖ ≤ 1, σA (b) is contained in the closed centered disc of

radius ‖a‖+ 1.

Let K = U c ∩ { λ : |λ| ≤ ‖a‖ + 1 } which is a compact subset of ρA (a). It suffices to show

that there is an r > 0 so that for all µ ∈ K, (µ1− b) is invertible whenever ‖b− a‖ < r.

Let λ ∈ K. Then λ ∈ ρA (a), and for all b ∈ A and µ ∈ C with

|µ− λ|+ ‖b− a‖ < ‖(λ1− a)−1‖−1 ⇒ ‖(µ1− b)− (λ1− a)‖ ≤ ‖(λ1− a)−1‖−1 ,

and hence µ ∈ ρA (b). For each λ ∈ K, define Uλ = {µ : |µ− λ| < 1
2‖(λ1− a)−1‖−1 }. Since K is

compact, there exists a finite subcover {Uλ1 , . . . , Uλn}. Define

r = min{1

2
‖(λ11− a)−1‖−1 , . . . ,

1

2
‖(λn1− a)−1‖−1 } .

Then for any b with ‖b− a‖ < r and any µ ∈ K, µ ∈ Uλj for some j = 1, . . . , n, and then

‖(µ1− b)− (λj1− a)‖ ≤ |µ− λj |+ ‖b− a‖ < ‖(λj1− a)−1‖−1 .

Therefore, (1µ− b) is invertible. Thus, for all µ ∈ K, whenever ‖b− a‖ < r, µ ∈ ρA (b).
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Now A be an Banach algebra, and let x, y ∈ A , and t ∈ R. Then for all n ∈ N, by the

telescoping sum identitiy

(x+ y)n − xn =

n−1∑
j=0

((x+ y)n−jxj − (x+ y)n−j−1xj+1

=
n−1∑
j=0

(x+ y)n−j−1yxj

Therefore,

‖(x+ y)n − xn‖ ≤

n−1∑
j=0

‖(x+ y)n−j−1‖‖xj‖

 ‖y‖ ≤ n(‖x‖+ ‖y‖)n‖y‖ .

Therfore, when ‖y‖ < δ, ‖(x+y)n−xn‖ < n(‖x‖+δ)nδ, and this proves that x 7→ xn is continuous.

In a C∗ algebra we can say more.

2.16 THEOREM. Let A be a C∗ algebra with identity 1. Let U ⊂ C be open with U compact.

Let NU be given by

NU = { a ∈ A : aa∗ = a∗a and σA (a) ⊂ U } . (2.4)

Then NU is an open subset of the normal elements of A . Moreover, let f be a continuous complex

vauled function on U , and for all a ∈ NU , define f(a) ∈ A using the Gelfand-Naimark isomor-

phism. Then the map a 7→ f(a) is continous on NU .

Proof. The first assertion is an immediate consequence of Newburg’s Theorem. For the second,

consider any sequence {pn} of polynomials converging uniformly to f on U . Then for all a ∈ NU ,

‖pn(a) = f(a)‖ ≤ sup
λ∈U
{pn(λ)− f(λ)|}.

That is,

lim
n→∞

(
sup
a∈NU

{ ‖pn(a)− f(a)‖ }

)
= 0 .

Thus, the function a 7→ f(a) is the uniform limit of the continuous functions a 7→ pn(a),

For normal elements of a C∗ algebra, there is a quantitative version of Newburgh’s Theorem.

2.17 THEOREM. Let A be a C∗ algebra, and let a, x ∈ A be normal. Then

σA (a+ x) ⊂ { λ : dist(λ, σA (a)) ≤ ‖x‖ } .

Proof. Let λ ∈ ρA (a). By the Gelfand-Naimark isomorphism,

‖(λ1− a)−1‖ = sup{|λ− µ|−1 : µ ∈ σA (a) } =
1

dist(λ, σA (a))
.

Let x ∈ A be normal, Then [λ1−(a+x)]−[λ1−a] = −x. Therefore, as long as ‖x‖ < dist(λ, σA (a)),

[λ1− (a+ x)] is invertible
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2.3 Positivity in C∗ algebras

2.18 DEFINITION. Let A be a C∗ algebra. Then a self adjoint element a in A is positive in

case σA (a) ⊂ [0,∞). The set of all positive elements of A is denoted A +.

If a ∈ A +, we may use the Abstract Spectral Theorem to define
√
a, and then a = (

√
a)2 =

(
√
a)∗(
√
a). It is also true that in any C∗ algebra, every element of the form b∗b is positive. This

was not known to Gelfand and Naimark when they wrote their 1943 paper, in which they raised

the question as to whether it was true or not. They included an extra hypothesis in their paper,

namely that for all b in A , 1 /∈ σA (b∗b).

The fact that for all b in a C∗ algebra A , b∗b ∈ A + was finally proved in 1952 and 1953 through

the contributions of Fukamiya and Kaplansky. The history is interesting: Kaplansky had managed

to prove that if the sum of two positive elements is necessarily positive, then b∗b is necessarily

positive. However, he was unable to show that A + was closed under sum. He published nothing,

but showed his proof to many people. When Fukamiya proved the closure of A + in 1952, Kaplansky

communicated his proof to the reviewer of Fukamiya’s paper for Math Reviews, and the proof was

published there.

2.19 THEOREM (Fukamiya’s Theorem). Let A be a C∗ algebra. Then A + is a pointed convex

cone. That is:

(1) For all λ ∈ R+, and all a ∈ A +, λa ∈ A +, and for all a, b ∈ A +, a+ b ∈ A +.

(2) −A + ∩A + = {0}.
(The first part says that A + is a convex cone; the second part says that this cone is pointed.)

Proof. We may suppose that A has an identity 1 since otherwise we may adjoin an identity without

affecting positivity.

Let BA denote the closed unit ball in A . Fukamiya observed that that A + ∩ BA consists

precisely of the self-adjoint elements a with both a and 1− a are in BA . To see this suppose that

a ∈ A + ∩ BA . Then since a is self adjoint, ν(a) = ‖a‖ ≤ 1, and so σA (a) ⊂ [0, 1]. By (an easy

case of) the Spectral Mapping Lemma, σA (1− a) ⊂ [0, 1], and hence ‖1− a‖ = ν(1− a) ≤ 1.

Conversely, suppose a is self-adjoint and both a and 1−a are in BA . Since a is self adjoint and

‖a‖ ≤ 1, σA (a) ⊂ [−1, 1]. Then by the Spectral Mapping Lemma, σA (1− a) ⊂ [0, 2]. However, if

‖1− a‖ ≤ 1, then σA (1− a) ⊂ [−1, 1], and altogether we have that σA (1− a) ⊂ [0, 1], and then by

the identity a = 1 − (1 − a) and the Spectral Mapping Lemma once more, σA (a) ⊂ [0, 1], so that

a ∈ A +. That is,

A + ∩BA = { a ∈ A : a = a∗ and a ∈ BA ∩ (1−BA ) } . (2.5)

Now let a, b ∈ BA . Then by Minkowski’s inequality ‖(a+ b)/2‖ ∈ BA and∥∥∥∥1− a+ b

2

∥∥∥∥ ≤ 1

2
(‖1− a‖+ ‖1− b‖) . (2.6)

If furthermore, a, b ∈ A +, then we also have that ‖1 − a‖ ≤ 1 and ‖1 − b‖ ≤ 1, and then from

(2.6), ‖1 − (a + b)/2‖ ≤ 1. Thus, (a + b)/2 is self adjoint and belongs to both BA and 1 − BA . ,

and hence (a+ b)/2 ∈ A +.
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Since the closure of A + under positive multiples is clear, it then clear that A + is closed

under sums. Finally, if a ∈ A + and −a ∈ A +, then σA (a) ⊂ (−∞, 0] ∩ [0,∞) = {0}, so that

‖a‖ = ν(a) = 0, and hence a = 0.

2.20 THEOREM (Fukamiya-Kaplansky Theorem). For all a ∈ A , a C∗ algebra, a∗a ∈ A +.

Proof. We first show that if a∗a ∈ −A +, then a∗a = 0. Since a∗a and aa∗ have the same spectrum,

Fukamiya’s Theorem says that a∗a + aa∗ ∈ −A +. However, writing a = x + iy with x and y self

adjoint,

a∗a+ aa∗ = 2(x2 + y2) ∈ A +

where once again we have used Fukamiya’s Theorem, and the Spectral Mapping Lemma. Since A +

is a pointed cone, his means that a∗a+ aa∗ = 0. But then a∗a = (a∗a+ aa∗)− aa∗ = −aa∗ ∈ A +.

Again since A + is pointed, this means that a∗a = 0, as claimed.

Now suppose that x = b∗b for some b ∈ A , Define continuous functions f, g : R → R by

f(t) = max{t, 0} and g(t) = t − f(t). Note that f(t)g(t) = 0 for all t. By the Abstract Spectral

Theorem, if we define y = f(x) and z = g(x), then yz = 0, and y + z = x = b∗b. Now define

w = bz, Then

w∗w = zb∗bz = z(y + z)z = z3 .

Since σA (z) ⊂ (−∞, 0], z3 ∈ −A +, and the first part of the proof says that w∗w = 0. Therefore,

z = 0, and so b∗b = f(b∗b) ∈ A +.

2.4 Homeomorphisms of C∗ algebras

2.21 THEOREM. Let A be a C∗ algebra, and let J be a norm-closed ideal in A . Then J is

closed under the involution.

The heart of the proof is the following approximation lemma:

2.22 LEMMA. Let A be a C∗ algebra, and let J be a norm-closed ideal in A . Then for every

a ∈J , there is a sequence {un}n∈N of positive elements of J with ‖un‖ ≤ 1 for all n such that

lim
n→∞

‖aun − a‖ = 0 .

Proof. Consider the sequence of continuous functions fn : R+ → R+ given by fn(t) = min{nt, 1}.
Note that

t(1− fn(t))2 =

{
t(1− nt)2 t ≤ 1/n

0 t > 1/n .

Evidently supt≥0 |{t(1 − fn(t))2}| ≤ 1/n. Consequently, by the Abstract Spectral Theorem

applied to a∗a for any a ∈ A , ‖(fn(a∗a)− 1)a∗a(fn(a∗a)− 1)‖ ≤ 1/n. Note that

‖(fn(a∗a)− 1)a∗a(fn(a∗a)− 1)‖ = ‖afn(a∗a)− a‖2 .

Thus, limn→∞ ‖afn(a∗a) − a‖ = 0. By the Abstract Spectral Theorem, ‖fn(a∗a)‖ ≤ 1 and

fn(a∗a) ∈ A + for all n. It remains to show that when a ∈J , then fn(a∗a) ∈J for all n. Clearly

when a ∈ J , a∗a and all polynomials in a∗a belong to J . But then since fn may be uniformly

approximated by polynomials, and since J is norm closed, fn(a∗a) ∈J .



26

Proof of Theorem 2.21. Let a ∈J , and let {un}n∈N be a sequence of positive elements of J such

that limn→∞ ‖aun−a‖ = 0. Since ‖una∗−a∗‖ = ‖aun−a‖, and una
∗ ∈J , limn→∞ ‖una∗−a∗‖0.

Then since J is closed, a∗ ∈J .

Now let A be a C∗ algebra, and let J be a closed ideal in J . As usual, let {a} denote

equivalence class of a mod J , and let ‖{a}|‖ denote the quotient norm of {a}; that is,

‖{a}|‖ = inf{ ‖a− b‖ : b ∈J } .

Then A /J is a Banach algebra with the quotient space norm. By Theorem 2.21, a− b ∈J ⇐⇒
a∗ − b∗ ∈J , and therefore we may define an involution on on J /A by

{a}∗ = {a∗} .

Evidently this involution is an isometry, and so for all a ∈ A , ‖{a}∗{a}‖ ≤ ‖{a}‖2. To show that

A /J is a C∗ algebra with this involution, we need only show that for all a ∈ A ,

‖{a}‖2 ≤ ‖{a}∗{a}‖ . (2.7)

We shall use the following lemma:

2.23 LEMMA. Let A be a C∗ algebra, and let J be a closed ideal in A . For all a ∈ A , the

quotient norm of {a} is given by

‖{a}‖ = inf{ ‖a− au‖ : u∗ = u ∈J and u ∈ A + ∩BA } . (2.8)

Proof. Whenever u ∈ J , a ∼ (a − au) so that ‖{a}‖ is no greater than the right hand side of

(2.8). To prove the equality, pick ε > 0 and b ∈ J so that ‖{a}‖ ≥ ‖a − b‖ − ε. Then by (2.5),

‖1− u‖ ≤ 1, and so

‖a− b‖ ≥ ‖a− b‖‖1− u‖ ≥ ‖(a− b)(1− u)‖ = ‖(a− au)− (b− bu)‖ ≥ ‖(a− au)‖ − ‖(b− bu)‖ .

By Lemma 2.22 we can choose u so that ‖b− bu‖ < ε. We then have ‖{a}‖ ≥ ‖a− au‖ − 2ε, and

since ε > 0 is arbitrary, (2.8) is proved.

Now to prove (2.7), pick ε > 0 and u = u∗ ∈J with u ∈ A + ∩BA so that

‖a∗a(1− u)‖ ≤ ‖{a}∗{a}‖+ ε = ‖{a}‖2 + ε .

Then

‖{a}‖2 ≤ ‖a(1− u)‖2 = ‖(1− u)a∗a(1− u)‖ ≤ ‖(1− u)‖‖a∗a(1− u)‖ ≤ ‖a∗a(1− u)‖ .

where the last in equality is valid since by (2.5), ‖1− u‖ ≤ 1. Altogether, ‖{a}‖2 ≤ ‖{a}∗{a}‖+ ε,

and since ε > 0 is arbitrary, (2.7) is proved. We have shown:

2.24 THEOREM. Let A be a C∗ algebra, and let J be a norm closed ideal in A , then J is

closed under the involution, and the definition {a}∗ = {a∗} defines an involution on A /J so that,

equipped with the quotient norm, A /J is a C∗ algebra.
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2.25 LEMMA. Let A and B be C∗ algebras, and let π : A → B be a ∗-homomorphism. Then π

is a contraction; i.e., ‖π(a)‖ ≤ ‖a‖ for all a ∈ A . If moreover π is one-to-one, π is an isometry.

Proof. For all a ∈ A , by the Spectral Contraction Theorem, ν(π(a)∗π(a)) = ν(π(a∗a) ≤ ν(a∗a).

Then since for self adjoint elements of a C∗ algebra, the norm is the spectral radius, ‖π(a)∗π(a)‖ ≤
‖a∗a‖. Then by the crucial defining property of a C∗ algebra relating the norm and the involution,

‖π(a)‖3 ≤ ‖a‖2, and this proves that π is a contraction.

Notice that if ν(π(a∗a) = ν(a∗a), the argument gives ‖π(a)‖ = ‖a‖. Hence it remains to show

that if π is one-to-one, π cannot decrease the spectral radius of any self adjoint element of A .

Indeed, let a = a∗ ∈ A , and suppose that ν(π(a)) < ν(a). Then there is a non-zero continuous

bounded function f supported on [−ν(a), ν(a)] that vanishes identically on [−ν(π(a)), ν(π(a))].

since f may be approximated by polynomials, π(f(a)) = f(π(a)). However, since f vanishes

identically on the spectrum of π(a), f(π(a)) = 0. Thus, f(a) is in the kernel of π, which is a

contradiction. Hence, when π is one-to-one, it preserves the spectral radius of self adjoint elements.

We summarize with the following theorem:

2.26 THEOREM (Homomorphisms of C∗ algebras). Let A and B be C∗ algebras, and let π :

A → B be a ∗-homomorphism. Then π is a contraction, π(A ) is a C∗-subalgebra of B, and π

induces an isometric isomorphism of A /ker(π) onto π(A ).

2.5 Projections in C∗ algebras

2.27 DEFINITION. Let A be a C∗ algebra. A self adjoint element e of A is a projection in

case e2 = e. A projection e is a central projection in case e commutes with every element of A .

Note that 0 is a projection, as is 1 when A has an identity. Any other projections, should they

exist, are non-trivial projections. Suppose that e is a non-trivial projection in A . Then 1 − e is

also a non-trivial projection in A .

Associated to e are the two subalgebras, namely eA e and (1− e)A (1− e), where eA e consists

of all elements of A of the form eae, a ∈ A , and likewise (1− e)A (1− e) consists of all elements

of A of the form (1 − e)a(1 − e), a ∈ A . Evidently, these are both C∗ subalgebras of A . Note

that e is the identity in eA e, and (1− e) is the identity in (1− e)A (1− e)
The name “corner algebra” come from the case in which A = Mn(C), the algebra of n × n

complex matrices, and for some 1 ≤ m ≤ m−1, e is the orthogonal projection onto the subspace of

Cn consisting of vectors (η1, . . . , ηn) such that ηj = 0 for j ≥ m+ 1. The general element of a ∈ A

can then be written in “block form” as a =

[
x y

z w

]
where x ∈Mm(C), w ∈Mn−m(C) and y and

zT are m× (n−m) matrices. Then

eae =

[
x 0

0 0

]
and (1− e)a(1− e) =

[
0 0

0 y

]
.
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Continuing with this example, note that if a = eae + (1 − e)a(1 − e) so that a =

[
x 0

0 w

]
,

then a is invertible if and only if both x and z are invertible, and so for such matrices a,

σMn(C)(a) = σMm(C)(x) ∪ σMn−m(C)(w) .

We shall be especially interested in the case in which e is central. Note that this is not the case

in the example we just considered.

If e commutes with every element of cA, then eA e = { ea : a ∈ A } = { ae : a ∈ A }, and

eA e is then evidently an ideal in A , as is (1− e)A (1− e). In this case,

A = eA e⊕ (1− e)A (1− e)

since for all a ∈ A , a = ae+ a(1− e) and if a ∈ eA e ∩ (1− e)A (1− e), a = ea and a = (1− e)a
so that a = e(1− e)a = 0.

For all a ∈ A , a is invertible if and only if ea is invertible in eA e and (1 − e)a is invertible

in (1 − e)A (1 − e). To see this, suppose that a is invertible in A . Then e = eaa−1 = e2aa−1 =

(ea)(ea−1) = (ea−1)(ea), and so the inverse of ea in eA e is ea−1. The same reasoning shows that

the inverse of (1− e)a in (1− e)A (1− e) is (1− e)a−1. For the converse, suppose that ea has the

inverse ex in eA e and that (1− e)a has the inverse (1− e)y in (1− e)A (1− e). Then

a(ex+ (1− e)y) = (ae+ a(1− e))((ex+ (1− e)y) = ae2x+ a(1− e)2y

= (ea)(ex) + (1− e)a(1− e)y = e+ (1− e) = 1 ,

thus showing that (ex+ (1− e)y) is a right inverse of a. A similar computation shows that it is a

left inverse. This leads to the following result:

2.28 THEOREM. Let A be a C∗ algebra with identity 1, and let e be a central projection in

A . For any a ∈ A , let a = ea + (1 − e)a be the unique decomposition of a corresponding to

A = eA e⊕ (1− e)A (1− e). Then

σA (a) = σeA e(ea) ∪ σ(1−e)A (1−e)(a) .

Proof. For all λ ∈ C, λ1− a = (λe− ea) + (λ(1− e)− (−1e)a). By the remarks above the theorem,

λ ∈ ρA (a) if and only if λ ∈ ρeA e(ea) ∩ ρ(1−e)∩(1−e)((1− e)a).

3 Lin’s Theorem

3.1 Almost commuting and nearly commuting

In 1995, Huaxin Lin proved a theorem that settled an old conjecture arising from the work of John

von Neumann on quantum mechanics. His theorem concerns the C∗ algebra Mn(C) of complex

n× n matrices:

3.1 THEOREM (Lin’s Theorem). For every ε > 0, there is a δ > 0 such that for any n ∈ N and

any pair of self-adjoint a, b ∈Mn(C) with ‖a‖, ‖b‖ ≤ 1 and

‖ab− ba‖ ≤ δ , (3.1)
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there exists a commuting pair of self adjoint ã, b̃ ∈Mn(C) such that

‖a− ã‖+ ‖b− b̃‖ ≤ ε . (3.2)

When a pair a, b ∈ Mn(C) satisfies (3.1) for small δ, we may say that they almost commute.

When a pair a, b ∈Mn(C) is such that there exists a commuting pair ã, b̃ ∈Mn(C) such that (3.2)

is satisfied for small ε, we may say that a and b are nearly commuting – they are near to matrices

that exactly commute.

The theorem may be rephrased as a theorem about “almost normal” and “nearly normal”

matrices. Let a, b ∈Mn(C) be self adjoint n×n matrices Let x = a+ib. Then x∗x−xx∗ = 2i(ab−ba)

so that

‖x∗x− xx∗‖ = 2‖ab− ba‖ (3.3)

so that ‖x∗x− xx∗‖ ≤ 2δ.

Let ã and b̃ be another pair of self adjoint n × n matrices, and define x̃ = ã − b̃. Note that

x− x̃ = (a− ã) + i(b− b̃), so that ‖x− x̃‖ ≤ ‖a− ã‖+ ‖b− b̃‖. However,

a− ã =
(x− x̃) + (x∗ − x̃∗)

2

so that ‖a− ã‖ ≤ ‖x− x̃‖. Likewise, we have ‖b− b̃‖ ≤ ‖x− x̃‖. Altogether,

‖x− x̃‖ ≤ ‖a− ã‖+ ‖b− b̃‖ ≤ 2‖x− x̃‖ . (3.4)

Combining (3.3) and (3.4), we arrive at an alternate formulation of Lin’s Theorem:

3.2 THEOREM (Lin’s Theorem, Alternate Formulation). For every ε > 0, there is a δ > 0 such

that for any n ∈ N and every x ∈Mn(C) with ‖x‖ ≤ 1, and

‖x∗x− xx∗‖ ≤ δ , (3.5)

there exists a normal x̃ ∈Mn(C) such that

‖x− x̃‖ ≤ ε . (3.6)

The crucial feature of Lin’s Theorem is that δ depends only on ε and not on n. Without the

requirement that δ be independent of n, the result is trivial. It then suffices to show that for fixed

n, and fixed ε > 0, there does not exists a sequence {xj}j∈N of n×n matrices with ‖xj‖ ≤ 1 for all

j and such that limj→∞ ‖x∗jxj − xjx∗j‖ = 0 but ‖xj − x‖ > ε for all normal x and all j

Suppose such a sequence exists. By the compactness of the unit ball in the space of n × n

matrices, there is a subsequence {xjk}k∈N and an x with ‖x‖ ≤ 1 such that limk→∞ ‖xjk − x‖ = 0.

Evidently

x∗x− xx∗ = lim
k→∞

(x∗jkxjk − xjkx
∗
jk

) = 0 .

Therefore, x is normal but ‖xjk − x‖ < ε for all sufficiently large k.
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3.2 The finite spectrum problem

Lin’s proof of his theorem turns on the analysis of two C∗ algebras that we now define: For any

sequence {nj}j∈N of natural numbers, define two sets of sequences of matrices as follows:

A = { {aj}j∈N : aj ∈Mnj (C) and sup
j∈N
‖aj‖ <∞ } (3.7)

and

J = { {bj}j∈N : bj ∈Mnj (C) and lim
j→∞

‖bj‖ = 0 } (3.8)

Obviously J ⊂ A . Equip A with the operations of term by term addition and multiplication and

the norm

‖{aj}j∈N‖ = sup
j∈N
‖aj‖ .

This makes A a Banach algebra. Equip A with the involution consisting of term by term Hermitian

conjugation. This make A a C∗ algebra, and J a closed ideal in A . Let B denote the quotient

algebra A /J , and let π denote the natural homomorphism of A onto B. This notation will be

used throughout this section.

The relevance of this construction is as follows: If Theorem 3.2 were false, there would exist a

sequence {nj}j∈N of natural numbers, and a sequence {xj}j∈N with each xj ∈ Mnj (C) such that

for some ε > 0,

‖xj − x̃j‖ ≥ ε for all j ∈ N and all normal x̃j ∈Mnj (C) , (3.9)

and

lim
j→∞

‖x∗jxj − xjx∗j‖ = 0 . (3.10)

Let us write x to denote {xj}j∈N considered as an element of A , and let us write y to denote

π(x) ∈ B. By (3.10), which says that {x∗jxj − xjx∗j}j∈N ∈J ,

y∗y − yy∗ = π(x∗)π(x)− π(x)π(x∗) = π(x∗jxj − xjx∗j ) = 0 .

Thus, for any x = {xj}j∈N satisfying (3.10), y = π(x) is normal in B.

We say that an element of a Banach algebra has finite spectrum if its spectrum is a finite

subset of C. There are two parts to Lin’s proof. One is to show that every normal y ∈ B can be

approximated arbitrarily well in norm by a normal element ỹ that has finite spectrum. The other

is to show that for any x = {xj}j∈N ∈ A , if π(x) is normal with finite spectrum, then (3.9) is

impossible. We begin with the latter point.

3.3 LEMMA. Let x = {xj}j∈N ∈ A and suppose that y = π(x) is normal and has finite spectrum.

Then there exists a normal x̃ = {x̃j}j∈N ∈ A such that π(x̃) = y, and, consequently, such that

lim
j→∞

‖xj − x̃j‖ = 0 . (3.11)

In other words, normal equivalence classes in A /J that have finite spectrum have a normal

representative.
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Proof. Let {λ1, . . . , λm} be the points in the spectrum of y. Let p and q be complex polynomials

with

p(λj) = j and q(j) = λj for j = 1, . . . , n .

Notice that q ◦ p(λ) = λ on σB(y) so that q(p(y)) = y. Since p(λ) ∈ R for all λ ∈ σB(y), p(y) is

self adjoint.

Let z be any element of A with π(z) = p(y). Then π(z) is self adjoint, and so π((z∗ + z)/2) =

p(y). Then

q(π((z∗ + z)/2) = π(q((z∗ + z)/2)) = q(p(y)) = y ,

Then since (z∗ + z)/2 is self adjoint, q((z + z∗)/2) is normal, and thus the equivalence class of y

contains a normal representative, namely q((z∗ + z)/2), that we denote by x̃.

By the definition of the norm in the quotient algebra, for all ε > 0, there exists b = {bj}j∈N ∈J

such that ‖x− x̃− b‖ ≤ ε. This means that

‖xj − x̃j‖ ≤ ε+ ‖bj‖ .

Then since ε > 0 is arbitrary and limj→∞ ‖bj‖ = 0, (3.11) is proved.

3.3 Approximation of normals by normals with finite spectrum

It remains to show that every normal element of B can be well-approximated by normal elements

with finite spectrum. To prepare for this, we make several observations about the algebra A .

Consider x ∈Mn(C) for some n ∈ N. Then x has a singular value decomposition

x = ũsṽ∗

where s is a diagonal matrix with non-negative entries, and u and v are unitary matrices. Since

ũ∗ũ = 1, x = ṽũ∗(ũsũ∗). We define u = ṽũ∗ and |x| = ũsũ∗. Then we have

x = u|x| and |x| =
√
x∗x ,

where the square root is defined by the functional calculus. Because u is unitary, this is called a

unitary polar decomposition of x.

Now we observe that every element x = {xj}j∈N ∈ A has a unitary polar decomposition

x = u|x|: Simply choose such a decomposition xj = uj |xj | for each j, and then u = {uj}j∈N and

|x| = {|x|j}j∈N.

Next consider any y ∈ B, and any x ∈ A such that π(x) = y. Let u|x| be a unitary polar

decomposition of x. Then

y = π(u)π(|x|) = π(u)π(
√
x∗x) = π(u)

√
y∗y = π(u)|y| ,

and π(u) is unitary. Therefore, each element of B has a unitary polar decomposition.

Essentially the same argument shows that every unitary v ∈ B, has a unitary representative

in A ; i.e, there exists a unitary u ∈ A such that π(u) = v. To see this, consider any x ∈ A such

that π(x) = y, and and let x = u|x| be a unitary polar decomposition of x. Then y = π(u)π(|x|) =

π(u)|π(x)| = π(u)|y| = π(u). While we have to do significant work to obtain even an approcximate

normal representative for normal y ∈ B, for unitary v ∈ B, things are much simpler: THere is

always an exact unitiary representative in A . This will be used below.
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3.4 LEMMA. Let any ε > 0 and any countable subset F of C be given. Then for all normal

y ∈ B, there exists a normal ỹ ∈ B such that ‖y − ỹ‖ ≤ ε and F ∩ σB(ỹ) = ∅.

Proof. The set of invertible normal elements is dense in the set of normal elements of B. To

see this let, y ∈ B be normal and let y = v|y| be a unitary polar decomposition. Then |y|2 =

y∗y = yy∗ = v|y|2v∗, which mean that |y|2v = v|y|2 so that v computes with |y|2, and hence any

polynomial in |y|2, and hence any continuous function of |y|2. In particular, v commutes with |y|.
Evidently, v(|y| + 1ε) is invertible and normal since v is unitary and commutes with |y|. Clearly

‖y − v(|y|+ 1ε)‖ ≤ ε and this justifies the claim that the set of invertible normal elements is dense

in the set of normal elements of B.

It follows that for each λ ∈ F , the set of normal elements z ∈ B such that λ1− z is invertible

is dense and open in the relative topology. By Baire’s Theorem, the intersection of these sets over

all λ ∈ F is dense in the normal elements of B.

This lemma shall be applied to approximate an arbitrary normal y ∈ B by another normal

ỹ ∈ B where σB(ỹ) lies on the ε grid Γε ⊂ C, where for ε > 0,

Γε = {s+ it ∈ C : s ∈ εZ or t ∈ εZ } . (3.12)

To do this, fix ε > 0, and let F be the set of the centers of the squares in Γε. That is, the set

Fε := { s+ it ∈ C : s+ ∈ ε(Z + 1/2) and t ∈ ε(Z + 1/2) } .

Let f be the obvious continuous contraction from C\Fε onto Γε, such that for all λ ∈ C\Fε,

|f(λ)− λ| ≤ ε/
√

2 . (3.13)

Define ỹ = f(y). Then ỹ is normal and by the Spectral Mapping Theorem, σB(ỹ) ∈ Γε. By (3.13),

‖ỹ − y‖ < ε/
√

2. This proves:

3.5 LEMMA. For all normal y ∈ B there and all ε > 0, there exists a normal ỹ ∈ B such that

σB(ỹ) ⊂ Γε and ‖y − ỹ‖ < ε.

Now fix ε > 0 and consider any normal y ∈ B such that σB(ỹ) ⊂ Γε. Then since σB(ỹ) is a

closed subset of C contained in D‖y‖, the closed centered disc of radius ‖y‖ in C,

σB(ỹ) ⊂ Γε ∩D‖y‖ .

At this point we have that the spectrum of y lies in a subset of C that looks something like the

following:
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Now consider two the sets

Λε = { s+ it ∈ C : s ∈ εZ and t ∈ ε(Z + 1/2) or s ∈ εZ and t ∈ ε(Z + 1/2) } (3.14)

and

Λ̃ε = Λε = { s+ it ∈ C : s ∈ εZ and t ∈ εZ } . (3.15)

Note that Λε is the set of midpoints on the elementary segments of the grid Γε, and Λ̃ε is the set

of intersection points of the grid Γε.

There is an obvious continuous g retraction of Γε\Λε onto Λ̃ε such that for all λ ∈ Γε,

|g(λ)− λ| ≤ ε/2 .

Therefore, if y is any normal element of B with spectrum in Γε\Λε, g(y) is a normal element with

‖y − g(y)‖ ≤ ε/2, and σB(g(y)) ⊂ Λ̃ε ∩D‖y‖, a finite set whose cardinality depends only on ε and

‖y‖.
We now turn to the lemma that will enable us to remove, one at a time, the finitely many points

of Λε ∩D‖y‖ from the spectrum of our normal element y, (whose spectrum lies in Γε ∩D‖y‖). This

will give us the approximation by elements of finite spectrum that we seek.

3.6 LEMMA. Let y ∈ B be normal. Let V be an open subset in C such that V ∩σB(y) is contained

in a subset X of C that is homeomorphic to the open unit interval. Let y0 ∈ V ∩σB(y) and suppose

that λ0 is not an isolated point of σB(y). Then for each ε > 0, there exists a normal ỹ ∈ B such

that

σB(ỹ) ⊂ σB(y)\{λ0} and ‖y − ỹ‖ < ε .

We preface the proof with remarks on the strategy. Suppose we can find a commutative subal-

gebra C of B that contains C(y) and a projection e, necessarily central, such that for some small

neighborhood U of λ0

σeC e(ey) ⊂ U and σ(1−e)C (1−e)((1− e)y) ⊂ σB(y)\U . (3.16)

Pick any λ1 6= λ0 ∈ σA (y) ∩ U . The function λ 7→ |λ1 − λ| is bounded by diam(U) on σeC e(ey).

Therefore, by the Gelfand-Naimark Theorem, ‖λ1e− ey‖ ≤ diam(U).
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Define ỹ = λ1e + (1 − e)y Then ỹ1 is normal, and ‖ỹ − y‖ = ‖λ1e − ey‖ ≤ diam(U). Finally,

by Theorem 2.28 and (3.16), σC (ỹ) = {λ1} ∪ σ(1−e)C (1−e)((1 − e)y) ⊂ {λ1} ∪ σB(y)\U . Then by

Theorem 2.10,

σB(ỹ) ⊂ {λ1} ∪ σB(y)\U ⊂ {λ0} ∪ σB(y)\{λ0} .

The construction of e requires some ingenuity: If we could apply the characteristic function

1U to y, we would readily obtain e. However, 1U need not be continuous on σB(y), and so the

Abstract Spectral Theorem is not available. If y had finite spectrum, then of course there would be

a continuous function f agreeing with 1U on σB(y), and then we could define e = f(y). However,

σB(y) need not have any isolated points, and then there will be no such continuous function.

We will use the fact that y is an equivalence class of sequences of matrices, represented by some

x = {xj}j∈N. If each xj were normal, we could apply the spectral theorem to define 1u(xj) for

each j, and this would provide us with a projection of the sort we seek. However, we do not know

that in general that normal y ∈ B have normal representatives – except in the special case that y

is not only normal, but unitary. Therefore, we use the continuous functional calculus to convert y

into a unitary, and then we work with a unitary representative of this in A to produce our desired

projection.

Proof. Choose a relatively open set U ⊂ X with

λ0 ∈ U ⊂ U ⊂ X and diam(U) < ε .

Let f0 be a homeomorphism of X onto T\{−1} where T is the unit circle in C. Extend f0 to a

continuous function f : σB(y)→ C by

f(λ) =

{
f0(λ) λ ∈ X
−1 λ ∈ σB(y) ∩Xc .

Set v = f(y). Observe that v is unitary. Let u be any unitary in A with π(u) = v. Since f0 is

a homeomorphism of X onto T\{−1}, and since U is open in X, W = f0(U) is open in T. Let 1W
denote the characteristic function of W .

We now use the Spectral Theorem for n×n matrices to define 1W (uj) for each j ∈ N. For each

j ∈ N, 1W (uj) is a projection in Mnj (C). Therefore, e = π ({1W (uj)}j∈N) is a projection in B. For

each j ∈ N, uj1W (uj) = 1W (uj)uj , and hence, ue = eu.

Let ϕ̂ be any continuous function on T. Then ϕ̂(u) ∈ C(u), and since e commutes with u,

e commutes with ϕ̂(u). Now let ϕ : σB(y) → C be any continuous function with ϕ(λ) = 0 on

σB(y)\V . Define a function ϕ̂ : T→ C by

ϕ̂(λ) =

{
ϕ(f−1

0 (λ)) λ ∈ T\{−1}
0 λ = −1 .

Then ϕ(y) = ϕ̂(u) so that e commutes with ϕ(y).

Suppose that ϕ = 1 everywhere on U . Then ϕ̂ = 1 everywhere on W . Hence, for each j ∈ N,

1W (uj)ϕ̂(uj) = ϕ̂(uj)1W (uj) = 1W (uj) , (3.17)
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and hence eϕ(y) = ϕ(y)e = e. Finally, if ϕ|X\U = 0, then ϕ̂|T\W = 0, and then

1W (uj)ϕ̂(uj) = ϕ̂(uj)1W (uj) = ϕ̂(uj) , (3.18)

with the conseqeunce that ϕ(y)e = eϕ(y) = ϕ(y).

Summarizing the last two paragraphs, when ϕ is continuous on σB(y), then:

ϕ|σB(y)\V = 0 ⇒ eϕ(y) = ϕ(y)e , (3.19)

ϕ|σB(y)\V = 0 and ϕ|U = 1 ⇒ eϕ(y) = ϕ(y)e = e , (3.20)

and

ϕ|σB(y)\U = 0 ⇒ eϕ(y) = ϕ(y)e = ϕ(y) . (3.21)

Now let h : X → [0, 1] be a continuous function such that h|U = 1 and h|X\V = 0. Then using

(3.20), (3.19), the commutativity of C(y), and then (3.20) once more,

ye = yh(y)e = eyh(y) = eh(y)y = ey .

Thus, e commutes with y.

Let C be the smallest C∗ algebra containing y, e and 1. Evidently C is commutative, and e

is a central projection. We now claim that σeC e(ey) ⊂ U . To see this, it suffices to show that

whenever ψ is continuous on σB(y) with ψ|U = 0, then ψ(ey) = 0. In fact, it suffices to do this for

continuous ψ such that ψ|σB(y)\V = 1, since by the Gelfand-Naimark Theorem, ψ(ey) 6= 0 whenever

ψ takes on any non-zero value anywhere on the spectrum of ey. Then since y and e commute and

e is a projection, ψ(ey) = eψ(y). But (1 − ψ)|σB(y)\V = 0 and (1 − ψ)|U = 1, and so by (3.19),

e = e(1− ψ(y)). Altogether,

ψ(ey) = eψ(y) = e(1− (1− ψ(y)) = e− e = 0 .

More simply, let ψ be continuous on σB(y) with ψ|σB(y)\U = 0. Then by (3.21), (1−e)ψ(y) = 0,

but as above ψ((1−e)y) = (1−e)ψ(y). Hence there is no spectrum of ψ((1−e)y) outside σB(y)\U .

By Theorem 2.10 and the Spectral Invariance Theorem, putting ỹ = λ1e + (1 − e)y, we have

σB(ỹ) ⊂ {λ1} ∪ (σB(y)\U). Finally, ‖ỹ − y‖ = ‖λ1e− ey‖ ≤ ε.

Proof of Lin’s Theorem. Let ε > 0, and let y be normal in B, and suppose that σB(y) ⊂ Γε. Since

σB(y) is contained in the disc of radius ‖y‖, there are at most 2‖y‖(2‖y‖ + 1)/ε2 edges of the

elementary squares in Γε whose midpoints intersect σB(y). That is, with Λε defined as in (3.14),

there are at most 2‖y‖(2‖y‖+ 1)/ε2 points of Λε within σB(y).

We claim that there is a normal ỹ such that ‖ỹ‖ ≤ ‖y‖, ‖ỹ − y‖ ≤ ε and

σB(ỹ) ⊂ Γε\Λε .

This is true because if λ0 ∈ σB(y) ∩ Λε, we have the following alternative: Either λ0 is an isolated

point of σB(y), or it is not.

If λ0 is an isolated point of σB(y), then we can find a continuous function f : Γε → Γε such

that f(λ) = λ except on a small neighborhood of λ0, and such that λ0 is not in the range of f . We

may choose the neighborhood small enough that

sup
λ∈Γε

{|f(λ)− λ|} ≤ ε3/(2‖y‖(2‖y‖+ 1) .
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Moreover, we can always arrange that applying f does not increase the spectral radius. Then

‖f(y)‖ ≤ ‖y‖, Then ‖f(y)− y‖ ≤ ε3/(2‖y‖(2‖y‖+ 1), f(y) is normal, σB(f(y)) ⊂ Γε\{λ0}. In this

way, we remove all points in λε that are isolated points of the spectrum.

Now we apply Lemma 3.6 to remove all points in λε that are isolated points of the spectrum,

noting that we only affect the spectrum near the each such point of Λε at each step. We may

arrange that the shift in y at each step has norm no more than ε3/(2‖y‖(2‖y‖+ 1).

At the end of at most 2‖y‖(2‖y‖ + 1)/ε2 operations, each of which shifted y by at most

ε3/(2‖y‖(2‖y‖+ 1) in norm, we arrive at ỹ which is normal and has ‖ỹ − y‖ ≤ ε and

σB(ỹ) ⊂ Γε\Λε.

The set Γε\Λε is a disjoint union of open crosses, and there is a continuous function f on Γε\Λε
that retracts each cross onto its center. That is, there is a continuous function f : Γε\Λε → Λ̃ε with

sup
λ∈Γε\Λε

{|f(λ)− λ|} ≤ ε/2 .

Then f(ỹ) is normal with finite spectrum and ‖f(ỹ)− ỹ‖ ≤ ε/2. Consequently, ‖f(ỹ)− y‖ ≤ 3ε/2.

Combining this with Lemma 3.5, we see that for every normal element of B, there is a normal

element with finite spectrum arbitrarily close in norm, which is what we had to show.

3.4 The Bott invariant and obstructions to commutativity

One might hope that one could extend Lin’s Theorem to three or more matrices. That is, one

might conjecture that for all ε > 0, there is a δ > 0 such that if {h1, h2, h3} is a set of n × n self

adjoint matrices such that

‖[h1, h2]‖+ ‖[h2, h3]‖+ ‖[h3, h1]‖ ≤ δ ,

then there exists a set of three self adjoint commuting matrices {k1, k2, k3} such that

‖h1 − k1‖+ ‖h2 − k2‖+ ‖h3 − k3‖ ≤ ε .

This is false. Hastings and Loring, building on previous work, have shown the following:

3.7 THEOREM. For all j ∈ 1
2N there exists a set {h1, h2, h3} a set of self adjoint (2j+1)×(2j+1)

matrices such that

‖[h1, h2]‖+ ‖[h2, h3]‖+ ‖[h3, h1]‖ ≤ 1√
j(j + 1)

,

and such that if {k1, k2, k3} is any set of commuting self adjoint (2j + 1)× (2j + 1) matrices, then

‖h1 − k1‖+ ‖h2 − k2‖+ ‖h3 − k3‖ ≥
√

1− 4/
√
j(j + 1) .

3.8 DEFINITION. Let δ > 0 be given. A δ representation of the sphere in Mn(C) is a set

{h1, h2, h3} of self adjoint n× n matrices such that

‖[h1, h2]‖ ≤ δ , ‖[h2, h3]‖ ≤ δ and ‖[h3, h1]‖ ≤ δ , (3.22)

and

‖1− (h2
1 + h2

2 + h2
3)‖ ≤ δ . (3.23)
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3.9 EXAMPLE. A set of three self-adjoint n× n matrices {s1, s2, s3} that satisfy

[s1, s2] = is3 , [s2, s3] = is1 and [s3, s1] = is2 . (3.24)

is an n dimensional representation of the Lie algebra su(2). The representation is irreducuble in

case there is no subspace of Cn that is invariant under each of s1, s2 and s3. The simplest example

is provided by the Pauli matrices, multiplied by 1/2:

s1 =
1

2
σ1 =

1

2

[
0 1

1 0

]
, s2 =

1

2
σ2 =

1

2

[
0 −i
i 0

]
and s3 =

1

2
σ3 =

1

2

[
1 0

0 −1

]
.

For each j ∈ 1
2N there is an irreducible representation by (2j+1)× (2j+1) matrices {s1, s2, s3}

and these matrices satisfy s2
1 +s2

2 +s2
3 = j(j+1)1, and they each have the same spectrum consisting

of {−j,−j + 1, . . . , j − 1, j}. It is then easy to see that defining hj = (j(j + 1))−1/2sj , j = 1, 2, 3,

we obtain a (j(j + 1))−1/2 representation of the sphere.

We now explain the representation theory on which this construction depends, partly for com-

pleteness, and partly because it will be useful for some calculations that follow.

Notice that for any representation, s3s
2
1 = s1s3s1 + i[s3, s1]s1 = s2

1s3 + i[s3, s1]s1 + is1[s3, s1].

Using (3.24), this reduces to [s3, s
2
1] = −s2s1 − s1s2. A similar calculation shows that [s3, s

2
2] =

s1s2 + s2s1. Altogether, [s3, (s
2
1 + s2

2 + s2
3)] = 0, and by symmetry, s2

1 + s2
2 + s2

3 commutes with s1

and s2 as well. In summary, defining the positive matrix s by

s2 := s2
1 + s2

2 + s2
3 , (3.25)

[s1, s
2] = [s2, s

2] = [s3, s
2] = 0 . (3.26)

Suppose that {s1, s2, s3} is an irreducible n-dimnsional representation of su(2). By (3.25), the

eigenspaces of s2 are invariant under each of s1, s2 and s3. Since the representation is irreducible,

it must be that s2 is a multiple of the identitiy. Let µ temporaraily denote this multiple, so that

s2 = µ1.

Define operators s+ and s− by

s+ = s1 + is2 and s− = s1 − is2 . (3.27)

We compute s3(s1 + is2) = (s1 + is2)s3 + ([s3, s1] + i[s3, s2]) = (s1 + is2)s3 + (is2 + s1). That is

[s3, s+] = s+. Taking the adjoint, [s3, s−] = −s−, and we have

[s3, s+] = s+ and [s3, s−] = −s− . (3.28)

Therefore, if ζ is an eigenvector of s3 with s3ζ = λs3,

s3(s+ζ) = s+(s3ζ) + s+ζ = (λ+ 1)s+ζ .

That is, either λ + 1 is an eigenvlaue of s3, or s+ζ = 0. In the same way we see that either λ− 1

is an eigenvalue of s3 or else s−ζ = 0.

Now let ζ1 be an eigenvector of s3 with minimal eigenvalue. (This is a least weight vector in

the language of representation theory.) Then s−ζ1 = 0. Define vectors ζk = (s+)k−1ζ. Suppose

that for some m ∈ N, no vector in {ζ1, . . . , ζm} is zero. By what we have noted above, each is



38

an eigenvector of s3, and the successive eigenvlaues are all different, so that this set is orthogonal.

Evidently, there is some least m ∈ N for which (s+)m+1 = 0. Let m be this integer.

By construction, s+ζk = ζk+1 for k < m, and s+ζm = 0. Next, we compute that s+s− =

s2
1 + s2

2 + s3 and s−s+ = s2
1 + s2

2 − s3. Adding and subtracitng s2
3,

s+s− = s2 − s2
3 + s3 and s−s+ = s2 − s2

3 − s3 . (3.29)

Since each vector in {ζ1, . . . , ζm} is an eigenvector of s2 − s2
3 + s3, it is an eigenvector of s−s+ and

of s+s−. For each k = 2, . . . ,m, ζk is a multiple of s+ζk−1. Hence s−ζk is a mutliple of s−s+ζk−1

which, by the above, is a multiple ζk−1. For k = 1, s−ζk = 0 since otherwise it would be an

eigenvector of s3 with an eigenvalue lower by one than the least eigenvalue. Hence the span of

{ζ1, . . . , ζm} is invariant under s− as well as s+ and s3. Hence it is invariant under eauch of s1, s2

and s3. Since the representation is irreducible, m = n and the span is all of Cn.

Now let λ be the least eigenvalue of s3, and recall that µ denotes the single eienvalue of s2. By

construction, ζn is an eigenvector of s3 with eigenvalue λ + n − 1. Since s−ζ1 = 0 and s+ζn = 0,

(3.29) gives us

0 = µ− λ2 + λ and 0 = µ− (λ+ n− 1)2 − (λ+ n− 1) .

Thus, λ2 + 2λ(n− 1) + (n− 1)2 + λ+ (n− 1) = λ2 − λ so that

λ2n = −(n− 1)− (n− 1)2 = −n(n− 1) .

We obtain

λ = −n− 1

2
and µ =

n2 − 1

2
. (3.30)

At this point it is traditional to introduce j ∈ 1
2N by j = n−1

2 , so that n = 2j + 1, and then

s2 = j(j+1)1. The eigenvalues of s3 are then given, in increasing order, by {−j−(j−1), . . . , j−1, j},
and by symmetry, s1 and s2 have the same spectrum.

So far we have seen that if for some j ∈ 1
2N there is a 2j+1 dimensional irreducible representation

of su(2), then there is an orthonormal basis {eta−j , . . . , ηj} of C2j+1 such that s3ηk = kηk for each

k = −2j − 1, . . . , 2j + 1. This gives us the (diagonal) form of the matrix for s3 in this basis.

Moreover, we have seen that for all k = −2j− 1, . . . , 2j, a+ηk = tkηk for some poisitive mutiple

t, while a+η2j+1 = 0. We compute

t2k = 〈ηk, s−s+ηk〉 = 〈ηk, (s2 − s2
3 − s3)ηk〉 = j(j + 1)− k(k + 1) .

That is,

s+ηk =
√
j(j + 1)− k(k + 1)η+1 for all k = −2j − 1, . . . , 2j + 1 . (3.31)

This gives us the form of the matrix representing s+ in this basis, and taking the hermitain conjugate

we get the matrix that represents s−.

Finally, it is easy to check that the matrices determine a triple {s1, s2, s3} of self adjoint (2j +

1) × (2j + 1) matrices that satisfy (3.24). Hence, for each j, there is a representation of su(2) by

(2j + 1)× (2j + 1) matrices, and any two such representations are unitarily equivalent. Any such

representation is called a spin j representation.

Each such representation gives rise to a natural example of a (j(j + 1))−1/2 representation of

the sphere: Since

s2
1 + s2

2 + s2
3 = j(j + 1)1 ,
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we define hj = (j(j + 1))−1/2sj , j = 1, 2, 3, {h1, h2, h3}, and this provides a (j(j + 1))−1/2 repre-

sentation of the sphere.

We will show, following Hastings and Loring, that if {k1, k2, k3} is a set of three commting self

adjoint (2j + 1)× (2j + 1) matrices, then for the spin j representation of su(2),

‖h1 − kk‖+ ‖h2 − k2‖+ ‖h3 − k3‖ ≥
√

1− 2/j .

The method involves a topological invariant, the Bott invariant that we now define.

3.10 DEFINITION (Bott invariant). For any set of three n × n hermitian matrices h1, h2 and

h3, define the 2n× 2n matrix b(h1, h2, h3) by

b(h1, h2, h3) =

3∑
j=1

σj ⊗ hj =

[
h3 h1 − ih2

h1 + ih2 −h3

]
.

Note that b(h1, h2, h3) is self adjoint so that all of its eigenvalues are real. Let N+(h1, h2, h3) be

the number of strictly positive eigenvalues of b(h1, h2, h3), and let N−(h1, h2, h3) be the num-

ber of strictly negative eigenvalues of b(h1, h2, h3). Suppose that 0 is not an eigenvalue of

b(h1, h2, h3), so that N+(h1, h2, h3) +N−(h1, h2, h3) = 2n. Then N+(h1, h2, h3)−N−(h1, h2, h3) =

2n− 2N−(h1, h2, h3) is an even intteger, so that

bott(h1, h2, h3) :=
1

2
[N+(h1, h2, h3)−N−(h1, h2, h3)]

is an integer. This integer is the Bott invariant of {h1, h2, h3}. Note that bott(h1, h2, h3) is only

defined when 0 is not an eigenvalue of b(h1, h2, h3).

Note that the three matrices σ1, σ2 and σ3 are have the same spectrum, namely {−1, 1}. Then

for any self adjoint h ∈ Mn(C), σ1 ⊗ h, σ2 ⊗ h and σ3 ⊗ h all have the same eigenvalues, namely

{±λ1, . . . ,±λn} where {λ1, . . . , λn} is the set of eigenvalues of h. Hence

‖σ1 ⊗ h‖ = ‖σ2 ⊗ h‖ = ‖σ3 ⊗ h‖ = ‖h‖ .

It follows that for any self adjoint triple {h1, h2, h3},

‖b(h1, h2, h3)‖ ≤ ‖h1‖+ ‖h2‖+ ‖h3‖ . (3.32)

Suppose that h1, h2 and h3 are three commuting Hermitian n × n matrices. Then there is a

unitary n× n matrix u such that kj := u∗hju is diagonal for each j = 1, 2, 3. Evidently[
u∗ 0

0 u∗

]
b(h1, h2, h3)

[
u 0

0 u

]
= b(k1, k2, k3) .

Therefore,

bott(h1, h2, h3) = bott(k1, k2, k3) .

Let α1, . . . , αn, β1, . . . , βn, and γ1, . . . , γn be the diagonal entries of k1, k2 and k3 respectively. Then

b(k1, k2, k3) is unitarily equivalent to

n⊕
`=1

[
γ` α` − iβ`

α` + iβ` −γ`

]
. (3.33)
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A simple computation shows that

[
γ` α` − iβ`

α` + iβ` −γ`

]2

= (α2
` + β2

` + γ2
` )

[
1 0

0 1

]
. Since the

trace of

[
γ` α` − iβ`

α` + iβ` −γ`

]
is zero, it then follows that the eigenvalues are ±

√
α2
` + β2

` + γ2
` .

Thus, as long no non-zero vector is in the null space of each of h1, h2 and h3, each of the blocks in

(3.33) has one strictly positive eigenvalue and one strictly negative eigenvalue. In particular, this

is the case if each of h1, h2 and h3 are invertible. It follows that in this case, bott(h1, h2, h3) = 0.

We have proved:

3.11 LEMMA. Let h1, h2 and h3 be three commuting invertible Hermitian n× n matrices. Then

bott(h1, h2, h3) = 0.

3.12 EXAMPLE. Let {h1, h2, h3} be the (j(j + 1))−1/2 representation of the sphere provided

by a spin j representation of su(2). Let {η−2j−1, . . . , η2j+1} be the corresponding sequence of

eigenvectors of s3 and hence h3. Since, using the notation of the previous example,

b(h1, h2, h3) =
1√

j(j + 1)

[
s3 s−
s+ −s3

]
,

is is easy to see that the vectors of the form (ηk,±ηk+1), −2j−1, . . . , 2j, togehter with (0, η−2j − 1)

and (η2j+1, 0). are a set of 2n orthonormal eigenvalues of b(h1, h2, h3). A simple calculaution show

that the pairs (ηk,±ηk+1) contribute a positive and a negative eigenvalue each, while the two special

case eigenvectors have positive eigenvalues. Hence

bott(h1, h2, h3) = 1

for all j.

Next, we show that the Bott invariant is defined for all δ representations of the sphere with

δ < 1/4.

3.13 LEMMA. Let {h1, h2, h3} be a δ-representation of the sphere in Mn(C) with δ < 1/4. Then

σ(b(h1, h2, h3)) ⊂ [−
√

1 + 4δ,−
√

1− 4δ] ∪ [
√

1− 4δ,
√

1 + 4δ] . (3.34)

Moreover, if {k1, k2, k3} is any triple of self adjoint operators with

γ = ‖h1 − k1‖+ ‖h2 − k2‖+ ‖h3 − k3‖ <
√

1− 4δ , (3.35)

then for all t ∈ [0, 1],

σ(s((1− t)h1 + tk1, (1− t)h2 + tk2, (1− t)h3 + tk3)) ⊂
[−γ −

√
1 + 4δ, γ −

√
1− 4δ] ∪ [

√
1− 4δ − γ,

√
1 + 4δ + γ] . (3.36)

and consequently, bott((1−t)h1 +tk1, (1−t)h2 +tk2, (1−t)h3 +tk3)) is well-defined for all t ∈ [0, 1].
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Proof. We compute that

(s(h1, h2, h3))2 = 1⊗ (h2
1 + h2

2 + h2
3) + σ3 ⊗ i[h1, h2] + σ1 ⊗ i[h2, h3] + σ2 ⊗ i[h3, h1] .

Therefore, ‖s(h1, h2, h3))2 − 1‖ ≤ 4δ, and then by the Spectral Mapping Lemma,

σ(s(h1, h2, h3)) ⊂ { t ∈ R : |t2 − 1| < 4δ } .

Next, note that by (3.32),

‖b((1− t)h1 + tk1, (1− t)h2 + tk2, (1− t)h3 + tk3))− b(h1, h2, h3))‖ =

t‖b(k1 − h1, k2 − h2, k3 − h3))‖ ≤ tγ . (3.37)

Then (3.34) and Theorem 2.17 yield (3.39), and bott((1− t)h1 + tk1, (1− t)h2 + tk2, (1− t)h3 + tk3))

is well-defined for all t ∈ [0, 1].

3.5 The Bott invarinat as a trace function

Recall that for an n× n matrix a, the trace of a, Tr[a], is defined by

Tr[a] =

n∑
j=1

ai,i (3.38)

where ai,j denotes the i, j entry of a.

A simple computation shows that for any a ∈Mn(C), and any invertible b ∈Mn(C), Tr[b−1ab] =

Tr[a]. Let {η1, . . . , ηn} be any orthonormal basis of Cn, and let {χ1, . . . , χn} be the standard basis.

Let u be the unitary matrix with uχj = ηj for j = 1, . . . , n. Then

Tr[a] = Tr[u∗au] =

n∑
j=1

〈χi, u∗auχi〉 =

n∑
j=1

〈ηj , b−1abηj〉 ,

showing that the trace may be computed at the sum of the diagonal elements in any ortonormal

basis. If a is self adjoint, there is an orthonormal basis consisting of eigenvectors of a; aηj = λjηj for

each j = 1, . . . , n. Then evidently Tr[a]−
∑n

j=1 λj . The function a 7→ Tr[a] is evidently continuous.

Now let ε > 0 be given, and let fε be any continuous function form R to [−1, 1] such that

f(t) = −1 for t ≤ −ε and f(t) = 1 for t ≥ ε.
Let a ∈ Mn(C) be self adjoint and such that (−ε, ε) ∩ σA (a) = ∅. Let {η1, . . . , ηn} be an

orthonormal basis of Cn consisting of eigenvectors of a with aηj = λjηj for each j = 1, . . . , n.

Define

N+(a) =
∑
j=1

n1(0,∞)(λj) and N−(a) =
∑
j=1

n1(−∞,0)(λj) .

Then by considering a sequence of polynomial approximations of fε on [−‖a‖, ‖a‖], we have

that

Tr[f(a)] =

n∑
j=1

〈ηj , f(a)ηj〉 =
n∑
j=1

fε(λj) = N+(a)−N−(a) .

It follows that when {h1, h2, h3} is a δ representation of the sphere in Mn(C) with δ < 1/4,

bott({h1, h2, h3}) = Tr[f1−4δ(s(h1, h2, h3))] .
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Proof of Theorem 3.7. Consider the 1/
√
j(j + 1) representation of the sphere associated to the spin

j representation of su(2). By Lemma 3.13, if {k1, k2, k3} is any triple of self adjoint (2j+1)×(2j+1)

matrices with

γ = ‖h1 − k1‖+ ‖h2 − k2‖+ ‖h3 − k3‖ <
√

1− 4/
√
j(j + 1) , (3.39)

then for all t ∈ [0, 1],

σ(s((1− t)h1 + tk1, (1− t)h2 + tk2, (1− t)h3 + tk3)) ⊂

[−γ−
√

1 + 4
√
j(j + 1), γ−

√
1− 4

√
j(j + 1)] ∪ [

√
1− 4

√
j(j + 1)− γ,

√
1 + 4

√
j(j + 1) + γ] .

(3.40)

and consequently, for any ε <
√

1− 4
√
j(j + 1)− γ,

bott((1−t)h1+tk1, (1−t)h2+tk2, (1−t)h3+tk3))−Tr[fε((1−t)h1+tk1, (1−t)h2+tk2, (1−t)h3+tk3)) ,

with fε defined as in the paragraphs above. Then the right hand side is a continuous integer valued

function of t, and so

bott(k1, k2, k3) = bott(h1, h2, h3) = 1 .

Therefore, {k1, k2, k3} cannot be a commuting triple.

4 Operators on Hilbert space

4.1 Topologies on B(H )

Let H be a separable Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H , and let B(H ),

as usual, denote the C∗-algebra of bounded linear operators on H . There are two important

non-metric topologies in B(H ), waker than the norm topology, that are essential to what follows.

4.1 DEFINITION (Strong and weak operator topologies). The strong operator topology on B(H )

is the weakest topology such that for each ξ ∈ H , the function a 7→ aξ from B(H ) to H is

continuous with the usual norm topology on H . The weak operator topology on B(H ) is the

weakest topology such that for each ξ, ζ ∈ H , that function a 7→ 〈ζ, aξ〉H is continuous from

B(H ) to C.

It follows from the definitions that a basic set of neighborhoods of 0 for the strong operator

topology is given by the sets

Uε,ξ1,...,ξn = {a ∈ B(H ) : ‖aξj‖H < ε for j = 1, . . . , n } (4.1)

where ε > 0 and ξ1, . . . , xn ∈H . Likewise, it follows that a basic set of neighborhoods of 0 for the

weak operator topology is given by the sets

Vε,ζ1,...,ζn,ξ1,...,ξn = {a ∈ B(H ) : |〈ζj , aξj〉H | < ε for j = 1, . . . , n } (4.2)
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ε > 0 and ζ1, . . . , ζn, ξ1, . . . , xn ∈H . Note that both topologies are evidently Hausdorff.

It is clear that for each ξ ∈ H , a 7→ aξ is continuous in the norm topology on B(H ), so that

the norm topology is stronger than the strong operator topology. Furthermore, since for all ζ ∈H ,

ξ 7→ 〈ζ, ξ〉H is continuous on H , the function a 7→ 〈ζ, aξ〉H is continuous in the strong operator

topology on B(H ), being the composition of continuous functions, and hence the strong operator

topology is stronger than the weak operator topology.

The following proposition shows that the norm topology is strictly stronger than the strong

operator topology, which is in turn strictly stronger than the weak operator topology.

4.2 PROPOSITION (Continuity of the norm and adjoint). Let H be an infinite dimensional

Hilbert space. Then:

(1) The function a 7→ ‖a‖ from B(H ) to R+ is continuous in the norm topology, but is only lower

semicontinuous in the strong ad weak operator topologies.

(2) The function a 7→ a∗ is continuous from B(H ) to B(H ) in the norm and the weak operator

topologies, but not in the strong operator topology.

Proof. Let {ζj} be an orthonormal sequence in H . For each n ∈ N, let pn denote the orthogonal

projection onto the span of {ζ1, . . . , ζn}. Then for all ξ ∈ H , limn→∞ ‖pnξ‖ = 0 by Bessel’s

inequality, so that limn→∞ pn = 0 in the strong operator topology. However, for n 6= m, ‖pn − p−
m‖ = 1, so that the sequence {pn} is not even Cauchy in the norm topology. Hence the norm is

discontinuous in the strong operator topology, and hence also in the weak operator topology.

To see that the norm is lower semicontinuous in these topologies, it suffices to show that the

sub-level sets { a ∈ B(H ) : ‖a‖ ≤ t } are closed for each t > 0. Fix t > 0 and b in the closure

of { a ∈ B(H ) : ‖a‖ ≤ t }. Then for each unit vector ξ ∈ H , and each n ∈ N there is an

an ∈ { a ∈ B(H ) : ‖a‖ ≤ t } such that b − an ∈ U1/n,ξ, which means that ‖(b − an)ξ‖ < 1/n.

This means that ‖bξ‖ ≤ ‖an‖ + 1/n ≤ t + 1/n. Since n is arbitrary, ‖bξ‖ ≤ t. Then since ξ is an

arbitrary unit vector in H , ‖b‖ ≤ t. This proves the closure in the strong operator topology, and

a very similar argument proves the closure for the weak operator topology.

For the second part, since every infinite dimensional Hilbert space contains a copy of `2, the

Hilbert space of all square summable functions from N to C, we may suppose without loss of

generality that H = `2. Define the shift operator a ∈ B(H ) by

(aζ)j =

{
ζj−1 j ≥ 2

0 j = 1

Evidently, for all ζ, ‖aζ‖H = ‖ζ‖H . The adjoint is given by (a∗ζ)j = ζj+1 for all j ∈ N. Therefore,

‖a∗ζ‖2H =
∑∞

j=2 |ζj |2 = ‖ζ‖2 − |ζ1|2. It follows that for all ζ ∈H ,

lim
n→∞

‖(an)∗ζ‖H = 0 while ‖anζ‖H = ‖ζ‖H .

Hence the sequence {(an)∗} converges to zero in the strong operator topology, but the sequence

{an} does not. Since {an} = {(an)∗∗} this shows that the involution is not continuous in the strong

operator topology.

The continuity of the involution is obvious in the norm topology since the involution is an

isometry, and in the weak operator topology it follows from the fact that

(Vε,ζ1,...,ζn,ξ1,...,ξn,)
∗ = Vε,ξ1,...,ξn,ζ1,...,ζn .
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As far as sequences are concerned, a sequence {an} in B(H ) converges to a ∈ B(H ) in the

strong operator topology if and only if for all ξ ∈H , limn→∞ anξ = aξ, and likewise, converges to

a ∈ B(H ) in the weak operator topology if and only if for all ζ, ξ ∈H , limn→∞〈ζ, anξ〉H = 〈aξ〉H .

A sequence {an} in B(H ) is a Cauchy sequence for the weak operator topology in case for every

basic open neighborhood Vε,ζ1,...,ζn,ξ1,...,ξn of 0, am − a` ∈ Vε,ζ1,...,ζn,ξ1,...,ξn for all but finitely many

`,m. Cauchy sequences for the strong operator topology are defined analogously.

4.3 THEOREM. Let {an} be a Cauchy sequence for the weak operator topology. Then {‖an‖}
is a bounded sequence, and there exists an a ∈ B(H ) with ‖a‖ ≤ supn∈N{‖an‖} and such that

limn→∞ an = a in the weak operator topology. Moreover, the analogous statement for the strong

operator topology is also true.

Proof. Let {an} be a Cauchy sequence for the weak operator topology. We first show that {‖an||}
is a bounded sequence. To see this, note that for each ζ, ξ ∈H , {〈ζ, anξ〉H } is a Cauchy sequence

in C, and hence convergent and bounded. Thus, if we define the sets Cm ⊂H ×H by

Cm = {(ζ, ξ ∈H ×H : sup
n∈N
|〈ζ, anξ〉H | ≤ m }

we have that ∪m∈NCm = H ×H . If {(ζk, ξk)} is a convergent sequence in Cm with limit (ζ, ξ),

then for all n,

|〈ζ, anξ〉H | = lim
k→∞

|〈ζk, anξk〉H | ≤ m

so that Cm is closed. Since H ×H with the product metric is a complete metric space, by Baire’s

Theorem, for at least one m ∈ N, Cm contains an open set, and then it is clear that {‖an||} is a

bounded sequence.

Now let L = supn∈N{‖an‖}, and for all ζ, ξ ∈ H , define q(ζ, ξ) = limn→∞〈ζ, anξ〉H , which

exists since the sequence on the right is Cauchy in C. It is easy to see that ζ, ξ 7→ q(ζ, ξ) is a

sesquilinear form on H , with

|q(ζ, ξ)| ≤ L‖ζ‖H ‖ξ‖H .

For each ξ ∈H , the map ζ 7→ q(ζ, ξ) is a conjugate linear functional on H , and hence by the Riesz

Representation Theorem, there is a uniquely determined vector ηξ ∈H such that q(ζ, ξ) = 〈ζ, ηξ〉H
for all ζ ∈ H , and ‖ηξ‖H ≤ r‖ξ‖H . Since q is sesquilinear, the map ξ 7→ ηξ is linear, and thus

there exists a ∈ B(H ) such that ‖a‖ ≤ L and ηξ = aξ for all ξ ∈ H . It now follows that for

each ζ, ξ ∈H , limn→∞〈ζ, anξ〉H = 〈ζ, aξ〉H , and hence that limn→∞ an = a in the weak operator

topology. The corresponding proof for the strong operator topology is easier, and is left as an

exercise.

We next claim that the strong operator topology is not metrizable when H is infinite dimen-

sional. The basic open set Uε,ξ1,...,ξn contains all a ∈ B(H ) with aξj = 0 for each j = 1 . . . , n. If H

is infinite dimensional, then there is a non-trivial subspace of B(H ) contained in every Uε,ξ1,...,ξn ,

and hence in every open set about the origin.

For each n ∈ N, the set Cn := { a ∈ B(H ) : ‖a‖ ≤ n} is closed in the strong operator topology

by the lower semicontinuity of the norm. By what we have just said, each Cn is nowhere dense,
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since no ball can contain a non-trivial subspace. Since evidently B(H ) = ∪∞n=1Cn, it follows that

B(H ) is a countable union of closed, nowhere dense sets in the strong operator topology. Suppose

the strong operator topology were metrizable. Then by Theorem refwscom, B(H ) equipped with

this topology would be a complete metric space. Baire’s Theorem says that a complete metric space

is never the countable union of closed nowhere dense sets, so the strong topology on B(H ) cannot

be metrized. A similar argument applies to the weak operator topology. However, as we show next,

The relative weak and strong operator topologies on bounded subsets of B(H ) are metrizable when

H is separable.

4.4 THEOREM. For r > 0, let Br denote the closed unit ball of radius r in B(H ). That is,

Br = { a ∈ B(H ) : ‖a‖ ≤ r }. Then there are metrics ρw and ρs on Br such that the metric

topologies are equivalent to the relative weak and strong operator topologies respectively, and such

that (Br, ρw) and (Br, ρs) and are complete metric spaces.

Proof. Let {ηj} be any sequence of unit vectors that is dense in the unit sphere of H , For all

a, b ∈ B(H ), define

ρs(a, b) =
∞∑
j=1

2−j‖(a− b)ηj‖H and ρw(a, b) =
∞∑

j,k=1

2−j−k|〈ηk(a− b)ηj〉H | . (4.3)

It is easy to verify that these are indeed metrics.

We now show that the relative strong operator topology onBr coincides with the metric topology

on Br induced by the metric ρs. First, we first show that for every t > 0, { a : ρs(a, 0) < t }
contains a neighborhood of 0 in the relative strong operator topology . Choose n so that r2−n < t/2.

Then for b ∈ Ut/2,η1,...,ηn ∩Br,

ρs(b, 0) =

∞∑
j=1

2−t‖bηj‖ ≤
n∑
j=1

2−j
t

2
+

∞∑
j=n+1

r ≤ t

and consequently, Ut/2,η1,...,ηn ∩Br ⊂ { a : ρs(a, 0) < t }.
We next show that every basic strong operator topology neighborhood Uε,ξ1,...,ξm contains an

open ball about 0 in the relative metric topology. By decreasing epsilon as necessary, we may

suppose that ξj is a unit vector for each j. Choose {ηj1 , . . . , ηjm} such that ‖ηjk − ξk‖ < ε/2 for

k = 1, . . . ,m. Let M = max{j1, . . . , jM}. Then for b ∈ Br ∩ { a : ρs(a, 0) < 2−M ε }, ‖bηj‖ ≤ ε

for each j = 1, . . . ,m, and consequently b ∈ Uε,ξ1,...,ξm . A similar argument shows that on each Br,

the relative weak operator topology is metrizable.

We shall be especially concerned with bounded subsets of the self adjoint elements of B(H ),

for which there is an even simpler description of the relative weak operator topology, for which

there is an even simpler criterion for weak convergence:

lim
n→∞

〈ηjanηj〉H = 〈ηjaηj〉H for all j ∈ N .

4.5 LEMMA (Polarization identify). Let a ∈ B(H ) be self adjoint. Then for all ζ and ξ in H ,

〈ζ, aξ〉H =
1

4
[〈(ζ + ξ), a(ζ + ξ)〉H − 〈(ζ − ξ), a(ζ − ξ)〉H ]

− i

4
[〈(ζ + iξ), a(ζ + iξ)〉H − 〈(ζ − iξ), a(ζ − iξ)〉H ] .
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Proof. This is a direct computation.

4.6 REMARK. It follows that for the relative weak operator topology on the self adjoint elements

of B(H ), a basic set of neighborhoods at the origin is given by the sets

Vε,ξ1,...,ξn, = {a ∈ B(H ) : |〈ξj , aξj〉H | < ε for j = 1, . . . , n } (4.4)

ε > 0 and ξ1, . . . , xn ∈H .

4.7 THEOREM (Continuous linear functions for the strong operator topology). Let H be a

Hilbert space, and let ϕ be a linear functional on B(H ) that is continuous in the strong operator

topology. Then there exists n ∈ N and two sets of vectors {ζ1, . . . , ζn} and {ξ1, . . . , ξn} such that

for all a ∈ B(H ),

ϕ(a) =

n∑
j=1

〈ζj , aξj〉H . (4.5)

Evidently, every such linear functional is weakly continuous, and hence every strongly continuous

linear functional is weakly continuous. Consequently, a convex subset of B(H ) is strongly closed

if and only if it is weakly closed.

Proof. If ϕ is strongly continuous, then ϕ−1({λ : |λ| < 1}) contain a neighborhood of 0 in B(H ).

Thus, there exists an ε > 0 and a set of n vectors ξ1, . . . , ξn, which without loss of generality we

may assume to be orthonormal, such that if ‖aξj‖ < ε for j = 1, . . . , n, |ϕ(a)| < 1. Note that if

aξj = 0 for j = 1, . . . , n, then t > 0, ‖taξj‖ < ε for j = 1, . . . , n, and consequently t|ϕ(a)| < 1. It

follows that

aξj = 0 for j = 1, . . . , n ⇒ ϕ(a) = 0 . (4.6)

For any a ∈ B(H ), define â by â =
n∑
j=1

aξj〈ξj , ·〉H . Evidently (a − â)ξj = 0 for j = 1, . . . , n,

and hence by (4.6),

ϕ(a) = ϕ(â) =
n∑
j=1

ϕ[(aξj)〈ξj , ·〉H ] . (4.7)

For each fixed j, and any η ∈ H , consider the rank-one operator η〈ξj , ·〉H . Then η 7→
ϕ(η〈ξj , ·〉H ) is a bounded linear functional on H , and therefore by the Riesz Representation

Theorem, there is a vector ζj ∈ H such that 〈ζj , η〉H = ϕ(η〈ξj , ·〉H ) for all η ∈ H . Combining

this with (4.7) yields (4.5). The final statement is a standard application of the Hahn-Banach

Theorem.

4.2 The measurable functional calculus

Let a ∈ B(H ) be self adjoint, and for brevity let σ(a) denote σB(H )(a), Let η ∈H , and define a

linear functional µη on C (σ(a)) through

µη(f) = 〈η, f(a)η〉H . (4.8)
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Then µ is evidently a positive linear functional with µη(1) = ‖η‖2H . By the Reisz-Markoff Theorem,

there is a positive Borel measure of total mass ‖η‖2H , also denoted by µη, so that for all f ∈ C (σ(a)),

µη(f) =

∫
σ(a)

fdµη . (4.9)

Combining (4.8) and (4.9), we conclude that for all f ∈ C (σ(a)), 〈η, f(a)η〉H =

∫
σ(a)

fdµη

Now let {ηj} be any dense sequence in the unit sphere of H , and define the probability measure

ν on σ(a) by

ν =

∞∑
j=1

2−jµηj . (4.10)

By (4.8) and (4.10), for all f, g ∈ C (σ(a)), and all k,

2−k‖(f(a)− g(a))ηk‖2H ≤
∞∑
j=1

2−j〈ηj , |f(a)− g(a)|2ηj〉H ≤
∫
σ(a)
|f − g|2dν . (4.11)

Recall that the continuous functions on σ(a) are dense in L1(σ(a), µ) for any Borel measure

µ, and that from any sequence that converges in L1(σ(a), µ), one can extract a subsequence that

converges a.e. to f . It follows that if f is any bounded Borel function of σ(a), there exists a

sequence {fn} of uniformly bounded continuous functions on σ(a) with limn→∞ fn(λ) = f(λ) for

ν a.e. λ, then by the Lebesgue Dominated Convergence Theorem, limn→∞
∫
σ(a) |fn − f |

2dν = 0.

Consequently for all ε > 0,
∫
σ(a) |fn−fm|

2dν < ε for all but finitely many m and n. Then by (4.10),

{fn(a)} is a Cauchy sequence for the strong operator topology, and hence limn→∞ fn(a) = b exists

for this topology. In particular, for all ξ ∈H ,

lim
n→∞

fn(a)ξ = bξ . (4.12)

We would like to define f(a) = b, but at this point, one might suppose that the definition

depends on the approximating sequence of continuous functions, or on the choice of the dense

sequence {ηj} in the unit sphere of H . In fact, it does not.

First, let f be a bounded Borel function on σ(a), and let {fn} and {f̃n} be two sequences of

continuous functions that converge ν a.e. to f , where ν is defined by (4.10) for some choice of a

dense sequence {ηj} in the unit sphere of H . Define the “interlaced” sequence {gn} by g2n−1 = fn
and g2n = f̃n. Then evidently {gn} converges ν a.e. to f , and so b = limn→∞ gn(a) exists in the

weak operator topology. Since subsequences of convergent sequences converge to the same limit,

we have

b = lim
n→∞

fn(a) = lim
n→∞

f̃n(a) .

Next, let {ηj} and {η̃j} be two dense sequences in the unit sphere of H , and define ν and ν̃

in terms of them as in (4.10). Then ν and ν̃ are equivalent measures, meaning that a Borel set

E ⊂ σ(a) is a null set for one if and only if it is also a null set for the other. To see this, suppose on

the contrary that E is a Borel subset of σ(a) with ν(E) > 0 but ν̃(E) = 0. Let f be the indicator

function of E. Let µ = ν+ ν̃, and let {fn} be a sequence of continuous non-negative functions that
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converges µ a.e. to f , and hence converges both ν and ν̃ a.e. Since each fn(a) is self adjoint and

nonnegative, so it the weak limit b. Therefore

lim
n→∞

∫
σ(a)

fn(λ)dν = ν(E) > 0 while lim
n→∞

∫
σ(a)

fn(λ)dν̃ = ν̃(E) = 0 .

This would imply that

∞∑
=1

2−j〈ηjbηj〉H > 0 while
∞∑

=1

2−j〈η̃jbη̃j〉H = 0 ,

and then since each term in the sum on the right is non-negative, 〈η̃jbη̃j〉H = 0 for all j, while for

at least one j0, 〈ηj0bηj0〉H > 0. But since {η̃j} is dense in the unit sphere, there is a subsequence

{η̃jk} with limk→∞ η̃jk = ηj0 , and this then forces 〈ηj0bηj0〉H = 0. The contradiction shows there

is no such Borel set E and hence the two measures are equivalent.

In other words, the self adjoint operator a determines a class of mutually equivalent Borel

measures, and if E is a null set for this class then µη(E) = 0 for all η ∈H since for η 6= 0, we may

include ‖η‖−1
H η is any dense sequence in the unit sphere. Thus, when discussing a.e. convergence of

functions on the spectrum of a, we shall always mean almost everywhere with respect to any one

of these equivalent measures, and then for any Bounded Borel function f on σ(a), we define

f(a) = lim
n→∞

fn(a) (4.13)

where {fn} is any sequence of continuous functions on σ(a) that converges almost everywhere to f

in this sense. By what we have noted above, such sequences always exist, the limit always exists,

and the limit is independent of the approximating sequence {fn} and of the particular reference

measure used in the construction. We have prepared the way for an easy proof of the following

theorem:

4.8 THEOREM (Functional Calculus For Bounded Self-Adjoint Operators). Let H be a separable

Hilbert space, and let a be a self-adjoint element of B(H ). Let B(σ(a)) denote the bounded Borel

functions on σ(a). Then for f ∈ B(σ(a)), f(a) is defined through (4.13) as described above.

The function f 7→ f(a) is a norm-reducing ∗-isomorphism from B(σ(a)) into B(H ). Moreover:

(1) Its restriction to the continuous functions B(σ(a)) agrees with the function f 7→ f(a) given

by that Abstract Spectral Theorem. In particular, a is the image of λ 7→ λ and the identity is the

image of λ 7→ 1.

(2) Let {fn} be a sequence in B(σ(a)) supn∈N{‖fn‖∞} < ∞, and such that limn→∞ fn(λ) = f(λ)

for all λ ∈ σ(a). Then f(a) = limn→∞ fn(a) in the strong operator topology.

(3) The function f 7→ f(a) preserves order: If g ≥ f in B(σ(a)), then g(a)− f(a) is non-negative.

Proof. Let f ∈ B(σ(a)) and let {fn} be a bounded sequence in C (σ(a)) converging a.e. to f . Then

for all zη, ci ∈H ,

〈ζ, (f(a))∗ξ〉H = 〈f(a)ζ, ξ〉H = lim
n→∞

〈fn(a)ζ, ξ〉H = lim
n→∞

〈ζ, f∗n(a)ξ〉H = 〈ζ, f∗(a)ξ〉H .
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The map f 7→ f(a) is evidently linear, and we conclude the proof that it is a 8-homomorphism by

showing that for f, g ∈ B(σ(a)), fg(a) = f(a)g(a). Let {fn} and {gn} be bounded sequences in

C (σ(a)) converging a.e. to f and g respectively. For any ζ, ξ ∈H ,

〈ζ, f(a)g(a)ξ〉H = 〈f∗(a)ζ, g(a)ξ〉H = lim
n→∞

〈f∗n(a)ζ, gn(a)ξ〉H =

lim
n→∞

〈ζ, fngn(a)ξ〉H = 〈ζ, fg(a)ξ〉H .

Next, for all f ∈ B(σ(a)), and all ξ ∈H with ‖ξ‖H = 1

‖f(a)ξ‖2H =

∫
σ(a)
|f(λ)|2dµξ ≤ ‖f‖2∞

since µξ is a probability measure. This completes the proof that f 7→ f(a) is a nor reducing

∗-homomorphism from B(σ(a)) to B(H ).

Properties (1) and (2) have been proved above, and to prove (3) write g − f = h2 and use the

∗-homomorphism property.

The ∗-homomorphism provided by Theorem 4.8 need not be an isomorphism. The following

example is useful elsewhere: Let λ0 ∈ σ(a)m and consider the function 1λ0 given by 1λ0(λ) = 1 for

λ = λ0 and zero otherwise. Then for all λ, λ01λ0(λ) = λ1λ0(λ). By the ∗-homomorphism property,

λ01λ0(a) = a1λ0(a) .

It follows that any non-zero vector in the range of 1λ0(a) is an eigenvector of a with eigenvalue

λ0, and conversely any such eigenvector ξ is in the range of 1λ0(a) as one sees by considering a

continuous approximation {fn} to 1λ0 : We suppose that ‖ξ‖ = 1, and note that

〈ξ, 1λ0(a)ξ〉H = lim
n→∞

〈ξ, fn(a)ξ〉H = lim
n→∞

fn(λ0) = 1 .

By the conditions for equality in the Cauchy-Schwarz inequality, and the nor reduction property,

1λ0(a)ξ = ξ.

In fact, for any Borel set E ⊂ R, the indicator function 1E is a projector in B(σ(a)), and hence,

by the ∗-homomorphism property, 1E(a) is a projector in B(H ). Taking E = (s, t] for s < t yields

a useful family of projectors that we shall encounter later on.

4.3 The polar decomposition

4.9 DEFINITION (Operator absolute value). . Let H be a Hilbert space and let a ∈ B(H ).

Then the operator absolute value of a is the operator |a| defined by

|a| =
√
a∗a , (4.14)

where the square root is taken using the Abstract Spectral Theorem.

4.10 REMARK. One should not be misled by the notation: It is not in general true that |ab| =
|a||b|, or that |a∗| = |a| or even that |a+ b| ≤ |a|+ |b|.
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Next, or each t > 0, define the operator

ut := a(t1 + |a|)−1.

This does not require the Abstract Spectral Theorem; since |a| ≥ 0, (1t + |a|) is invertible. Now

note that for s, t > 0, by the Resolvent Identity

ut − us = (s− t)a[(t1− |a|)−1(s1− |a|)−1] .

Hence for any ξ ∈H , and 0 < s < t,

‖(ut − us)ξ‖2 = (s− t)2〈ξ, |a|2(t1− |a|)−2(s1− |a|)−2ξ〉H

= (t− s)2

∫
σ(|a|)

λ2

(t+ λ)2(s+ λ)2
dµξ

≤
∫
σ(|a|)\{0}

t2

(t+ λ)2
dµξ

Since 0 ≤ t2/(t+ λ)2 ≤ 1 for all λ > 0, and since limt→0 t
2/(t+ λ)2 = 0 for all λ > 0, the Lebesgue

Dominated Convergence Theorem yields

lim
t→0

(
sup
s<t
{‖(ut − us)ξ‖2}

)
= 0 .

Thus, the strong limit u = limt→0 ut exists. Note that u|a| = limt→0 ut|a| = x limt→0 ft(|a|) where

ft(λ) = λ/(t + λ). since limt→0 ft(λ) = 1(0,∞)λ for all λ ≥ 0, it follows from Theorem 4.8 that

limt→0 ft(|a|) = 1(0,∞)(|a|) = 1 − 1{0}(|a|). Since 1{0}(|a|) is the projector onto the null space of

|a|, which is the null space of a, a1{0}(|a|) = 0, and hence

u|a| = a . (4.15)

Next note that u∗u = limt→∞ f
2
t (|a|) with ft(λ) = λ/(t+ λ) once more. It follows that

u∗u = 1(0,∞)(|a|) (4.16)

which is the projector onto ker(a)⊥. It follows from (4.15) that ran(u) = ran(a), and hence u is a

partial isometry from ker(a)⊥ onto ran(a).

Taking the adjoint of (4.15), we obtain a∗ = |a|u∗ and hence aa∗ = ua∗au∗. Squaring both sides

and observing that au∗u = a follows from (4.16), we obtain (aa∗)2 = u(a∗a)2u∗. An induction now

yields (aa∗)n = u(a∗a)nu∗ for all n, and then taking a polynomial approximation to the square

root, we conclude that

u|a|u∗ = |a∗| , (4.17)

and then since a∗ = |a|u∗ = u∗u|a|u∗,

a∗ = u∗(u|a|u∗) (4.18)

is the polar decomposition of a∗.
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4.4 Compact operators

Let H be a Hilbert space. An operator a ∈ B(H ) has finite rank if ran(a) is a finite dimensional

subspace of H , or equivalently, ker(a)⊥ is finite dimensional. If a is finite rank and {η1, . . . , ηm} is

an orthonormal basis for ker(a)⊥, then we may write a in the form

a =
m∑
j=1

|ξj〉〈ηj | , (4.19)

where for each j, ξj = aηj . Conversely, every operator of the form (4.19), even without the

assumption that {η1, . . . , ηm} is orthonormal, is evidently finite rank. It is clear that the set of

finite rank operators on B(H ) are a two-sided ∗-ideal in B(H ), but it is not closed in B(H ),

which brings us to the following definition.

4.11 DEFINITION. An operator a ∈ B(H ) is compact in case it is the norm limit of finite rank

operators. That is, the set C (H ) of all compact operators on H is the norm closure of the set of

finite rank operators on H .

The closure of a 2-sided ∗-ideal is a 2-sided ∗-ideal, and hence C (H ) is a 2-sided ∗-ideal in

B(H ) and a C∗ subalgebra of B(H ).

4.12 EXAMPLE. Let {λj} be a sequence of complex numbers such that limj→∞ λj = 0. Let

{ηj} and {ξj} be any two orthonormal bases of H , and define a sequence of operators an by

an =
n∑
j=1

λj |ηj〉〈ξj |. Then for any ζ, ζ ′ ∈H and any m < n ∈ N,

|〈ζ, (an − am)ζ ′〉H | ≤
n∑

j=m+1

|λj ||〈ζ, ηj〉H |1/2|〈ζ ′, ηj〉H |1/2

≤
(

max
j≥m+1

{|λj |}
) n∑
j=m+1

|〈ζ, ηj〉H |1/2|〈ζ ′, ηj〉H |1/2

≤
(

max
j≥m+1

{|λj |}
)
‖ζ‖H ‖ζ ′‖H ,

where we have used Cauchy-Schwarz in the last line. This shows that ‖an−am‖ ≤ maxj≥m+1{|λj |},
and hence that {an} is Cauchy in the operator norm. The limit is a compact operator that is finite

rank if and only if λj 6= 0 for only finitely many j.

4.13 THEOREM. An operator a ∈ B(H ) is compact if and only if the image of the unit ball in

H under a has compact closure.

Proof. Suppose that a is compact. Choose ε > 0, and a finite rank operator b =
∑m

j=1 |ξj〉〈ηj |
such that ‖b − a‖ < ε/2. Let b(B) denote the image of the unit ball under b, which is evidently

isometric to a bounded subset of Cm, and hence it may be covered by a finite collection of balls

of radius ε/2. Let {ξ1, . . . , ξn} denote the centers of these balls. For any η in the unit ball of H ,

‖bη − ξj‖H < ε/2 for some j. Then ‖aη − ξj‖H ≤ ‖(a− b)η‖H + ‖bη − ξj‖H < ε, and hence the

image of the unit ball B under a, a(B),is covered by finitely many balls of radius ε. Since ε > 0 is

arbitrary, a(B) has compact closure.



52

Conversely, suppose that a(B) has compact closure. Let a = u|a| be the polar decomposition

of a. Since u is an isometry from ran(|a|) onto ran(a), |a|(B) has compact closure. For any ε > 0,

consider the spectral projection pε = 1(ε,‖a‖](a). By the Spectral Theorem, p⊥ε |a| has spectrum in

(0, ε] and hence ‖p⊥ε |a|‖ ≤ ε. Since |a| = pε|a|+ p⊥ε |a|,

‖|a| − pε|a|‖ ≤ ‖p⊥ε |a|‖ ≤ ε .

Hence to show that |a| is compact, it suffices to show that pε|a| is finite rank for all ε > 0.

For any η in the range of pε, ‖|a|η‖H ≥ ε‖η‖H . Therefore, if {η1, . . . , ηm} is any orthonormal

set in the range of pε, ‖|a|ηi − |a|ηj‖H ≥
√

2ε for all i 6= j. Hence the range of pε cannot be

infinite dimensional when |a|(B) has compact closure. This shows that |a| is compact, and then

since C (H ) is an ideal, a = u|a| is compact as well.

More useful information can be gleaned from the proof of Theorem 4.13. Let a ∈ C (H ), and

let a = u|a| be its polar decomposition. For ε > 0, consider once more the spectral projection

pε = 1(ε,‖a‖](a). Then as we have seen, pε|a| = pε|a|pε is finite rank and is self adjoint. Hence it has

discrete spectrum, and then by the Spectral Theorem, we may write

pε|a| =
m∑
j=1

σj |ηj〉〈ηj | (4.20)

for some set of m numbers σ1, . . . , σm in the interval (ε, ‖a‖] and some orthonormal set

{eta1, . . . , ηm}. We may assume without loss of generality that the indexing is such that σj ≤ σi
for j > i. If all of the σj are distinct, then the representation in (4.20) is then uniquely determined,

and the vectors ηj are determined up to a complex multiple of unit modulus. As noted above,

‖|a| − pε|a|‖ ≤ ε .

Thus, limε→0 pε|a| = |a|. As ε decreases, the only effect on (4.20) is the addition of more terms on

the right, since for 0 < ε′ < ε and pε′,ε := 1(ε′,ε](a), pε′ |a| = pε′,ε|a| + pε|a|, and the ranges of the

two operators on the right are orthogonal. This reasoning leads to:

4.14 THEOREM. Let a ∈ C (H ). Then there exist two orthonormal sets {ηj} and {ξj}, not

necessarily complete, and a monotone non-increasing sequence of positive numbers {σj} such that

a has the norm convergent expansion

a =
∞∑
j=1

σj |ξj〉〈ηj | . (4.21)

Proof. We have already seen that this is the case when a = |a|, and then we may take ξj = ηj for

each j. In general, let a = u|a| be the polar decomposition of a, and define ξj = uηj .

4.5 Trace class operators

Let a be a positive operator on a separable Hilbert space H , and let {ηj} and {ξk} be two

orthonormal bases for H . Then

∞∑
j=1

〈ηj , aηj〉H =

∞∑
j=1

‖a1/2ηj‖H =

∞∑
j=1

∞∑
k=1

∣∣∣〈ξk, a1/2ηj〉H
∣∣∣2 .
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Since infinite series of non-negative terms may be summed in any order, the right hand side is

actually symmetric in {ηj} and {ξk}. Therefore, by symmetry in the two orthonormal bases,

∞∑
j=1

〈ηj , aηj〉H =

∞∑
k=1

〈ξk, aξk〉H ,

showing that
∑∞

j=1〈ηj , aηj〉H depends only on a, and not the particular orthonormal basis {ηj}.

4.15 DEFINITION (Trace class). Let H be a separable Hilbert space. For positive a ∈ B(H ),

we define

Tr[a] =
∞∑
j=1

〈ηj , aηj〉H

where {ηj} is any orthonormal basis of H . If Tr[a] < ∞, we say that a is trace class. More

generally, T (H ), the set of trace class operators on H is defined by

T (H ) = { a ∈ B(H ) : Tr[|a|] <∞ } . (4.22)

Note that T (H ) ⊂ C (H ): To see this, let a ∈ T (H ), and for ε > 0, let pε = 1(ε,‖a‖](a). Then

if {ζ1, . . . , ζn} is an orthonormal subset of ran(|a|),
n∑
j=1

〈ζj , |a|ζj〉H ≥ nε ,

and since the sum cannot exceed Tr[|a|] < ∞, n ≤ Tr[|a|]/ε. Hence |a| = pε|a|+ p⊥ε |a| where pε|a|
is finite rank, and where ‖p⊥ε |a|‖ ≤ ε. However, not all compact operators are trace class:

4.16 EXAMPLE. We have seen in Example 4.12 that if {λj} is a sequence of complex num-

bers such that limj→∞ λj = 0, and {ηj} and {ξj} are any two orthonormal sequences of H ,

a =

∞∑
j=1

λj |ηj〉〈ηj | is norn convergent. It is easy to see that |a| =
∞∑
j=1

|λj ||ηj〉〈ηj |, and thus a ∈ T (H )

if and only if

∞∑
j=1

|λj | <∞. Thus, there exist compact operators that are not trace class.

It turns out that the set of trace class operators in B(H ) is an ideal in B(H ). The following

lemma is useful for showing this:

4.17 LEMMA. Let A be a unital C∗ algebra, Then every element a of A can be written as a

linear combination of four unitaries, each of which belong to C∗(a), the smallest C∗ subalgebra of

A that contains a and 1.

Proof. Let y ∈ A be self-adjoint with ‖y‖ ≤ 1. Define z = y + i
√

1− y2, which clearly belongs to

C∗(y) ⊂ A . Then z∗z = zz∗ = 1 so that z is unitary, and y = (z+ z∗)/2 then displays y as a linear

combination of unitaries in C∗(y). Assume a 6= 0, and let t = (2‖a‖)−1. Then

a =
1

2t
x+ i

1

2t
y where x = t(a+ a∗) and y = −it(a− a∗) .

displays a as a linear combination of two self adjoint contractions in C∗(a).
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4.18 THEOREM. For any separable Hilbert space, T (H ) is a (non-closed) ∗-ideal in B(H ),

and for all a, b ∈ T (H ),

Tr[|a+ b|] ≤ Tr[|a|] + Tr[|b|] . (4.23)

4.19 REMARK. It is not the case that for all a, b ∈ B(H ), or even in M2(C), that |a + b| ≤
|a|+ |b|. Nonetheless, (4.23) is true in general.

Proof. We first show that T (H ) is closed under addition. Let a, b ∈ T (H ), and let a+b = u|a+b|
be the polar decomposition of a + b. Then |a + b| = u∗(a + b) and so for any orthonormal basis

{ηj},

Tr[|a+ b|] =

∞∑
j=1

〈ηju∗aηj〉H +

∞∑
j=1

〈ηju∗bηj〉H . (4.24)

Hence it suffice to show that for all a ∈ T (H ) all partial isometries u, and all orthonormal

basis {etaj}, the series
∑∞

j=1〈ηju∗aηj〉H is absolutely summable. To this end, let a = v|a| be the

polar decomposition of a, and note that by Cauchy-Schwarz,

|〈ηju∗aηj〉H | = |〈|a|1/2v∗uηj |a|1/2ηj〉H | ≤ 〈ξj |a|ξj〉
1/2
H ≤ 〈ξj |a|ξj〉1/2H

where ξj = v∗uηj . Since {ξj} is orthonormal in H (but not necessarily complete), one more

application of Cauchy-Schwarz yields

∞∑
j=1

|〈ηju∗aηj〉H | ≤

 ∞∑
j=1

〈ξj , |a|ξj〉H

1/2 ∞∑
j=1

〈ηj , |a|ηj〉H

1/2

≤ Tr[|a|] <∞ .

Using this twice in (4.24) shows that Tr[|a+ b|] ≤ Tr[|a|] + Tr[|b|] <∞, which is (4.23). This proves

that T (H ) is closed under addition, and it is now clear that T (H ) is a vector subspace of B(H ).

Next, recall from (4.18) that if a = u|a| is the polar decomposition of a, |a∗| = u|a|u∗, and

hence for any orthonormal basis {ηj},

∞∑
j=1

〈ηj , |a∗|ηj〉H =
∞∑
j=1

〈u∗ηj |a|u∗ηj〉H ≤ Tr[|a|] <∞

since {u∗ηj} is orthonormal (though not necessarily complete).

Because (ba)∗ = a∗b∗, if T (H ) is a left or right ideal it is a two-sided ideal. Hence it suffices

to show that for all a ∈ T (H ) and all b ∈ B(H ), ba ∈ T (H ). By Lemma 4.17, it suffices to do

this for b unitary in B(H ). But is b is unitary, |ba| = |a|, and so it is evident that ba ∈ T (H )

when a ∈ T (H ) and b is unitary.

Example 4.16 shows that every finite rank operator belongs to T (H ), but there are operators

in the norm closure of the set of finite rank operators that are not in T (H ). Hence T (H ) is not

closed in B(H ).

Now let x be a self adjoint operator in B(H ). Then let x+ and x− be the positive an negative

parts of x, defined vis the spectral calculus, so that x = x+ − x−. Then |x| = x+ + x−. Applying

the previous theorem, we conclude that x ∈ T (H ) if and only if both x+ and x− belong to T (H ).

Now consider any a ∈ B(H ) and write a = x + iy where x = (a + a∗)/2 and y = (a − a∗)/2i.
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Then, applying the previous theorem once more, a ∈ T (H ) if and only if each of x+, x−, y+ and

y− belong to T (H ). It follows that for a ∈ T (H ) and any two orthonormal bases {ηj} and {ξj}
of H ,

∞∑
j=1

〈ηjaηj〉H =
∞∑
j=1

〈ξjaξj〉H ,

and both sums are absolutely convergent.

4.20 DEFINITION (Trace). For all a ∈ T (H ), the trace of a, Tr[a], is defined by

Tr[a] =
∞∑
j=1

〈ηjaηj〉H

where {ηj} is any orthonormal basis of H . The trace norm is the norm ‖ · ‖1 on T (H ) by

‖a‖1 = Tr[|a|] , (4.25)

which is a norm since it obviously satisfies ‖λa‖1 = |λ|‖a‖1, and for a, b ∈ T (H ), and it satisfies

the triangle inequality on account of (4.23).

4.21 THEOREM (Properties of the trace). The functional a 7→ Tr[a] is linear on T (H ) and

Tr[a∗] = Tr[a]∗ for all a ∈ T (H ). Moreover:

(i) For all a ∈ T (H ) and all b ∈ B(H )

Tr[ab] = Tr[ba] (4.26)

(ii) For all ζ, ξ ∈H , and all b ∈ B(H ),

Tr
[
|ζ〉〈ξ|a

]
= 〈ξ, bζ〉H . (4.27)

(iii) For all a ∈ T (H ) and all b ∈ B(H ),

|Tr[ab]| ≤ ‖a‖1‖b‖ . (4.28)

Proof. The linearity is evident, and since 〈η, aη〉H = 〈η, a∗η〉∗H , it follows that Tr[a∗] = Tr[a]∗. In

view of the linearity and Lemma 4.17, to prove (4.26) it suffices to show that when u is unitary and

a ∈ T (H ), Tr[au] = Tr[ua]. To prove this, let {ηj} be any orthonormal basis. Then {ξj} = {uηj}
is another, and

Tr[au] =

∞∑
j=1

〈ηj , auηj〉H =
∞∑
j=1

〈u∗ξj , aξj〉H =
∞∑
j=1

〈ξj , uaξj〉H = Tr[ua] .

Next, we prove (4.27). For any ζ, ξ ∈ H , |ζ〉〈ξ| is rank-one and hence trace class. Let a ∈
B(H ). Then by Theorem 4.18, |ζ〉〈ξ|a ∈ T (H ). Since (4.27) is trivially ture if ζ = 0, we may

suppose ζ 6= 0. Choose any orthonormal basis {ηj} of H with η1 = ‖ζ‖−1
H ζ. Then

Tr
[
|ζ〉〈ξ|a

]
=
∞∑
j=1

〈ηj , |ζ〉〈ξ|aηj〉H = 〈η1, ζ〉〈ξ|aη1〉H = ‖ζ‖H 〈ξ|aη1〉H = 〈ξ, aζ〉H ,
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and this proves (4.27).

To prove (4.28) note that

(ba)∗(ba) = a∗b∗ba ≤ ‖b‖2a∗a .

By the operator monotonicity of the square root function, |ba| ≤ ‖b‖|a|, and hence (4.28) follows

from the linearity of the trace.

4.22 THEOREM. Let a ∈ C (H ) have the norm convergence expansion

a =

∞∑
j=1

σj |ζj〉〈ζ ′j |

where {σj} is a monotone non-increasing sequence of positive numbers and {ζj} and {ζ ′j} are two

orthonormal sequences in H . Then for each k ∈ N, let Uk denote the set of rank-k partial isometries

on H . Then
k∑
j=1

σj = max{<(Tr[ua]) : u ∈ Uk } .

In particular, the sequence {σj} is uniquely determined by a.

Proof. The general element u of Uk has the form u =
k∑
`=1

|ξ`〉〈η`| where {ξ1, . . . , ξ`} and {η1, . . . , ηk}

are two orthonormal sets in H . Then by (4.27),

< (Tr[ua]) = <

(
k∑
`=1

〈ξ`, aη`〉H

)

= <

 k∑
`=1

∞∑
j=1

σj〈ξ`, ζj〉H 〈ζ ′j , η`〉H


≤

k∑
`=1

∞∑
j=1

(√
σj |〈ξ`, ζj〉H |

) (√
σj |〈ζ ′j , η`〉H |

)

≤

 ∞∑
j=1

σj

k∑
`=1

|〈ξ`, ζj〉H |2
1/2 ∞∑

j=1

σj

k∑
`=1

|〈η`, ζ ′j〉H |2
1/2

Define the numbers pj , p
′
j , j ∈ N by

pj =
k∑
`=1

|〈ξ`, ζj〉H |2 and p′j =
k∑
`=1

|〈η`, ζ ′j〉H |2 .

By Bessel’s inequality, for each j, pj ≤ ‖ζj‖2 ≤ 1, and p′j ≤ ‖ζ ′j‖2 ≤ 1. For the same reason,∑∞
j=1 pj ≤

∑
` = 1k‖ξ`‖2H ≤ k and likewise,

∑∞
j=1 p

′
j ≤ k.

It is a classical inequality of Hardy, Littlewood and Polya that under the conditions that {σj}
is a non-increasing sequence and {pj} is a sequence of non negative numbers such that pj ≤ 1 for

all j, and
∑∞

j=1 pj ≤ k,
∞∑

=1

σjpj ≤
k∑
j=1

σk ,
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and there is equality in case pj = 1 for j ≤ k and pj = 0 for j > k. There is equality only for this

case if σk+1 < σk. Applying this inequality to the two sums obtained above yields the result.

4.23 DEFINITION (Singular values). Let a ∈ C (H ) have the expansion

a =
∞∑
j=1

σj |ζj〉〈ζ ′j | (4.29)

where {σj} is a monotone non-increasing sequence of positive numbers and {ζj} and {ζ ′j} are two

orthonormal sequences in H . The sequence {σj} is called the sequence of singular values of a.

When more than one operator is under consideration, we write σj(a) to denote the jth singular

vlaue of a ∈ C (H ).

Evidently, when a has the form (4.29),

|a| =
∞∑
j=1

σj |ζ ′j〉〈ζ ′j | (4.30)

and hence Tr[|a|] =
∑∞

j=1 σj . That is, a ∈ C (H ) is trace class if and only if its sequence of singular

values is summable.

Theorem 4.25 has a useful corralary:

4.24 COROLLARY (Corroloary of Theorem 4.25). Let a, b ∈ C (H ). Then for all k ∈ N,∣∣∣∣∣∣
k∑
j=1

σj(a)−
k∑
j=1

σj(b)

∣∣∣∣∣∣ ≤ √k‖a− b‖ . (4.31)

Proof. Let u be a rank-k partial isometry. Then |<Tr[au]−<Tr[bu]| ≤ ‖a− b‖‖u‖1 = k1/2‖a− b‖.
By Theorem 4.22, there is a choice of u so that <Tr[au] =

∑k
j=1 σj(a), and then by Theorem 4.22

again, for this u, <Tr[bu] ≤
∑k

j=1 σj(b). Therefore,

k∑
j=1

σj(a)−
k∑
j=1

σj(b) ≤ k1/2‖a− b‖ .

By the symmetry in a and b, (4.31) follows.

4.25 THEOREM. T (H ) is a Banach space in the metric given by the trace norm Moreover:

(i) For every a ∈ T (H ) define a linear functional φa on C (H ) by

φa(x) = Tr[ax] for all x ∈ C (H ) . (4.32)

The mapping a 7→ φa is an isometric isomorphism of T (H ) onto C (H )∗.

(i) For every b ∈ B(H ) define a linear functional ψb on T (H ) by

φb(x) = Tr[bx] for all x ∈ T (H ) . (4.33)

The mapping b 7→ ψb is an isometric isomorphism of B(H ) onto T (H )∗.
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Proof. Once we have proved (i), the completeness of T (H ) follows since the dual of a Banach

space is always complete. The proofs of (i) and (ii) are almost the same:

For any ζ, ζ ′ ∈H , consider the rank-one operator |ζ〉〈ζ ′|. Then

‖|ζ〉〈ζ ′|‖ = ‖|ζ〉〈ζ ′|‖1 = ‖ζ‖H ‖ζ ′‖H . (4.34)

Hence, if φ ∈ C (H )∗,

|φ(|ζ〉〈ζ ′|)| ≤ ‖φ‖‖|ζ〉〈ζ ′|‖ = ‖φ‖‖ζ‖H ‖ζ ′‖H .

Define the sesquilinear form qφ(ζ, ζ ′) by qφ(ζ, ζ ′) = φ(|ζ〉〈ζ ′|). We have seen that this is bounded,

and so by the Riesz Lemma, there is an a ∈ B(H ) with ‖a‖ = ‖φ‖ such that for all ζ, ζ ′ ∈ H ,

qφ(ζ, ζ ′) = 〈ζ, aζ ′〉H . But then for ζ, ζ ′ ∈H ,

φ(|ζ〉〈ζ ′|) = 〈ζ, aζ ′〉H = Tr
[
a|ζ〉〈ζ ′|

]
,

and then by linearity, φ(x) = Tr[ax] for all finite rank x. Since finite rank operators are dense in

C (H ), this is valid for all x ∈ C (H ).

We now show that a ∈ T (H ). Let a = u|a| be the polar decomposition of a. Let

{η1, . . . , ηn} be any set of n orthonormal vectors in H , and define the finite rank partial isom-

etry v =
∑n

j=1 |ηj〉〈uηj |. Then

n∑
j=1

〈ηj , |a|ηj〉H Tr[av] = φ(v) ≤ ‖φ‖‖v‖ = ‖φ‖ .

Since n is arbitrary, a ∈ T (H ). This shows that a 7→ φa is an isomorphism of T (H ) onto C (H )∗.

By (4.28), ‖φa‖ ≤ ‖a‖1. By Theorem 4.22, ‖φa‖ ≥ ‖a‖1. Hence ‖φa‖ = ‖a‖1, and the isomorphism

is isometric.

Next, let ψ ∈ T (H )∗. As above, define a sequilinear form qψ on H ×H by qφ(ζ, ζ ′) = φ(|ζ〉〈ζ ′|)
for all ζ, ζ ′ ∈H . By (4.34,

|ψ(|ζ〉〈ζ ′|)| ≤ ‖ψ‖‖|ζ〉〈ζ ′|‖1 = ‖ψ‖‖ζ|H ‖ζ ′‖H .

By the Riesz Lemma, there is an b ∈ B(H ) with ‖b‖ ≤ ‖φ‖ such that for all ζ, ζ ′ ∈H , qψ(ζ, ζ ′) =

〈ζ, bζ ′〉H . But then for ζ, ζ ′ ∈H ,

ψ(|ζ〉〈ζ ′|) = 〈ζ, bζ ′〉H = Tr[b|ζ〉〈ζ ′|] ,

and then by linearity, ψ(x) = Tr[bx] for all finite rank x. Since finite rank operators are dense in

T (H ) in the trace norm, this is valid for all x ∈ T (H ). This shows that a 7→ φa is an isomorphism

of B(H ) onto T (H )∗. By (4.28), ‖φb‖ ≤ ‖b‖. Since ‖b‖ = sup{ 〈ζ, bζ ′〉H : ‖ζ‖H , ‖ζ ′‖H = 1 }
and since

|〈ζ, bζ ′〉H | = |Tr
[
a|ζ〉〈ζ ′|

]
| = |ψa(|ζ〉〈ζ ′|)| ≤ ‖ψa‖‖ζ‖H ‖ζ ′‖H ,

we also have ‖b‖ ≤ ‖ψa. Hence ‖ψb‖ = ‖b‖1, and the isomorphism is isometric.
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4.6 Hilbert-Schmidt operators

Let a ∈ B(H ) and let a = u|a| be the polar decomposition of a. Then aa∗ = ua∗au∗ so that

whenever a∗a ∈ T (H ), aa∗ ∈ T (H ). By symmetry, a∗a ∈ T (H ) if and only if aa∗ ∈ T (H ).

4.26 DEFINITION (Hilbert-Schmidt operators). An operator a ∈ B(H ) is Hilbert-Schmidt in

case a∗a ∈ T (H ), or equivalently, in case aa∗ ∈ T (H ). The set of all Hilbert-Schmidt operators

on H is denoted C2(H ).

It is evident that C2(H ) is self adjoint; i.e., a ∈ C2(H ) if and only if a∗ ∈ C2(H ). We now

show that C2(H ) is a two-sided ∗-ideal in B(H ). Suppose that a ∈ C2(H ) and b ∈ B(H ). Then

(ba)∗(ba) = a∗(b∗b)a ≤ ‖b‖2a∗a ∈ T (H ) , (4.35)

and hence ba ∈ C2(H ) for all a ∈ C2(H ) and all b ∈ B(H ). Since C2(H ) is self adjoint,

ab ∈ C2(H ) for all a ∈ C2(H ) and all b ∈ B(H ). To see that C2 is closed under addition, note

that

(a+ b)∗(a+ b) + (a− b)∗(a− b) = 2a∗a+ 2b∗b .

When a, b ∈ C2(H ), the right hand side is in T (H ) by definitionm and then a+ b ∈ C2(H ). This

proves that C2(H ) is a two-sided ∗-ideal in B(H ).

If a ∈ C2(H ), then |a|2 ∈ T (H ), and hence |a|2 is compact. It follows from the Spectral

Theorem that for all ε > 0,

‖|a|1[0,ε2](|a|2)− |a|‖ ≤ ε

and 1[0,ε2](|a|2) is finite rank. Hence |a| and then a belong to C (H ). Let a =

∞∑
j=1

σj |ζj〉〈ζ ′j | be a

singular value decomposition of a. Then a∗a =

∞∑
j=1

σ2
j |ζ ′j〉〈ζ ′j | and hence

Tr[a∗a] =
∞∑
j=1

σ2
j . (4.36)

This proves that a ∈ C2(H ) is and only if {σj} ∈ `2, and since σ1(a) = ‖a‖, it proves that for all

a ∈ C2(H ),

‖a‖ ≤ ‖a‖2 . (4.37)

Note that for all a, b ∈ C2(H ), (a + ib)∗(a + ib) = a∗a + b∗b + i(a∗b − b∗a) and hence that

a∗b−b∗a ∈ T (H ). Also, (a+b)∗(a+b) = a∗a+b∗b+(a∗b+b∗a) and hence that a∗b+b∗a ∈ T (H ).

It follows that for all a, b ∈ C2(H ), a∗b ∈ T (H ). Therefore, we may define a sesquilinear form

〈·, ·〉2 on C2(H ), called the Hilbert-Schmidt inner product and the associated Hilbert-Schmidt inner

norm by

〈a, b〉2 = Tr[a∗b] and ‖a‖22 = 〈a, a〉2 . (4.38)

By (4.35) for all a ∈ T (H ) and all b ∈ B(H ),

‖ab‖2 ≤ ‖a‖2‖b‖ . (4.39)
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4.27 THEOREM. The space C2(H ), equipped with the Hilbert-Schmidt inner product, is a Hilbert

space.

Proof. We need only show the completeness. Suppose that {an} is a Cauchy sequence in C2(H )

for the Hilbert-Schmidt norm. By (4.37), {an} is a Cauchy sequence in the operator norm. Since

B(H ) is complete, there exists a ∈ B(H ) such that limn→∞ ‖an − a‖ = 0. Since each an is

compact, a is compact.

By Corollary 4.24 of Theorem 4.22, for each k ∈ N, lim
n→∞

σk(an) = σk(a). Consequently,

∞∑
k=1

σk(a)2 ≤ lim inf
n→∞

( ∞∑
k=1

σk(an)2

)
= lim inf

n→∞
‖an‖22 <∞ .

Thus, a ∈ C2(H ).

Now choose ε > 0 and n ∈ N such that for all j, k ≥ n, ‖aj − ak‖2 ≤ ε. Then for any j ≥ n and

any finite rank projection p,

‖(aj − a)p‖2 ≤ ‖(aj − ak)p‖2 + ‖(ak − a)p‖2 .

By (4.39), ‖(ak − a)p‖2 ≤ ‖ak − a‖‖p‖2 so that limk→∞ ‖(ak − a)p‖2 = 0. Hence ‖(aj − a)p‖2 ≤ ε.
Note that

‖(aj − a)p‖22 = Tr[p|aj − a|2p]

and we may choose p to make the right hand side arbitrarily close to Tr[|aj−a|2]. Hence ‖aj−a‖2 ≤
ε, and this shows that limj→∞ aj = a in the Hilbert-Schmidt norm.

Positive linear functionals on C (H ) may be written in terms of the Hilbert-Schmidt inner

product in a useful way. By Theorem 4.25, if φ is any conitnuous linear functional on C (H ), then

there is an operator a ∈ T (H ) such that φ(x) = Tr[ax] for all x ∈ C (H ). Taking x = |η〉〈η| for

η inH , we see that the positivity of φ implies the positivity of a. Let b =
√
a, and observe that

b ∈ C2(H ). Then Tr[ax] = Tr[bbx] = Tr[b∗bx] = 〈b, xb〉2, so that for all x ∈ C (H ),

φ(x) = 〈b, xb〉2 .

4.7 The σ-weak topology

We introduce one more topology on B(H ), namely the weak-∗ toplogy. By Theorem 4.25, this is

the weakest topology making all of the maps x 7→ Tr[ax], x ∈ T (H ), continuous. By Theorem 4.7,

this topology is stronger than the strong operator topology. It is often called the σ-weak topology

on B(H ) or the ultraweak topology on B(H ), though this last name is somewhat ambiguous:

The weak-∗ topology lies “beyond” the weak operator topology in that it is a stronger topology,

not weaker.

A basic set of neighborhoods of the origin for the σ-weak topology is given by the sets

Wa1,...,an,ε = { x ∈ B(H ) : |Tr[ajx]| ≤ ε , j = 1, . . . , n} (4.40)

where a1, . . . , an ∈ T (H ) and ε > 0.
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4.28 THEOREM. Every linear functional φ on B(H ) that is σ-weakly continuous is of the form

φ(x) = Tr[bx] for some b ∈ T (H ). That is, linear functionals on B(H ) that are continuous with

respect to the σ-weak topology belong to the predual of B(H ).

Proof. Let φ be a non-zero linear functional on B(H ) that is σ-weakly continuous. Let U be the

open disk of radius 1/2 in C centered at 1. Let x ∈ B(H ) be such that φ(x) = 1. Then φ−1(U)

contains Wa1,...,an,ε for some a1, . . . , an ∈ T (H ) and ε > 0. Since T (H ) ⊂ C2(H ) we may apply

the Gram-Schmidt algorithm in C2(H ), and may therefore assume without loss of generality that

{a1, . . . , an} is orthonormal in C2(H ).

Now observe that for all x ∈ B(H ), if Tr[xaj ] = 0 for j = 1, . . . , n, then every multiple of x

belongs to Wa1,...,an,ε, and hence φ(x) = 0. For all x ∈ B(H ), define y =
∑n

j=1 φ(aj)Tr[xaj ] and

z = x−y. Note that Tr[zaj ] = 0 for j = 1, . . . , n,and hence φ(z) = 0. Therefore, for all x ∈ B(H ),

φ(x) =

n∑
j=1

φ(aj)Tr[xaj ] = Tr[bx] where b =

n∑
j=1

φ(aj)aj .

4.29 DEFINITION. A positive linear functional φ on B(H ) is completely additive in case when-

ever {pj} is a familay of mutually orthogonal projections with
∑∞

j=1 = 1, then

∞∑
j=1

φ(pj) = φ(1) . (4.41)

4.30 THEOREM. A positive linear functionla φ on B(H ) is completely additive if and only if

it is σ-weakly continuous.

Proof. Let {φj} be any set of mutually orthogonal projections such that
∑∞

j=1 pj = 1, and let

qn =
∑n

j=1 pj . Suppose that φ is σ-weakly continuous. Then for some positive b ∈ T (H ) and all

x ∈ B(H ), φ(x) = Tr[bx]. Then each qn is an orthonormal projection and limn→∞ qn = 1 in the

strong operator topology. It follows easily that

lim
n→∞

φ(qn) = lim
n→∞

Tr[bqn] = Tr[b] = φ(1) ,

and hence φ is completely additive.

Suppose next that φ is completely additive. Let {pj} be any set of mutually orthogonal finite

rank projections such that
∑∞

j=1 pj = 1, and let qn =
∑n

j=1 pj as above. Let x ∈ B(H ) be positive.

Then φ(x) = φ(xqn) + φ(x1/2x1/2q⊥n ), and by the Cauchy-Schwarz inequality, |φ(x1/2x1/2q⊥n )| ≤
φ(x)1/2φ(q⊥n xq

⊥
n )1/2. But

φ(q⊥n xq
⊥
n ) ≤ ‖x‖φ(q⊥n ) = ‖x‖(φ(1)− φ(qn) .

and hence limn→∞ φ(xqn) = φ(x).

By Theorem 4.25, the restriction of φ to C (H ) has the form φ(x) = Tr[bx] where b ∈ T (H ).

Since for all x ∈ B(H ) and all n, xqn ∈ C (H ), φ(xqn) = Tr[bxqn]. It now follows that φ(x) =

limn→∞ φ(xqn) = Tr[bx].
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5 Representations of C∗ algebras

5.1 Irreducible representations

5.1 DEFINITION. A representation of a C∗-algebra A is a ∗-homomorphism π from A into

B(H ) for some Hilbert space H . For any subspace K of H , we define

π(A )K = { π(a)η : a ∈ A , η ∈ K } .

A subspace K of H is invariant under π in case π(A )K ⊂ K . The representation π is irreducible

in case no non-trivial subspace K of H is invariant under π. The representation π is non-degenerate

in case π(A )H = H . Let π1 and π2 be two representations of A on Hilbert spaces H1 and H2,

respectively. Then π1 and π2 are equivalent representations of A in case there exists a unitary

transformation from u from H1 onto H2 such that for all a ∈ A ,

π2(a)u = uπ1(a) .

The notion of the commutant of a subset S ⊂ B(H ) plays a crucial role in the study of

irreducibility.

5.2 DEFINITION. Let H be a Hilbert space, and S ⊂ B(H ). The commutant S ′ of S is the

subset of B(H ) given by

S ′ = { a ∈ B(H ) : ab− ba = 0 for all b ∈ S } .

5.3 LEMMA. Let H be a Hilbert space, and S ⊂ B(H ). The commutant S ′ of S has the

following properties:

(1) S ′ is a closed in the weak operator topology on B(H ), and contains the identity 1.

(2) S ′ is a subalgebra of B(H ).

(3) If S is closed under the involution, then so is S ′, so that S ′ is a weakly closed ∗-subalgebra of

B(H ) that contains the identity.

Proof. It is evident that for all S, 1 ∈ S ′. Moreover, for any ζ, ξ ∈H and b ∈ S, define the linear

functional ϕζ,ξ,b on B(H ) by

ϕζ,ξ,b(a) = 〈ζ, (ab− ba)ξ〉H = 〈ζ, a(bξ)〉H − 〈(b∗ζ), aξ〉H .

Since ϕζ,ξ,b is weakly continuous, ϕ−1
ζ,ξ,b({0}) is weakly closed. Then since

S ′ =
⋂
{ ϕ−1

ζ,ξ,b({0}) : ζ, ξ ∈H , b ∈ S } ,

(1) is proved. (2) is evident, and the (3) follows from the fact that (ab − ba)∗ = (b∗a∗ − a∗b∗)
together with (1) and (2).

5.4 DEFINITION. A von Neumann algebra is a ∗-subalgebra M of B(H ) for some Hilbert

space H such that 1 ∈M and such that M is a weakly closed subset of B(H )
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By Lemma 5.2, the commutant of any ∗-subalgebra of B(H ) is a von Neumann algebra. Note

that every von Neumann algebra M is generated by the projections it contains. Indeed, M is

generated by is self adjoint elements, and by the Spectral Theorem, each self adjoint a ∈ M is

the strong limit os a sequence of finite linear combinations of the spectral projections of a, which

themselves belong to M , being strong limits of polynomials in a.

5.5 LEMMA. Let A be a C∗ algebra, and let π be a non-zero representation of it as an algebra

of operators on some Hilbert space H . Then a closed subspace K of H is invariant under π(A )

if and only if the orthogonal projection of H onto K belongs to (π(A ))′.

Proof. First, K is invariant under π(A ) if and only if K ⊥ is invariant under π(A ). To see this,

let ζ ∈ K ⊥ and ξ ∈ K , and a ∈ A . If K is in variant, π(a∗)ξ ∈ K , and hence

〈π(a)ζ, ξ〉H = 〈ζ, π(a∗)ξ〉H = 0 .

Thus the invariance of K implies the invariance of K ⊥, and then by symmetry, the reverse

implication is valid as well.

Now let p be the orthogonal projection onto K . Then when K is invariant, for all a ∈ A ,

0 = pπ(a)(1− p) = pπ(a)− pπ(a)p = pπ(a)− π(a)p

where the last equality is true since the range of π(a)p lies in K . Therefore, p ∈ (π(A ))′. Con-

versely, if p ∈ (π(A ))′ and ξ ∈ K , then for all a ∈ A ,

π(a)ξ = π(a)pξ = pπ(a)ξ ∈ K ,

which shows the invariance of K .

Lemma 5.5 permits us to make the following definition:

5.6 DEFINITION. For a representation π of a C∗ algebra A on a Hilbert space H , and a

non-zero projector p ∈ (π(A ))′, πp is the subrepresntation obtained by restricting π to ran(p).

5.7 THEOREM. Let A be a C∗ algebra, and let π be a non-zero representation of it as an algebra

of operators on some Hilbert space H . Then π is irreducible if and only if (π(A ))′ consists of

scalar multiples of the identity.

Proof. If (π(A ))′ consists of scalar multiples of the identity, then (π(A ))′ contains no non-trivial

orthogonal projections, and hence by Lemma 5.5, π is irreducible. On the other hand, if (π(A ))′

contains some operator that is not a multiple of the identity, then it contains a self adjoint operator

a that is not a multiple of the identity. Any such a ∈ (π(A ))′ has a non-trivial spectral projection

that is also in (π(A ))′ since (π(A ))′ is a von Neumann algebra containing a.

5.8 THEOREM (von Neumann Double Commutant Theorem). Let A be a ∗-subalgebra of B(H )

that contains the identity. Then A ′′ is the weak operator topology closure of A .

Proof. Since A is convex, the weak and strong operator topology closes of A coincide. Hence is

suffices to show that for all a ∈ A ′′, every strong neighborhood of a contains some b ∈ A . That is,
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it suffices to show that for all n ∈ N and all {η1, . . . , ηn} ⊂H , and all ε > 0, there is some b ∈ A

such that ‖(b− a)ηj‖ < ε for all j = 1, . . . , n.

Let Ĥ = H ⊕ · · · ⊕H , the direct sum of n copies of H . The elements of B(Ĥ ) are n × n
matrices [bi,j ] with entries in B(H ).

Let Â be the algebra of all operators on Ĥ the form [aδi,j ] with a ∈ A . Evidently, its

commutator Â ′ consists of all [bi,j ] with each bi,j ∈ A ′. Thus, for all a ∈ A ′′, [aδi,j ] ∈ Â ′′.

Let η = η1 ⊕ · · · ⊕ ηn, and define K = Â η which is a closed subspace of Ĥ that is invariant

under Â . By Lemma 5.5, the orthogonal projection p of H onto K belongs to Â ′, and hence

to Â ′′′. Then by Lemma 5.5 again, for a ∈ A ′′, K is invariant under Â ′′. In particular, for all

a ∈ A ′′, K is invariant under [aδi,j ].

Since A contains the identity, η ∈ K , so that aη1 ⊕ · · · ⊕ aηn ∈ K . Therefore, for all ε > 0,

there exists b ∈ A such that

‖bη1 ⊕ · · · ⊕ bηn − aη1 ⊕ · · · ⊕ aηn‖2H ≤ ε2 .

In particular, the weak operator topological closure of any ∗-subalgebra of B(H ) containing

the identity is again a ∗-algebra containing the identity, and hence is a von Neumann algebra,

though this can be seen directly.

For any self-adjoint operator a in B(H ), note that {a}′ = (C(a))′ where C(a) is the C∗ algebra

generated by a. Hence {a}′′ is the smallest von Neumann algebra that contains a. That is, {a}′′ is

the von Neumann algebra generated by a.

5.9 THEOREM. On a separable Hilbert space H , every abelian von Neumann algebra Z is

generated by a single self adjoint operator; i.e, for some self adjoint a ∈ Z , Z = {a}′′.

Proof. Recall that subsets of separable spaces are separable. Let {pn} be a sequence of projections

in Z that is dense for the strong operator topology in the set of all projections in Z . Define

a =

∞∑
j=1

3−jpj .

The sum converges in operator norm, and hence belongs to Z . Note also that ‖
∑∞

j=2 3−jpj‖ ≤ 2/9,

and hence ‖a− 3−1p1‖ ≤ 2/9.

Pick λ0 ∈ (2/9, 1/3) and let q = 1(λ0,1)(a). Then q and p1 are commutng projections, and hence

q⊥p1 and p1q
⊥ are projections.

If qp⊥1 6= 0, there is a unit vector η with qη = η and p⊥1 η = η. Then since qaq ≥ λ0q,

λ0 ≤ 〈ηqaqη〉H = 〈ηaη〉H = 〈ηp⊥1 ap⊥1 η〉H ≤ 〈η(a− 3−1p1)η〉H ≤ 2/9 .

This is a contradiction, and so qp⊥1 = 0.

If q⊥p1 6= 0, there is a unit vector η with q⊥η = η and p1η = η. Then since λ0q
⊥ ≥ q⊥aq⊥,

λ0 ≥ 〈ηq⊥aq⊥η〉H = 〈ηaη〉H = 〈ηp1ap1η〉H ≥ 〈η(3−1p1)η〉H ≥ 1/3 .

This is a contradiction, and so q⊥p1 = 0.

Then since q⊥p1 = qp⊥1 = 0, q = qp1 + qp⊥1 = qp1 = qp1 + q⊥p1 = p1. This shows that the

spectral projection of a for the interval (λ0, 1) is p1. Inductively, one finds that each pj is a spectral

projection for a, and hence belongs to {a}′′.
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5.2 Central covers

Let π be a non-degenerate representation of a C∗ algebra A on a Hilbert space H . If q is any

projection in the center of (π(A ))′, which is (π(A ))′ ∩ (π(A ))′′, the range of q is invariant under

both π(A ) and (π(A ))′ and thus the restriction of πq is a subrepresntation of π.

5.10 DEFINITION (Central projection for a representation). Let π be a non-degenerate repre-

sentation of a C∗ algebra A on a Hilbert space H . A central projection for π is a projection in

the center of (π(A ))′

5.11 LEMMA. Let π be a non-degenerate representation of a C∗ algebra A on a Hilbert space

H , and p be a projection in (π(A ))′. There exits a central projection p that is dominated by every

central projection that dominates p. Moreover, p is the projection onto

(π(A ))′ran(p) .

Finally, if πp is irreducible, p is the central cover of every projection q ∈ (π(A ))′ dominated by p.

Proof. If q is a projection in the center of (π(A )) that dominates p, then the range of q contains

K , and since q commutes with (π(A ))′, (π(A ))′K is contained in the range of q.

For the final part, suppose that q ∈ (π(A ))′ is dominated by p. Since p is a central projection

that dominates q, q ≤ p. It suffices to show that p ≤ q.
Note that pq and pq⊥ are projections in (π(A ))′ that are dominated by p. Since πp is irreducible,

one must be zero, and the other must be p. If pq⊥ = p, then pq⊥ is a central projection dominating

p, and hence pq⊥ = p. This is impossible since q ≤ p. Hence it must be the case that pq = p, which

is what we needed to show.

5.12 DEFINITION (Central cover and central subrepresentations). Let π be a non-degenerate

representation of a C∗ algebra A on a Hilbert space H , and let σ be a subrepresentation of π

on a subspace K of H . Let p be the projector onto K . Then the central cover of σ is the

representation σ = πσ. A subrepresntation σ of π is a central subrepresentation in case σ = σ.

Unless σ is already a central representation, its central cover is a strictly larger subrepresentation

of π. The precise sense in which it is larger makes notion of central representations fundamentally

important in the study of the structure of representations.

5.13 LEMMA. Let π be a non-degenerate representation of a C∗ algebra on a Hilbert space H .

Let p and q be two projections in (π(A ))′ and suppose that they have the same central cover; i.e.,

p = q. Then there is a partial isometry u ∈ (π(A ))′ such that uu∗ ≤ q and u∗u ≤ p.

Proof. Let K1 and K2 denote the ranges of p and q respectively. Since (π(A ))′K1 = (π(A ))′K2,

there is an a ∈ (π(A ))′ and vectors η1 and η2 in K1 and K2 respectively so that 〈η2, aη2〉H 6= 0. This

means that z = qap is a non-zero element of π(A ))′. Let z = u|z| be its polar decomposition. Then

u is a partial isometry in π(A ))′, such that uu∗ ≤ q and u∗u ≤ p. Thus, πu∗u is a subrepresentation

of πp that is equivalent to πuu∗ , a subrepresentation of q.

Lemma 5.13 has the following consequence: Since for any partial isometry u u∗u and uu∗

are, respectively, the projectors onto the final and initial spaces of u, πu∗u and πuu∗ are non-zero
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equivalent subrepresentations of the representation πp and πq discussed in the lemma. In particular,

if πp is irreducible, there is a partial isometry u ∈ (π(A ))′ such that u∗u = p and uu∗ ≤ q, so

that πp is equivalent to a subrepresentation of πq. The fact that the equivalence is due to a partial

isometry in π(A ))′ is important in what follows.

5.3 The structure of type I factors of von Neumann algebras

5.14 DEFINITION. Let H be a Hilbert space, and let M be a von Neumann algebra on H .

M is a factor in case M has a trivial center.

Note that the center of M is M ∩M ′, which by the Double Commutant Theorem, is the same

as M ′ ∩M ′′, so that M and M ′ have the same center.

The center Z of M is evidently an abelian von Neumann algebra, and therefore, by Theo-

rem 5.9, when M is a von Neumann algebra on a separable Hilbert space H , its center Z is

generated by a single self-adjoint a ∈ Z , and every spectral projection of a is a central projection

for the identity representations of M and M ′.

Now suppose that this operator a happens to have finite spectrum, as it must in case H is finite

dimensional. Then there is a finite set {p1, . . . , pn} of central projections. For each j = 1, . . . , n,

let Kj denote the range of pj . Then H =
⊕n

j=1 Kj , and defining Mj = M pj ,

M =

n⊕
j=1

Mj . (5.1)

Evidently, each Mj has a trivial center; its center is spanned by the identity on Kj . The Spectral

Theorem can be used to give a “direct integral” decomposition on M without making any assump-

tion on the spectrum of A , as was shown by von Neumann. This line of reasoning reduces the

investigation of the structure of von Neumann algebras on a separable Hilbert space that that of

von Neumann algebras with trivial center, which motivates the following definition:

5.15 DEFINITION (Factor). A factor M is a von Neumann algebra M with a trivial center. A

factor is type I in case it contains a non-zero minimal projection; i.e., a non-zero projection p such

that the only projection in M that is dominated by p is the zero projection.

Evidently every factor on a finite dimensional Hilbert space contains a minimal projection – any

projection whose range has minimal dimension – and so every factor on a finite dimensional Hilbert

space is type I. This is not true for infinite dimensional Hilbert spaces, and we shall return to a

classification of types of factors and investigate their structure later. For the rect of this subsection,

we focus on the structure of type I factors.

Looking at (5.1), one might think “summand” would be better terminology than “factor”, but

the following theorem justifies the terminology:

5.16 THEOREM. Let K be a separable Hilbert space, and let M be a type I factor on K . Then

there exist Hilbert spaces H1 and H2 and a unitary u : K →H1 ⊗H2 such that

uMu∗ = B(H1)⊗ 1H2 . (5.2)
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5.17 REMARK. The commutant of M ′ of M = B(H1) ⊗ 1H2 in B(H1 ⊗ H2) is evidently

1H1 ⊗B(H2), and hence M ∩M ′ consists of mutiples of the idenetity. Hence B(H1)⊗ 1H2 is a

factor in B(H1 ⊗H2). The theorem says that all factors are of this type, and when M is a factor

on a separable Hilbert space K , B(K ) is the closed span of elements of the form ab where a ∈M

and b ∈M ′, which may be viewed as a kind of factorization of B(K ).

Proof of Theorem 5.16. If M consists of multiples of the identity, then we may take H1 = C, and

the conclusion is obvious. Therefore, let us us assume that M does not consist of multiples of the

identity, or, what is the same thing by Theorem 5.7: the identity representation of M ′ is reducible.

Let π denote the identity representation of M ′, whose commutant is M . Let p1 be a minimal

projection in M . We now apply Lemma 5.13 in this setting. Since the center of M is trivial,

the central covers of both p1 and p1
⊥ are the identity in M , and since p1 is minimal, πp1 is an

irreducible representation of M ′. Hence by Lemma 5.13, there is a partial isometry u ∈ M such

that u∗u = p1 and uu∗ ≤ p⊥1 . Since p1 = p2
1 = u∗(uu∗)u, uu∗ is also minimal.

Define Kj = pjK for j = 1, 2. If K = H1 ⊕H2, we have decomposed K as a direct sum of

subspaces on which M ′ acts irreducibly and equivalently. If not, repeat the argument made above

with p⊥1 replaced by 1 − p1 − p2, thus producing a minimal projection p3 in M with p3pj = 0 for

j = 1, 2, and u3, an isometry in M that maps H1 onto the range of p3. If after some finite number

n of such steps, K is exhausted, we have produced a set {p1, . . . , pn} of minimal projections in M

with pipj = 0 for i 6= j, and a set {u1, . . . , um} of partial isometries in M where uj maps H1 onto

Kj , the range of pj . (Note that u1 is p1 itself.)

Consider any a ∈M . We claim that there is a matrix [a] ∈Mn(C) such that

a =

n∑
i,j=1

[a]i,juju
∗
i . (5.3)

To see this observe that

a =

n∑
i,j=1

piapj =

n∑
i,j=1

ui(u
∗
i auj)u

∗
j .

However, for each i, j, u∗i auj ∈ p1M p1, and since p1 is minimal, p1M p1 = Cp1. Hence for some

λi,j ∈ C, u∗i auj = λi,jp1. Define [a]i,j = λi,j to obtain (5.3).

Let {ζ1, . . . , ζn} denote the standard basis of Cn. Define a linear transformation u from Cn⊗H1

to K by

u

 n∑
j=1

ζj ⊗ ηj

 =

n∑
j=1

ujηj .

It is evident that this map is unitary. Moreover, for any a ∈M , using (5.3), we have

au

 n∑
j=1

ζj ⊗ ηj

 =

n∑
i,j,`=1

[a]i,juju
∗
iu`η` =

n∑
i,j=1

[a]i,jujηi = u

 n∑
j=1

(
n∑
i=1

[a]i,jζi

)
⊗ ηj

 = u

 n∑
j=1

[a]ζj ⊗ ηj


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That is, with H1 = Cn and H2 = H1,

uau∗ = [a]⊗ 1H2 .

This proves (5.2) in case the procedure for producing a sequence of orthogonal minimal projections

terminates in finitely many steps.

When this process does not terminate, a simple application of Zorn’s Lemma shows that there is

a sequence {pn} of minimal projections in M such that pmpn = 0 for m 6= n and K =
⊕∞

n=1 pnK ,

and moreover, there is a sequence {un} of partial isometries in M such that un maps H1 onto Kn.

Then the strong closure of the set of operators of the form (5.3) for some n ∈ N is easily seen to be

dense in M , and then with H1 = `2, we obtain (5.2) in this case as well.

Theorem 5.16 has an important corroalary:

5.18 COROLLARY. Let H and K be separable Hilbert spaces, and let π be an injective repre-

setnation of B(H ) on K . Then there exists a Hilbert space H ′ and a unitary u : K →H ⊗H ′

such that for all a ∈ B(H ),

uπ(a)u∗ = a⊗ 1H ′ . (5.4)

Proof. Since π is injective, by Theorem 2.26 π is an ismetric ∗-isomorphism from B(H ) onto

π(B(H )). Then evidently π(B(H )) is a type I factor in B(K ), and Theorem 5.16 applies.

In the setting of Corollary 5.18, we can be somewhat more explicit about the construction used

in the proof of Theorem 5.16, and this leads to (5.4). Let {ηj} be any orthonormal basis for H ,

and for each j, let qj be the orthognal projection onto the span of ηj , For each j, define pj = π(qj).

This gives us a family of ortogonal projections in π(B(H )) that are minimal and satisfy pipj = 0

for all i, j. A simple maximality argument shows that
∑

j=1 pj = 1K .

Let H ′ be the range of p1. By Lemma 5.13 there are partial isometries uj ∈ π(B(H )) such

that uj has H ′ as its initial space and ran(pj) as its final space, and pj = uju
∗
j . Now pick any

orthonormal basis {ζk} of H ′. Note that {ujζk} is an orthonormal basis of K . Define the unitary

u : K →H ⊗H ′ by u(ηj ⊗ ζk) = ujζk. Then for all j, k, `,m,

〈u∗(η` ⊗ ζm), uπ(a)u∗(ηj ⊗ ζk)〉K = 〈ζm, (u`π(a)u∗j )ζk〉H ′

As noted in the proof of Theorem 5.16, u`π(a)u∗j ∈ p(π(B(H ))p1, and then since p1 is minimal, it

acts trivally on H ′. Therefore, if we define [a]`,j ∈ C by u`π(a)u∗j = [a]`,j1H ′ , we have

〈(η` ⊗ ζm), uπ(a)u∗(ηj ⊗ ζk)〉K = [a]`,jδm,k . (5.5)

Now for each j let ũj = π−1(uj). Then evidently ũj ũ
∗
j = qj and ũ∗j ũj = q1. Hence, up to a complex

multiple of modulus 1, ũj is the rank one transformation sending η1 into ηj , and we can absorb

this multiple into the definitition of our basis {ηj}. Hence with this choice,

u`π(a)u∗j = π(ũ`)π(a)π(ũj) = π(ũ`aũj) = π(〈η`, aηj〉H qi) = 〈η`, aηj〉H p1 .

Going back to (5.6), we have that [a]`,j = 〈η`, aηj〉H , and thus we may rewrite (5.6) as

〈(η` ⊗ ζm), uπ(a)u∗(ηj ⊗ ζk)〉K = 〈(η` ⊗ ζm)a⊗ 1H ′(ηj ⊗ ζk)〉K , (5.6)

and this proves (5.4).
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5.4 States on a C∗ algebra

5.19 DEFINITION. Let A be a C∗ algebra. A linear functional ϕ on A ∗, the Banach space

dual to A regarded as a Banach space, is positive in case ϕ(a) ≥ 0 for all a ≥ 0. If A has an

identity 1, a state on A is a positive linear functional ϕ such that ϕ(1) = 1. We denote the set

positive linear functionals by A ∗+ and the states by A ∗+,1. A state ϕ ∈ A ∗+,1 is faithful in case

ϕ(a∗a) = 0 ⇒ a = 0 . (5.7)

Evidently, for all ϕ ∈ A ∗+, the map

(a, b) 7→ ϕ(a∗b) = 〈a, b〉ϕ

defines a (possibly degenerate) inner product on A ; this inner product is non-degenerate if and

only if ϕ is faithful. In any case, the fact that 〈a, a〉ϕ ≥ 0 for all a ∈ A yields the Cauchy-Schwarz

inequality:

|〈a, b〉ϕ| ≤ 〈a, a〉1/2ϕ 〈b, b〉1/2ϕ . (5.8)

5.20 THEOREM (Positivity and continuity). Let A be a C∗ algebra with identity 1. Then:

(1) Every ϕ ∈ A ∗+ is bounded, and ‖ϕ‖ = ϕ(1).

(2) Every bounded linear functional ϕ such that ‖ϕ‖ = ϕ(1) is positive.

Proof. Let ϕ ∈ A ∗+. For all a ∈ A ,

|ϕ(a)| = |ϕ(1a)| = |〈1, a〉ϕ| ≤ 〈1, 1〉1/2ϕ 〈a, a〉1/2ϕ = ϕ(1)1/2ϕ(a∗a)1/2 .

Since σA (a∗a) ⊂ [0, ‖a‖2], ‖a‖21 − a∗a ≥ 0, and hence ϕ(a∗a)1/2 ≤ ‖a‖ϕ(1)1/2. Combining these

inequalities, we have |ϕ(a)| ≤ ϕ(1)‖a‖ which proves (1).

For the second part, suppose that ϕ ∈ A ∗ and ϕ(1) = ‖ϕ‖. If ϕ− 0, it is positive. If ϕ 6= 0, we

may divide by ‖ϕ‖ and thus may suppose that ‖ϕ‖ = ϕ(1) = 1.

We claim that for all ϕ ∈ A ∗ such that ϕ(1) = ‖ϕ‖, ϕ(a) belongs to the convex hull of σA (a)

for all a ≥ 0 in A . To see this suppose that the closed disc of radius r centered on λ contains

σA (a). Then λ1 − a is normal, and its spectrum is continued in {λ − t : t ∈ σA (a)}, and hence

the spectral radius of λ1− a is at most r. Since λ1− a is normal, ‖λ1− a‖ ≤ r. Therefore,

|λ− ϕ(a)| = |ϕ(λ1− a)| ≤ ‖λ1− a‖ ≤ r .

Thus for all r > 0 and λ ∈ C, ϕ(a) is contained in the closed disc of radius r centered on λ contains

σA (a). The intersection over all such discs is the convex hull of σA (a).

5.21 LEMMA. Let A be a C∗ algebra with identity 1. For all self adjoint a ∈ A , there exists a

state ϕ such that |ϕ(a)| = ‖a‖.

Proof. Consider the C∗ algebra C(a) generated by a and 1. This is a commutative C∗ algebra, and

so there is a character ϕ0 of C(a) such that |ϕ0(a)| = ‖a‖, and since ϕ0 is a character ϕ(1) = 1.

Then by Theorem 5.20, ϕ0 ∈ A ∗+, and so ϕ is a state on C(a).

By the Hahn-Banach Theorem, there is a norm preserving extension ϕ of ϕ0 (as a linear func-

tional) to A . Then ϕ(1) = ϕ0(1) = 1, and hence by Theorem 5.20, ϕ is a state, and since ϕ extends

ϕ0, ϕ(x) = ‖x‖.
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Lemma 5.21 says, in particular, that A ∗+,1 is not empty. It is evidently a closed subset of the

unit ball in A ∗ in the weak-∗ topology, and hence is compact. A ∗+,1 is also evidently convex. The

Krein-Milman Theorem says that every non-empty convex set in A ∗ that is compact in the weak-∗
topology is the convex hull of its extreme points. Hence there exist extreme points in A ∗+,1.

5.22 DEFINITION (Pure state). Let A be a C∗ algebra with identity 1. A pure state is an

extreme point of A ∗+,1.

5.23 THEOREM. Let A be a C∗ algebra with identity 1. For all self adjoint a ∈ A , there exists

a pure state ϕ such that |ϕ(a)| = ‖a‖.

Proof. By Lemma 5.21, the set S of states ϕ such that ϕ(a) = ‖a‖ is non-empty, and evidently it is

convex and closed in the weak-∗ topology. By the Krein-Milman, S has at least one extreme point

ψ. We now show that ψ is extreme in A ∗+,1 as well as in S.

Suppose that ψ1, ψ2 ∈ A ∗+,1 and that ψ = tψ1 + (1− t)ψ2 for some t ∈ (0, 1). Evaluating both

sides at a,

‖a‖ = ψ(a) = tψ1(a) + (1− t)ψ2(a) ≤ t‖a‖+ (1− t)‖a‖ = ‖a‖ .

Hence ψ1, ψ2 ∈ S, and so ψ1 = ψ2 = ψ.

5.24 DEFINITION. Let π be a representation of a C∗ algebra A on a Hilbert space H . A

vector η ∈H is cyclic for π in case a 7→ π(a)η has dense range, and is a separating vector for π in

case a 7→ π(a)η is injective. If a cyclic vector exists, then π is a cyclic representation.

For any representation π of A on H , and any unit vector η ∈ H , the functional ηη ∈ A ∗

defined by

ϕη(a) = 〈η, π(a)η〉H (5.9)

is a state. Evidently, ϕη(a
∗a) = 〈η, π(a∗a)η〉H = ‖π(a)η‖2H , and hence η is separating for π is and

ony if ϕη is faithful. The next theorem links gives an cyclicty an irreducibility.

5.25 THEOREM. Let π be a representation of a C∗ algebra A on a Hilbert space H , and let η

be a cyclic unit vector for π. Then with ϕη denoting the state defined in (5.9). Then π is irreducibly

iff and only if ϕη is pure.

The heart of the matter is the following lemma:

5.26 LEMMA. Let π be a representation of a C∗ algebra A on a Hilbert space H , and let η be a

cyclic unit vector for π. Then with ϕη denoting the state defined in (5.9). Suppose that ψ ∈ A ∗+,1,

and that for some r ∈ (0,∞),

ψ(a) ≤ rϕη(a) for all a ∈ A .

Then there is a positive operator x ∈ (π(A ))′ such that ‖x‖ ≤ r and for all a, b ∈ A ,

ψ(a∗b) = 〈η, π(a), xπ(b)η〉H . (5.10)
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Proof. Define a sesquilinear form q on π(A )η by q(π(a)η, π(b)η) = ψ(a∗b). We have

|q(π(a)η, π(b)η)| ≤ r|〈π(a)η, π(b)η〉H | ≤ r‖π(a)‖H ‖π(b)‖H .

Since η is cyclic, q is densely defined on H and extends to a sesquilinear form on all of H , still

denoted by q, that satisfies |q(ζ, ξ)| ≤ r‖ζ‖H ‖ξ‖H for all ζ, ξ ∈ H . By Reisz’s Lemma, there

exists a self adjoint operator x ∈ B(H ) such that q(ζ, ξ) = 〈ζ, xξ〉H for all ζ, ξ ∈H , and ‖x‖ ≤ r.
Since q(ζ, ζ) ≥ 0 for ζ in the dense set π(A )η, x is positive.

Finally, note that for all a, b, c ∈ A , a∗(bc) = (b∗a)∗c, and hence ψ(a∗(bc)) = ψ((b∗a)∗c). This

means that q(π(a)η, π(b)π(c)η) = q(π(b∗)π(a)η, π(c)η) which is the same as

〈π(a)η, xπ(b)π(c)η〉H = 〈π(a)η, π(b)xπ(c)η〉H .

Thus for all ζ, ξ in a dense subset of H , 〈ζ, xπ(b)ξ〉H = 〈ζ, π(b)xξ〉H and this shows that x

commutes with π(b) for arbitrary b ∈ A .

Proof of Theorem 5.25. Suppose that π is irreducible. Let ψ1, ψ2 be two states such that ϕη =

tψ1 +(1− t)ψ2 for some t ∈ (0, 1). By Lemma 5.26, applied to ψ1, which satisfies ψ1 ≤ t−1ϕη, there

is a positive x ∈ (π(A ))′

ψ1(a∗b) = 〈η, π(a), xπ(b)η〉H for all a, b ∈ A . (5.11)

Since π is irreducible, x must be a scalar multiple of the identity. Since ψ1 is a state, taking

a = b = 1 in (5.11), 1 = ψ(1) = 〈η, xη〉H , which shows that x = 1. Then taking a = 1 in (5.11)

shows that ψ(b) = ϕη(b) so that ψ1 = ϕη. By symmetry, ψ2 = ϕη as well, and this proves ϕη is

extreme.

For the converse, suppose that π is not irreducible. Then there exists a projection p ∈ (π(A )′)

such that neither p nor p⊥ is zero. Suppose that pη = 0. Then for all a ∈ A , π(q)pη = p(π(a)η) = 0

and this would mean that p vanishes on a sense subspace, which is not the case. Hence ‖pη‖H > 0,

and the same reasoning shows that ‖p⊥η‖H > 0. Define η1 = ‖pη‖−1
H pη and η2 = ‖p⊥η‖−1

H p⊥η.

For all a ∈ A ,

〈η1, π(a)η2〉H = 〈pη1, π(a)p⊥η2〉H = 〈η1, pp
⊥π(a)η2〉H = 0 .

Define t ∈ (0, 1) by t = ‖pη‖2H . Since ‖pη‖2H + ‖p⊥η‖2H = 1, ‖p⊥η‖2H = 1 − t. Then by the

orthogonality proved just above, for all a ∈ A ,

ϕη(a) = 〈[
√
tη1 +

√
1− tη2], π(a)[

√
tη1 +

√
1− tη2]〉H

= t〈η1, π(a)η1〉H + (1− t)〈η2, π(a)η2〉H ,

and this displays ϕη as a non-trivial convex combination of states. Hence ϕη is not extreme.

5.5 The GNS construction

A construction due to Gelfand, Naimark and Segal, known as the GNS construction, associates to

every state ϕ on an C∗ algebra A a representation π of A on a Hilbert space built out of A itself

and the state ϕ.
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5.27 THEOREM (The GNS construction). Let A be a C∗ algebra with identity 1, and let ϕ be

a state on A . Then there exists a Hilbert space H and a cyclic representation π of A on H with

a distinguished cyclic unit vector η such that for all a ∈ A ,

ϕ(a) = 〈η, π(a)η〉H . (5.12)

The representation π is irreducible if and only if ϕ is a pure state.

Proof. Let 〈a, b〉ϕ be the possibly degenerate inner product on A defined by 〈a, b〉ϕ = ϕ(a∗b).

Define

N := { a ∈ A : 〈a, a〉ϕ = 0 } .

Since ϕ is continuous, N is closed. In fact, N is a closed left ideal. To see this, consider b ∈ A

and a ∈ N . Then

〈ba, ba〉ϕ = ϕ(a∗b∗ba) = 〈a, b∗ba〉ϕ ≤ 〈a, a〉1/2ϕ 〈b∗ba, b∗ba〉1/2ϕ = 0 .

A similar but simpler argument shows that N is a subspace.

Now consider the vector space A /N . With ∼ denoting equivalence mod N , we have

a ∼ a′ and b ∼ b′ ⇒ 〈a, b〉ϕ = 〈a′, b′〉ϕ ,

and hence we may define a non-degenrate inner product on A /N by 〈{a}, {b}〉 = 〈a, b〉ϕ. Let

H be the completion of A /N in the corresponding Hilbertian norm, and let 〈·, ·〉H denote the

resulting inner product on H .

For a ∈ A , let π(a) denote the linear operator on A /N defined by π(a){b} = {ab} which is

well-defined since N is a left ideal. Next note that since b∗a∗ab = ‖a‖2b∗b + b∗(‖a∗a‖1 − a∗a)b,

and b∗(‖a∗a‖1− a∗a)b is positive,

‖π(a){b}‖2H = ϕ(b∗a∗ab) ≤ ‖a‖2ϕ(b∗b) = ‖a‖2‖{b}‖2H .

Since A /N is dense in H , π(a) extends to a bounded operator on H with ‖π(a)‖ ≤ ‖a‖. It is

evident that π is a homomorphism of A into B(H ), and note that for all x, y ∈ A ,

〈{x}, π(a){y}〉H = ϕ(x∗ay) = ϕ((a∗x)∗y = 〈π(a){x}, {y}〉H ,

showing that π(a∗) = π(a)∗, and thus π is a ∗-homomorphism.

The representation π is cyclic since for all a ∈ A , {a} = {a1} = π(a){1}, showing that η := {1}
is a cyclic vector for π. Finally, note that 〈η, π(a)η〉H = ϕ(1∗a1) = ϕ(a), and this proves (5.12).

The final statement now follows from Theorem 5.25.

5.28 COROLLARY. Let A be a C∗ algebra with identity 1. For every non-zero a ∈ A , there is

a representation π of A such that ‖π(a)‖ = ‖a‖.

Proof. By Lemma 5.21, there exists ϕ ∈ A ∗+,1 such that |ϕ(a∗a)| = ‖a‖2. Let π be the GNS

representation of A associated to ϕ, and η the associated distinguished cyclic unit vector. Then

‖π(a)η‖2H = 〈ηπ(a∗a)η〉H = ϕ(a∗a) = ‖a‖2 ,

showing that ‖π(a)‖ ≥ ‖a‖, and since it is automatic that ‖π(a)‖ ≤ ‖a‖, ‖π(a)‖ = ‖a‖.
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We now arrive at the Non-Commutative Gelfand-Naimark Theorem:

5.29 THEOREM (Non-Commutative Gelfand-Naimark Theorem). Every C∗ algebra A with an

identity is isometrically ∗-isomorphic to a C∗ algebra of operators.

Proof. For each a ∈ A choose an irreducible representation π of A such that ‖π(a)‖ = ‖a‖. Now

form the direct sum of all of these representations.

5.6 The GNS construction for Mn(C) and the normalized trace

Fis n ∈ N, n ≥ 2, and let A = Mn(C). Define ϕtr ∈ A ∗ by

ϕtr(a) =
1

n
Tr(a) .

Since ϕtr(a
∗a) =

∑n
i,j=1 |ai,j |2, it is evident that ϕtr(a) is a state, called the normalized trace. It

is also evident from the same computation that the normalized trace is faithful. It has one more

important property: For all a, b ∈ A ,

ϕtr(ab) = ϕtr(ba) , (5.13)

as one readily verifies.

Since ϕtr is faithful, the left ideal N that arose in the GNS construction is simply {0}, and so

the Hilbert space H is simply A itself equipped with the inner product

〈a, b〉H =
1

n
Tr[a∗b] , (5.14)

which is a normalized form of the Hilbert-Schmidt inner product.

In this finite dimensional setting, no completion is needed; H is simply Mn(C) itself, with the

inner product (5.14). For all x ∈ A , let ζx denote x regarded as an element of H .

Let π denote the GNS representation of A determined by ϕtr. Then π(a)ηx = ax, so that if we

define the operator La on H by Laζx = ζax, then π(a) = La, the operation of left multiplication

by a. Since ϕtr is faithful, ker(π) = {0}, and then by Theorem 2.26, π(A ) is a C∗ algebra, and

π : A → π(A ) is an isometric ∗-isomorphism.

In this finite dimensional setting π(A ) is not only a C∗ algebra, but also a von Neumann

algebra. Let us use M to denote π(A ). Now observe that since the center of A is trivial, and

since π is a isomorphism of A onto M , the center of M is trivial, so that M is a factor. By

Theorem 5.16, there is a unitary u from B(H ) onto Cn ⊗ Cn such that uMu∗ = Mn(C)⊗ 1. (We

are also using the fact that Mm(C) and Mn(C) are not isomorphic for m 6= n.) The commutant

M ′ of M then consists of all elements of B(H ) of the form u(1⊗ b)u∗, with b ∈ A .

We can make this more explicit as follows. For ζ ⊗ ξ ∈ Cn⊗Cn, define v(ζ ⊗ ξ) to be the n× n
matrix

√
n[ζiξ

∗
j ] which we regard as an element of H . It is evident that

‖v(ζ ⊗ ξ)‖H = ‖ζ‖Cn‖ξ‖Cn = ‖ζ ⊗ ξ‖Cn⊗Cn .

Extending v by linearity, we obtain an isometry from Cn⊗Cn into H , which is necessarily unitary

since the dimensions of the domain and range are equal. We again denote the extension by v. Now

observe that for all a ∈ A , Lav(ζ ⊗ ξ) = v(aζ ⊗ ξ), or what is the same thing,

v∗Lav = a⊗ 1Cn .
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In particular, vM v∗ = Mn(C) ⊗ 1Cn , and thus u = v∗ is one choice of the unitary provided by

Theorem 5.16. In the same way we see that

v∗Rav = 1Cn ⊗ a∗ .

Since (Mn(C)⊗ 1Cn)′ = 1Cn ⊗Mn(C), it follows that v∗M v = M ′.

Define a conjugate linear transformation J from H to itself by

Jζa = ζa∗

for all a ∈ A . Note that ‖Jζa‖2H = 1
nTr[aa∗] = 1

nTr[a∗a] = ‖ζa‖H . That is, because of (5.13), J is

an isometry. Moreover, J2 = 1 and so J = J∗ = J−1.

For each b ∈ A define the operator Rb on H by

Rbζx = ζxb

for all c ∈ A . That is, Rb is the operator of right multiplication by b. Now observe that for all

a, x ∈ A , J(Laζx) = Jζax = ζx∗a∗ = Ra∗Jζx. In short,

JLaJ = Ra∗ , (5.15)

and hence JMJ = M ′.

To bring out the symmetry between M and M ′, let us introduce H ∗ to be the Hilbert space

that is the same set as H with the same law of vector addition, but with the scalar multiplication

(λ, ζ) 7→ λ∗ζ and the inner product (ζ, ξ) 7→ 〈ξ, ζ〉∗H =: 〈ζ, ξ〉H ∗ . Note that B(H ∗) = B(H ),

and so we may regard each Ra∗ as an element of B(H ∗). Then it is easy to check that the map

a 7→ Ra∗ =: π′(a) is a representation of A on H ∗. The map J is then unitary from H to H ∗

(though no longer self adjoint), and now (5.15) can be written as

JπJ∗ = π′ , (5.16)

and we have that (π(A ))′ = π′(A ). The fact that the GNS construction in this simple case yields

not one, but two commuting isometric representations of A will turn out to be very useful later

on.

6 Completely positive maps

6.1 Some important isomorphisms

Let H and K be two Hilbert spaces with K separable. Let {ηj} be an orthonormal basis for K .

Then the general element ξ of the Hilbert space H ⊗K has the form

ξ =
dimK∑
j=1

ζj ⊗ ηj and ‖ξ‖2H ⊗K =
dimK∑
j=1

‖ζj‖2H . (6.1)

For n ∈ N, let Hn denote the direct sum of n copies of H ,

Hn := H ⊕ · · · ⊕H︸ ︷︷ ︸
n times

,
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Let Hℵ denote the direct sum of countably infinitely many copies of H . We write {ζj}1≤j≤n to

denote the general element of Hn, and we write {ζj}j∈N to denote the general element of Hℵ.

When dim(K ) = n < ∞, we define an isomorphism from Hn onto H ⊗K by choosing an

orthonormal basis {η1, . . . , ηn} of K and then define the map

{ζj}j∈N 7→
n∑
j=1

ζj ⊗ ηj . (6.2)

This gives a unitary map from Hn onto H ⊗K . When K is infinite dimensional and {ηj} is an

orthonormal basis of K , the map given in (6.2) is unitary from Hℵ onto K ⊗K .

6.1 DEFINITION. Let H be any Hilbert space and let K be a separable Hilbert space. Let

{ηj} be an orthonormal basis of K . Define Vj : K →H ⊗K by

Vjζ = ζ ⊗ ηj . (6.3)

Note that Vj is an isometry from K into H ⊗K , and that

dim(H )∑
=1

V ∗j Vj = 1H . (6.4)

Next, for every ζ ∈H and η ∈ K we define the rank-one operator |ζ〉〈η| from H to K by

|ζ〉〈η|ξ = (〈η, ξ〉K ) ζ .

Let {ηj} be an orthonormal basis for K . Define the sesquilinear map

dimK∑
j=1

ζj ⊗ ηj 7→
dimK∑

=1

|ζj〉〈ηj | .

On the right we have the general element of C2(K ,H ), the Hilbert space of Hilbert-Schmidt

linear maps from K to H ; that is, the space of linear maps x : K →H such that Tr[x∗x] <∞.

Moreover, this map is easily seen to be an isometry; i.e.,∥∥∥∥∥∥
dimK∑
j=1

ζj ⊗ ηj

∥∥∥∥∥∥
2

H ⊗K

=
∞∑
j=1

‖ζj‖2H =

∥∥∥∥∥∥
dimK∑

=1

|ζj〉〈ηj |

∥∥∥∥∥∥
2

C2(K ,H )

.

Next, still under the assumption that K is separable, consider the algebraic tensor product

B(H ) ⊗B(K ). The general element of B(H ) ⊗B(K ) is a linear combination of elements of

the form x⊗ y. We may regard these as operators on H ⊗K through

(x⊗ y)ζ ⊗ η = (xζ)⊗ (yη) . (6.5)

This gives us a natural embedding of B(H )⊗B(K ) into B(H ⊗K )

6.2 LEMMA. For Hilbert spaces H and K , and any ζ1, ζ2 ∈H , and any η1, η2 ∈ K ,

|ζ1 ⊗ η1〉〈ζ2 ⊗ η2| = |ζ1〉〈η1| ⊗ |ζ2〉〈η2| , (6.6)

where the right hand side is regarded as an element of B(H ⊗K ) through the natural embedding

of B(H )⊗B(K ) into B(H ⊗K )
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Proof. It suffices to check that for all ζ3 ∈ H and η3 ∈ K , both sides have the same action on

ζ3 ⊗ η3. By the definitions,

|ζ1 ⊗ η1〉〈ζ2 ⊗ η2|ζ3 ⊗ η3 = [〈ζ2 ⊗ η2, ζ3 ⊗ η3〉H ⊗K ] ζ1 ⊗ η1

= [〈ζ2, ζ3〉H 〈η2, η3〉K ] ζ1 ⊗ η1

= [〈ζ2, ζ3〉H 〈ζ1]⊗ [〈η2, η3〉K η1]

= (|ζ1〉〈η1|ζ3)⊗ (|ζ2〉〈η2|η3) .

Now we specialize to a case that will be important in what follows. Let K be finite dimensional,

and identify it with Cn for n = dim(K ). We may then identify B(K ) with Mn(C). Let {η1, . . . , ηn}
be any orthonormal basis of Cn. Then {|ηi〉〈ηj | : 1 ≤ i, j ≤ n} is a basis for for Mn(C). It is easy

to check that

|ηi〉〈ηj ||ηk〉〈η`| = δj,k|ηi〉〈η`| . (6.7)

For any a1 ⊗m1, a2 ⊗m2 ∈ B(H )×B(K ), we define the product (a1 ⊗m1)(a2 ⊗m2) by

(a1 ⊗m1)(a2 ⊗m2) = a1a2 ⊗m1m2,

and extend this by linearity. Likewise, for any a ∈ B(H ) and any m ∈ Mn(C), the involution

(a⊗m)∗ = a∗ ⊗m∗, and also extend this by linearity.

Since { |ηi〉〈ηj | : 1 ≤ i, j ≤ n} is a basis of Mn(C), the general element ã of B(H ) ⊗Mn(C)

can be written as ã =

n∑
i,j=1

ai,j ⊗ |ηi〉〈ηj |. By (6.7),

 n∑
i,j=1

ai,j ⊗ |ηi〉〈ηj |

 n∑
k,`=1

bk,` ⊗ |ηk〉〈η`|

 =
n∑

i,`=1

 n∑
j=1

ai,jbj,`

⊗ |ηi〉〈η`| . (6.8)

We define Mn(B(H )) to be the set of n×n matrices with entries in B(H ). Let [ai,j ] denote the

element of Mc(B(H )) with i, j entry is ai,j . Define a linear transformation from B(H )⊗Mn(C)

onto Mn(B(H )) by

ã =

n∑
i,j=1

ai,j ⊗ |ηi〉〈ηj | 7→ [ai,j ] . (6.9)

The transformation in (6.9) is evidently injective, and hence is a vector space isomorphism. In fact,

the inverse map is simply given by

[ai,j ] 7→
n∑

i,j=1

ai,j ⊗ |ηi〉〈ηj | . (6.10)

By (6.8), vector space isomorphism is also a algebra isomorphism where Mn(B(H )) is given

the natural product, and one easily checks that [ai,j ]
∗ = [a∗j,i], so that it is a ∗-isomorphism.

Another identification will be useful in what follows: There is a natural ∗-isomorphism of

B(H ⊗ Cn) with Mn(B(H )). Let {η1, . . . , ηn} be an orthonormal basis of Cn. For j = 1, . . . , n,
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let Vj be the isometry from H into into H ⊗ Cn given by (6.3). Define a linear transformation

from B(H ⊗ Cn) to Mn(B(H)) by

â 7→ [V ∗i âVj ] . (6.11)

for all â ∈ B(H ⊗ Cn).

This too is also a vector space isomorphism. To see this, let [ai,j ] ∈Mn(B(H)), and {η1, . . . , ηn}
an orthonormal basis of Cn, consider

∑n
i,j=1[ai,j ] ⊗ |ηi〉〈ηj | as an element of B(H ⊗ Cn) through

the natural embedding of B(H ) ⊗Mn(C) into B(H ⊗ Cn) that is given by (6.5). Then for all

â ∈ B(H ⊗ Cn), and all ζ ∈H and all η ∈ Cn, n∑
i,j=1

[V ∗i âVj ]⊗ |ηi〉〈ηj |

 ζ ⊗ η =
n∑

i,j=1

〈ηj , η〉[V ∗i âVjζ]⊗ ηi

=

n∑
i,j=1

〈ηj , η〉[V ∗i â(ζ ⊗ ηj)]⊗ ηi

=
n∑

i,j=1

[V ∗i â(ζ ⊗ η)]⊗ ηi = â(ζ ⊗ η)

That is, the transformation (6.10), followed by the natural embedding of B(H ) ⊗ Mn(C) into

B(H ⊗ Cn), is inverse to the map defined in (6.11). Finally, using (6.4), one readily checks that

the map in (6.11) is a ∗-algebra isomorphism as well as a vector space isomorphism. We have

proved:

6.3 THEOREM. For any Hilbert space H and any n ∈ N, B(H) ⊗Mn(C), Mn(B(H )) and

B(H ⊗ Cn), equipped with their natural ∗-algebra structures, are all ∗-algebra isomorphic. More-

over, for any orthonormal basis {η1, . . . , ηn} of Cn, and:

(1) The map in (6.9) is a ∗-isomorphism of B(H ) ⊗Mn(C) onto Mn(B(H )), and the map in

(6.10) is its inverse.

(2) The map in (6.11) is a ∗-isomorphism of B(H ⊗Cn) onto Mn(B(H)), and the map in (6.10),

followed by the natural embedding of B(H )⊗Mn(C) into B(H ⊗ Cn), is its inverse.

Since H ⊗ Cn is a Hilbert space, B(H ⊗ Cn) is a C∗-algebra. We may use the ∗-algebra

isometries provided by Theorem 6.3 to transfer the operator norm in B(H ⊗Cn) to B(H )⊗Mn(C)

and to Mn(B(H ), thus making them C∗-algebras, isomorphic to B(H ⊗ Cn).

The isomorphism is basis dependent, but the norm is not since the norm on a C∗ algebra is

unique.

6.2 The C∗ algebras A ⊗Mn(C).

There is a natural family of C∗ algebras associated to every C∗ algebra A , namely the C∗ algebras

A ⊗Mn(C) for each n ∈ N, which we now define. As a vector space, A ⊗Mn(C) is the algebraic

tensor product of the vector spaces A and Mn(C). Let {η1, . . . , ηn} be any orthonormal basis for
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Cn. Since the {|ηi〉〈ηj | : 1 ≤ i, j ≤ n} is a basis for Mn(C), the general element ã of A ⊗Mn(C)

has the form

ã =

n∑
i,j=1

ai,j ⊗ |ηi〉〈ηj | , (6.12)

where for each i, j, ai,j ∈ A .

We give it the natural algebraic structure by defining (a1 ⊗m1)(a2 ⊗m2) = (a1a2 ⊗m1m2),

and then extending this by linearity. If ã =
∑n

i,j=1 ai,j ⊗ |ηi〉〈ηj | and b̃ =
∑n

i,j=1 bi,j ⊗ |ηi〉〈ηj | as in

(6.12), then one checks as above that

ãb̃ =

 n∑
j=1

ai,jbj,`

⊗ |ηi〉〈η`| . (6.13)

Defining (a⊗m)∗ = (a∗ ⊗ b∗), makes A ⊗Mn(C) a ∗-algebra.

Let Mn(A ) denote the set of n × n matrices with entries in A . We write [ai,j ] to denote the

element of Mn(A ) whose i, j entry is ai,j . Mn(A ) is a ∗-algebra with the obvious operations. Then

by (6.13), the map
n∑

i,j=1

ai,j ⊗ e(i,j) = ã 7→ [ai,j ]

is a ∗ isomorphism of A ⊗Mn(C) onto Mn(A ), and we use this isomorphism to identify A ⊗Mn(C)

with Mn(A ).

We now claim that there is a norm on A ⊗Mn(C) that makes it a C∗ algebra. To see this

easily, suppose first that A is a C∗ sub algebra of H for some Hilbert space H . Then Mn(A ) is

evidently a closed subspace of Mn(B(H )) on which we have a natural C∗-algebra norm through

the identification of Mn(B(H )) with B(Hn) as explained in the previously. Thus, Mn(A ) is a

C∗-subalgebra of Mn(B(H )).

In general, we can always use the Gelfand-Naimark Theorem to identify A with a C∗-algebra

of operators, and thus the above discussion applies to the general case.

6.4 DEFINITION. Let A and B be C∗-algebras, and let Φ be a bounded linear map from A

to B. Then for all n ∈ N, define Φn := Φ⊗ 1Cn , so that

Φn(a⊗m) = Φ(a)⊗m

for all a ∈ A and all m ∈Mn(C). In particular, for any orthonormal basis {η1, . . . , ηn} of Cn,

Φn

 n∑
i,j=1

ai,j ⊗ |ηi〉〈ηj |

 =
n∑

i,j=1

Φ(ai,j)⊗ |ηi〉〈ηj | .

so that for ã given by (6.12), Φn(ã), considered as an element of Mn(A ), is given by

[Φn(ã)i,j ] = [Φ(ai,j)] .

That is, the action of Φn on [ai,j ] ∈Mn(A ) is given by the action of Φ on each entry of [ai,j ].
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6.3 Positive and completely positive maps

6.5 DEFINITION. Let A and B be C∗ algebras. A linear map Φ : A → B is positive in case

Φ(a∗a) ≥ 0 for all a ∈ A . If A and B have identities 1A and 1B respectively, then Φ is unital in

case Φ(1A ) = 1B.

In any C∗ algebra A , we can write the general element a as a = (a1 − a2) + i(b1 − b2) where

a1, a2, b1, b2 ∈ A+. Then

Φ(a∗) = Φ((a1 − a2)− i(b1 − b2)) = (Φ(a1)− Φ(a2))− i(Φ(b1)− Φ(b2)) = Φ(a)∗ .

That is, Φ automatically respects the involutions on A and B.

If Φ is any ∗-homomorphism of A into B, then for all a ∈ A , Φ(a∗a) = Φ(a)∗Φ(a) ≥ 0, and

since every element of A+ if is the form a∗a, it follows that every ∗-homomorphism is positive.

Here is another important example: Let A = B = Mn(C), and for a ∈ A , let Φ(a) = aT , the

transpose of a. Then evidently Φ : a→ aT is positive. Since for all a1, a2 ∈ A , (a1a2)T = aT2 a
T
2 , Φ

is not a ∗-homomorphism.

6.6 DEFINITION (n-positive and completely positive). Let A and B be C∗ algebras. A linear

map Φ : A → B is n-positive in case Φn : A ⊗Cn → B⊗Cn is positive. A linear map Φ : A → B

is completely positive in case Φn is positive for all n ∈ N.

6.7 THEOREM. Let A be a C∗-subalgebra of B(H ) for some Hilbert space H . Let K be a

second Hilbert space, and let Φ : A → B(K ) be given by

Φ(a) =
m∑
j=1

W ∗j aWj (6.14)

where for each j = 1, . . . ,m, Wj is a bounded linear transformation from K to H . Then Φ is

completely positive.

Proof. Since a sum of completely positive maps is evidently completely positive, it suffices to

consider the case Φ(a) = W ∗aW for a bounded linear transformation W from K to H . But for

any n ∈ N, if ã = [ai,j ] is any element of Mn(A ),

Φn(ã) = [W ∗ai,jW ] =

(
n∑
i=1

W ∗ ⊗ |ηi〉〈ηi|

)∑
k,`

ai,j ⊗ |ηk〉〈η`|

 n∑
j=1

W ⊗ |ηj〉〈ηj |

∗

which is clearly positive.

We will see later that this is essentially the only example: All completely positive maps have

such a form, at least when the Hilbert spaces are finite dimensional.

6.8 LEMMA. Let A be a C∗ algebra with identity 1. Then for all a, b ∈ A , a∗a ≤ b if and only

if

[
1 a

a∗ b

]
is positive in M2(A ).
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Proof. By the Gelfand-Naimark Theorem, we may suppose that A is a C∗ subalgebra of B(H )

for some Hilbert space H .

Suppose b ≥ a∗a, and define c = b− a∗a. Then[
1 a

a∗ b

]
=

[
1 a

a∗ a∗a

]
+

[
0 0

0 c

]
=

[
1 a

0 0

]∗ [
1 a

0 0

]
+

[
0 0

0 c

]
,

which displays the left hand side as a sum of positive operators.

For the converse, supose that

[
1 a

a∗ b

]
is positive. Then for all ξ, η ∈H ,

〈(
ξ

η

)
,

[
1 a

a∗ b

](
ξ

η

)〉
H ⊕H

= ‖ξ‖2H + 2<〈ξ, aη〉H + 〈η, bη〉H ≥ 0 .

For ξ = −aη, this becomes 〈η, [b− a∗a]η〉H ≥ 0, and this shows that b ≥ a∗a.

6.9 THEOREM (Kadison’s Inequality). Let A and B be C∗ algebras with identities 1A and 1B

respectively. Let Φ be a unital 2-positive map from A to B. Then for all a ∈ A ,

Φ(a)∗Φ(a) ≤ Φ(a∗a) . (6.15)

Proof. Since

[
1 a

a∗ a∗a

]
≥ 0 in M2(A ),

Φ2

([
1 a

a∗ a∗a

])
=

[
1 Φ(a)

Φ(a)∗ Φ(a∗a)

]
≥ 0 ,

and by Lemma 6.8, this implies (6.15).

Associated to every completely positive map Φ from a C∗ algebra to B(H ) for a Hilbert space

H is a non-negative sesquilinear form on A ⊗H that we now describe.

6.10 DEFINITION (The Stinespring inner product). Let A be a C∗-algebra and let H be a

Hilbert space. Let Φ : A → B(H ) be completely positive. Consider two arbitrary elements of

A ⊗H which we may take to be of the form

n∑
j=1

aj ⊗ ηj and

n∑
j=1

bj ⊗ ξj

for some common value of n ∈ N by allowing some terms to be zero.

Then the sesquilinear form 〈·, ·〉Φ on A ⊗H given by〈
n∑
j=1

aj ⊗ ηj ,
n∑
j=1

bj ⊗ ξj

〉
Φ

=

n∑
i,j=1

〈ηi,Φ(a∗i bj)ξj〉H (6.16)

is the Stinespring inner product on A ⊗H .
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The Stinespring inner product is non-negative (as the name suggests): Let
∑n

j=1 aj ⊗ ηj ∈

A ⊗H , and define ã = [a∗i aj ] ∈ Mn(A ). Also define η̃ =

 η1

...

ηn

 ∈ Hn, the direct sum of n

copies of H .

Note that

[a∗i aj ] =


a1 a2 · · · an
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


∗ 

a1 a2 · · · an
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 ≥ 0

Therefore, Φn([a∗i aj ]) = [Φ(a∗i aj)] is positive in Mn(B(H )), and

n∑
i,j=1

〈ηi,Φ(a∗i aj)ηj〉H = 〈η̃,Φn([a∗i aj ])η̃〉Hn ≥ 0 .

6.4 The partial trace

Recall that every linear functional φ on Mn(C) is of the form φ(x) = Tr[xz] for some uniquely

determined z ∈Mn(C). This is because if we equip Mn(C) with the Hilbert-Schmidt inner product

〈x, y〉 = Tr[x∗y], it is a (finite dimensional) Hilbert space, and then we may apply the Riesz Lemma.

Now suppose that a ∈ B(Cn ⊗ Cp). Define a linear functional φa on Mn(C) by

x 7→ Tr[(x⊗ 1)a] =: φa(x)

Since this is a linear functional on Mn(C), it has the form φa(x) = Tr[bx] for some uniquely

determined b ∈Mn(C). This brings us to the following definition:

6.11 DEFINITION. Let a ∈ B(Cm⊗Cn). The partial traces of a on Cm and Cn respectively are

the operators Tr2[a] ∈Mm(C) and Tr1[a] ∈Mn(C) such that for all x ∈Mm(C) and all y ∈Mn(C),

Tr[xTr2[a]] = Tr[(x⊗ 1)a] and Tr[yTr1[a]] = Tr[(1⊗ y)a] . (6.17)

By using an orthonormal basis of Cm ⊗ Cm of the form {ηi ⊗ ζj : 1 ≤ i ≤ n , 1 ≤ j ≤ m}, it is

evident that for all y ∈Mn(C) and all z ∈Mm(C),

Tr[y ⊗ z] = Tr[y]Tr[z] . (6.18)

Therefore, when a = y ⊗ z with y ∈Mm(C) and z ∈Mn(C),

Tr[(x⊗ 1)a] = Tr[xy ⊗ z] = Tr[xy]Tr[z]

where on the right the traces are taken in Mm(C) and Mn(C) respectively. Thus, Tr2[y⊗z] = Tr[z]y.

Likewise, Tr1[y ⊗ z] = Tr[y]z.

By Theorem 6.3, the general element a of B(Cm ⊗ Cn) has the form

a =

n∑
i,j=1

V ∗i aVj ⊗ |ηi〉〈ηj |
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where {η1, . . . , ηn} is an orthonormal basis of Cn, the the isometries Vj , j = 1, . . . , n, are defined in

(6.3). Then by linearity of the trace and the obvious identity Tr[ηi〉〈ηj |] = δi,j ,

Tr2[a] =

n∑
j=1

V ∗i aVj . (6.19)

By symmetry, the same reasoning applies to a 7→ Tr1[a]. Let {ζ1, . . . , ζm} be an orthonormal

basis of Cm. For j = 1, . . . ,m, define Wj : Cn → Cm ⊗ Cn by Wjη = ζj ⊗ η, then we have

Tr1[a] =
∑n

j=1W
∗
j aWj . By Theorem 6.7, the maps a 7→ Tr1[a] and a 7→ Tr2[a] are both completely

positive.

6.12 EXAMPLE (The partial transpose). As our terminology suggests, not every positive map

is completely positive. Here is an important example. Let A = M2(C), and let Ψ be the transpose

map Ψ(a) = aT . Then Ψ is positive, but Ψ2 is not. Indeed, identifying A ⊗M2(C) = M2(C)⊗M2(C)

with M2(M2()̧) ad above, we have that for any a, b, c, d ∈M2(C),

Ψ2

([
a b

c d

])
=

[
Ψ(a) Ψ(b)

Ψ(c) Ψ(d)

]
=

[
aT bT

cT dT

]

need not be positive. To see this, consider the choice a = e(1,1), b = e(1,2), c = e(2,1)and d = e(2,2).

Then

[
e(1,1) e(1,2)

e(2,1) e(2,2)

]
=


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 is positive, but

Ψ2

([
e(1,1) e(1,2)

e(2,1) e(2,2)

])
=

[
e(1,1) e(2,1)

e(1,2) e(2,2)

]
=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


is not positive.

The fact that

[
e(1,1) e(1,2)

e(2,1) e(2,2)

]
=
∑2

i,j=1 e
(i,j) ⊗ e(1,j) revealed the failure of Ψ to be 2-positive

is no accident, as we explain in the the next section.

6.5 Choi’s Theorem

Choi’s Theorem gives a complete description of completely positive maps in finite dimensions.

Let L (Mn(C),Mp(C)) denote the space of linear transformations from Mn(C) to Mp(C). Let

Φ ∈ L (Mn(C),Mp(C)) for some n, p ∈ N, and then for any m ∈ N, let Φm : Mn(C) ⊗Mm(C) →
Mp(C)⊗Mm(C) be defined as above.

We may identify Mn(C) ⊗Mm(C) with B(Cn ⊗ Cm) as in Theorem 6.3, and thus may regard

Φm as a linear map from B(Cn ⊗ Cm) to Mp(C) ⊗ Mm(C). To show that Φm is positive, one

has to show that for all positive a ∈ B(Cn ⊗ Cm), Φm(a) is positive in Mp(C) ⊗Mn(C). By the

Spectral Theorem, every positive element a of B(Cn ⊗ Cm) may be decomposed as a sum of rank-

one projections, and thus Φm is positive if and only if it positive on every rank-one projection in

B(Cn ⊗ Cm). Let |ξ〉〈ξ| be such a rank-one projection.
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The general element of ξ of Cn ⊗ Cm has the form

ξ =
n∑
j=1

ηj ⊗ ζj (6.20)

for some set {ζ1, . . . , ζn} of n vectors in Cm.

Now define a linear transformation a from Cm to Cm by aηj =
√
nζj for j = 1, . . . , n, and define

the vector ω ∈ Cn ⊗ Cn by

ω =
1√
n

n∑
j=1

ηj ⊗ ηj . (6.21)

Note that ω is a unit vector in Cn ⊗ Cn and that

ξ = (1n ⊗ a)ω . (6.22)

We now claim that

Φm(|ξ〉〈ξ|) = (1n ⊗ a)Φn(|ω〉〈ω|)(1n ⊗ a)∗ . (6.23)

This is true since Φm acts on the first factor of Mn(C)⊗Mm(C), while multiplication by (1n⊗a)

on the left and by (1n ⊗ a)∗ on the right act on the second factor of Mn(C)⊗Mm(C). To write it

out explicitly, note that by (6.21), |ξ〉〈ξ| = |(1n ⊗ a)ω〉〈(1n ⊗ a)ω| = (1n ⊗ a)|ω〉〈ω||(1n ⊗ a)∗. By

Lemma 6.2, (6.20) and (6.21), it follows that

|ξ〉〈ξ| =
n∑

i,j=1

|ηi〉〈ηj | ⊗ |ζi〉〈ζj | and |ω〉〈ω| = 1

n

n∑
i,j=1

|ηi〉〈ηj | ⊗ |ηi〉〈ηj | .

Then

Φm(|ξ〉〈ξ|) =

n∑
i,j=1

Φ(|ηi〉〈ηj |)⊗ |ζi〉〈ζj |

=
1

n

n∑
i,j=1

Φ(|ηi〉〈ηj |)⊗ |aηi〉〈aηj |

= (1n ⊗ a)

 1

n

n∑
i,j=1

Φ(|ηi〉〈ηj |)⊗ |ηi〉〈ηj |

 (1n ⊗ a)

= (1n ⊗ a)Φn(|ω〉〈ω|)(1n ⊗ a)∗ ,

which proves (6.23). By (6.23), whenever Φn(|ω〉〈ω|) ≥ 0, then for all ξ ∈ Cn⊗Cm, Φm(|ξ〉〈ξ|) ≥ 0.

Note that ω is a unit vector in Cn ⊗ Cn, and so
1

n

n∑
i,j=1

|ηi〉〈ηj | ⊗ |ηi〉〈ηj | = |ω〉〈ω| is a rank-one

projector, and in particular, is positive. .

We can use any orthonormal basis for form ω and the projector onto its span, but at this level

of generality, we might as well use the standard basis:

6.13 DEFINITION (Choi projector and Choi matrix). Let {η1, . . . , ηn} be the standard basis of

Cn so that |ηi〉〈ηj | is the i, jth matrix unit; i.e., the element of Mn(C) with 1 in the i, j place and
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0 elsewhere. The Choi projector in Mn(Cn)⊗Mn(Cn) is the element

pC =
1

n

n∑
i,j=1

|ηi〉〈ηj | ⊗ |ηi〉〈ηj | . (6.24)

As we have seen above, it is the orthogonal projection |ω〉〈ω| onto the span of the unit vector ω

given in (6.21).

Let Φ be any linear transformation of Mn(C) to Mp(C). The Choi matrix of Φ is the the element

of Mn(Mp(C)) given by

Φn(pC) =
1

n

n∑
i,j=1

Φ(|ηi〉〈ηj |)⊗ |ηi〉〈ηj | . (6.25)

We can now restate the conclusion that whenever Φn(|ω〉〈ω|) ≥ 0, then for all ξ ∈ Cn ⊗ Cm,

Φm(|ξ〉〈ξ|) ≥ 0:

6.14 THEOREM (Choi’s Theorem). Let Φ be a linear transformation from Mn(C) to Mp(C).

Then Φ is completely positive if and only if Φn(pC) is positive where pC is the Choi projector given

by (6.24).

Choi’s Theorem says that Φ ∈ L (Mn(C),Mp(C)) is completely positive if and only if Φn is

positive, but it says much more than that: To check this, we need only look at Φn applied to the

single positive element pC .

This proof turns on two essential points: First the extreme points of the unit ball of B(Cn⊗Cm)

are the rank one projectors in B(Cn ⊗ Cm), and thus it suffices to consider Φm(|ξ〉〈ξ|) for such a

projector. Next, every vector ξ in Cn ⊗ Cm can be written in the form ξ = (1n ⊗ a)ω for some

a ∈ L (Cn,Cm). That is, acting only on the right factor, one can “steer” ω into a general position

in Cn⊗Cm. This fact has important consequences in quantum mechanics to which we shall return,

but it for m = n it is something familiar to us: We know that the representation π of Mn(C) on

Cn⊗Cn given by π(a) = 1n⊗ a is irreducible, and ω is a cyclic vector for it. We now give a second

proof of Choi’s Theorem that provides additional information.

Second proof of Theorem 6.14. Suppose that a linear map Φ from Mn(C) to Mp(C) is such that

Φ(pC) is positive. We then apply the Spectral Theorem to write

Φn(pC) =

np∑
j=1

λj |ζj〉〈ζj |

where the λj are the (non-negative) eigenvalues of Φ(e(c)), and the ζj are the eigenvectors.

Each ζj has an expansion ζj =

n∑
k=1

ζj,k ⊗ ηj for vectors ζj,k ∈ Cp and where {ηk} is the standard

basis of Cn. Then by Lemma 6.2,

|ζj〉〈ζj | =
n∑

k,`=1

|ζj,k〉〈ζj,`| ⊗ |ηk〉〈η`| .
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Therefore, Φn(pC) =
n∑

k,`=1

np∑
j=1

λj |ζj,k〉〈ζj,`| ⊗ |ηk〉〈η`|. It then follows from (6.25) that

Φ(|ηk〉〈η`|) = n

np∑
j=1

λj |ζj,k〉〈ζj,`| (6.26)

Now define Vj to be the p × n matrix whose k column is ζj,k, so that Vjηk = ζj,k. Then

|ζj,k〉〈ζj,`| = Vj |ηk〉〈η`|V ∗j . Therefore, if we define Wj =
√
nλjV

∗
j for each j, we can rewrite

(6.26) as Φ(|ηk〉〈η`|) =
∑np

j=1W
∗
j |ηk〉〈η`|Wj . But then by linearity, for all a ∈Mn(C),

Φ(a) =

np∑
j=1

W ∗j aWj . (6.27)

such maps are completely positive by Theorem 6.7.

The second proof has also yielded another result of Choi:

6.15 THEOREM. Let Φ ∈ L (Mn(C),Mp(C)) be completely positive. Then there is a set

{W1, . . . ,Wnp} of n× p matrices such that for all a ∈Mn(C), Φ(a) is given by (6.27).

6.16 DEFINITION (Krauss operators). If Φ ∈ L (Mn(C),Mp(C)) is completely positive, then a

set of of n× p matrices {W1, . . . ,Wm} such that

Φ(a) =
m∑
j=1

W ∗j aWj (6.28)

are called a set of Krauss operator for Φ, and (6.28) is a Krauss representation of Φ.

We shall discuss minimality of Krauss representations in the next section. Note that if the

completely positive map Φ given by (6.28) is unital; i.e., Φ(1m) = 1p if and only if

m∑
j=1

W ∗jWj = 1p (6.29)

6.17 EXAMPLE (The partial transpose in B(Cn⊗Cn)). Let Ψ be the transpose map on Mn(C),

and let Ψn be its extension to Mn(C) ⊗ Mn(C) which, upon identifying Mn(C) ⊗ Mn(C) with

B(Cn ⊗ Cn), we refer to as the partial transpose on B(Cn ⊗ Cn). We compute

Ψn(pC) =
1

n

n∑
i,j=1

|ηi〉〈ηj | ⊗ |ηj〉〈ηi| . (6.30)

We now show that Ψn(pC), while self-adjoint, is not positive. Here is an easy way to see this:

Using (6.7) and (6.30), we compute that

(Ψn(pC))2 =
1

n2

n∑
i,j=1

|ηi〉〈ηi| ⊗ |ηj〉〈ηj | =
1

n2
1n .
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Hence all of the eigenvalues of Ψn(pC) are all ±1/n. By (6.18) and (6.30),

Tr[Ψn(pC)] =
1

n

n∑
i,j=1

Tr[|ηi〉〈ηj |]2 = 1 .

Hence 1/n is an eigenvalue of multiplicity n(n + 1)/2 and −1/n is an eigenvalue of multiplicity

n(n− 1)/2.

6.6 Stinespring’s Theorem

6.18 THEOREM. Let A be a C∗ algebra with identity 1, and let Φ : A → B(H ) be a completely

positive map. Then there exists a Hilbert space K and a unital ∗-homomorphism π : A → B(K )

and a bounded operator V : H → cK such that ‖V ‖2 = ‖Φ(1)‖ and for all a ∈ A ,

Φ(a) = V ∗π(a)V and ‖π(a)‖ ≤ ‖a‖ . (6.31)

When Φ is unital, V is an isometry, and

‖π(a)‖2 ≥ Φ(a∗a) . (6.32)

Proof. Equip the vector space A ⊗H with the Stinespring inner product 〈·, ·〉Φ. Define

N = {ξ ∈ A ⊗H : 〈ξ, ξ〉Φ = 0} .

Then N is a subspace of A ⊗H , and for all ξ, ξ′ ∈ A ⊗H we write ξ ∼ ξ′ in case ξ− ξ′ ∈ N .

We define an inner product, again denoted 〈·, ·〉Φ on the quotient space A ⊗H /N by

〈{ξ}, {ζ}〉Φ = 〈ξ, ζ〉Φ

for all ξ, ζ ∈ A ⊗H /N and note that by the Cauchy-Schwarz inequality, the inner product is

independent of the choice of representatives. Let K be the Hilbert space completion of A ⊗H /N

in the metric associated to this inner product.

The general element ξ of A ⊗H has the form ξ =
n∑
j=1

bj ⊗ ζj where {ζ1, . . . , ζn} ⊂ H . Let

a ∈ A , and define

π(a)ξ =

n∑
j=1

abj ⊗ ζj .

Then ‖π(a)ξ‖2K = 〈ζiΦ(bia
∗abj)ζj〉H . Since {ζ1, . . . , ζn} is orthonormal, [bia

∗abj ] ∈ Mn(A ) is

given by

[b∗i a
∗abj ] =


b1 b2 · · · bn
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


∗ 

a∗a 0 · · · bn
0 a∗a · · · 0
...

...
. . .

...

0 0 · · · a∗a



b1 b2 · · · bn
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 ≥ 0 (6.33)
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Since

‖a‖2


1A 0 · · · bn
0 1A · · · 0
...

...
. . .

...

0 0 · · · 1A

 ≥

a∗a 0 · · · bn
0 a∗a · · · 0
...

...
. . .

...

0 0 · · · a∗a

 ,

the factorization (6.33) implies that ‖a‖2[b∗i bj ] ≥ [b∗i a
∗abj ], and then since Φ is completely positive,

‖a‖2Φn([b∗i bj ]) ≥ Φn([b∗i a
∗abj ]) .

Therefore

‖a‖2〈ξ, ξ〉Φ =
n∑

i,j=1

‖a‖2〈ζiΦ(b∗i bj)ζj〉H ≥
n∑

i,j=1

〈ζiΦ(b∗i a
∗abj)ζj〉H = 〈π(a)ξ, π(a)ξ〉Φ . (6.34)

In particular, whenever ξ ∈ N , then π(a)ξ ∈ N , and conseqeuntly for all ξ, ξ′ ∈ A ⊗H ,

ξ ∼ ξ′ ⇒ π(a)ξ ∼ π(a)ξ′ .

Therefore, π(a) induces a linear transformation on A ⊗H /N through the definition

π(a){ξ} = {π(a)ξ} ,

and as a further conseqeunce of (6.34), this linear transformation on A ⊗ H /N is bounded

with norm no greater than ‖a‖. It therefore extends to an element of B(K ), still denoted π(a),

that has the same norm. It is easy to show, mimicking the corresponding argument form the

GNS construction, that a 7→ π(a) is a ∗-homomorphism from A to B(H ), and we have proved the

inequality on the right in (6.31). To prove the inequlaity in (6.32), suppose also that Φ is unital, and

let ζ ∈H . Then ‖{1A ⊗ ζ}‖2K = 〈ζ,Φ(1A )ζ〉H = ‖ζ‖2H and ‖π(a){1A ⊗ ζ}‖2K = 〈ζ,Φ(a∗a)ζ〉H .

Hence for all non-zero ζ ∈H ,

‖π(a){1A ⊗ ζ}‖2K
‖{1A ⊗ ζ}‖2K

=
〈ζ,Φ(a∗a)ζ〉H
‖ζ‖2H

,

and this proves (6.32).

Next, define V : H → K by

V ζ = {1A ⊗ ζ} ∈ A ⊗H /N .

Then ‖V ζ‖2K = 〈ζ,Φ(1A )ζ〉H so that

‖V ‖ = sup
‖ζ‖H =1

{ ‖V ζ‖2K } = sup
‖ζ‖H =1

{ 〈ζ,Φ(1A )ζ〉H } = ‖Φ(1A )‖ .

Next, for all ζ1, ζ2 ∈H

〈ζ1, V
∗π(a)V ζ2〉H = 〈{1A ⊗ ζ1}, π(a){1A ⊗ ζ}〉Φ = 〈ζ1,Φ(a)ζ2〉H ,

and this proves (6.31).
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Now let us specialize to the case in which that A = B(H ) for a separable Hilbert space H .

and in which Φ a completely positive map from B(H ) to B(H ) that is faithful, meaning that

Φ(a∗a) = 0 only for a = 0. We also suppose that Φ is unital.

Then by Stinespring’s Theorem, there exists a Hilbert space K , and an isomerty V : H →H ,

and a represetnation π of B(H ) on B(K ). By (6.32), when Φ is faithful, π is injective. Therefore,

by Theorem 2.26, π is an isometric isomprphism of B(H ) otno its image in B(K ).

Let B denote π(B(H )), the image of B(H ) usnder π. We may apply Corollary 5.18 to

show that there is a Hilbert space H ′ such and a unitary W : K → H ⊗H ′ such that π(a) =

W ∗(a⊗ 1H ′)W , and then

Φ(a) = (WV )∗(a⊗ 1H ′)WV .

Moreover, since V is an isometry, the range of WV may be identified with H . Then choosing

any unit vector ζ ∈ H ′, the map Vη : H → H ⊗K is an isometry, and its range may also be

identified with H . Let U be any unitary extnding the map η ⊗ ζ 7→WV η, and then we have that

UVη = WV so that finally we obtain Φ(a) = V ∗η U
∗(a⊗ 1H ′)UVη. We have proved:

6.19 THEOREM. Let H be a separable Hilbert space and let Φ be a fiathful unital completely

positive map from B(H ) to B(H ). Then there is a Hilbert space H ′, a unit vector ζ ∈ H ′ and

a unitary U on H ⊗H ′ such that for all a ∈ B(H ),

Φ(a) = V ∗η U
∗(a⊗ 1H ′)UVη (6.35)

where Vζ is the isomentry from H to H ⊗H ′ given by Vζη = η ⊗ ζ.

Now let ρ be a density matrix on H ; i.e., a postive trace class operator with Tr[ρ] = 1. Define

a linear functional on B(H ) by

a 7→ TrH [ρΦ(a)] .

By Theorem 6.19, we can write

TrH [ρΦ(a)] = TrH [ρV ∗η U
∗(a⊗ 1H ′)UVη]

= TrH ⊗H ′ [(ρ⊗ |ζ〉〈ζ|)U∗(a⊗ 1H ′)U ]

= TrH ⊗H ′ [(U(ρ⊗ |ζ〉〈ζ|)U∗)(a⊗ 1H ′)]

= TrH [TrH ′ [U(ρ⊗ |ζ〉〈ζ|)U∗]a]

Therefore, we may define Φ∗(ρ) by

Φ∗(ρ) = TrH ′ [U(ρ⊗ |ζ〉〈ζ|)U∗] . (6.36)

Then we have

Tr[Φ∗(ρ)a] = Tr[ρΦ(a)]] (6.37)

for all a ∈ B(H ). Recalling the Krauss representation for the partial trace TrH ′ that is associated

to any orthonormal basis {ζj} of H ′, we have the Krauss representation of Φ∗(ρ):

Φ∗(ρ) =
∑
j

V ∗ηj [U(ρ⊗ |ζ〉〈ζ|)U∗]Vηj =
∑
j

(U∗Vηj )
∗(VζρV

∗
ζ )(U∗Vηj ) . (6.38)

That is,

Tr[Φ∗(ρ)a] =
∑
j

A∗jρAj where Aj = V ∗ζ U
∗Vηj . (6.39)
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6.7 Fixed points

6.20 LEMMA. Let A be a C∗ algebra. Then

[
0 a

a∗ b

]
≥ 0 in M2(A ) if and only if a = 0 and

b ≥ 0. Likewise,

[
b a

a∗ 0

]
≥ 0 in M2(A ) if and only if a = 0 and b ≥ 0.

Proof. We compute〈(
η

ξ

)
,

[
0 a

a∗ b

](
η

ξ

)〉
H2

= 2<〈η, aξ〉H + 〈ξ, bξ〉H .

If a 6= 0, choose ξ so that aξ 6= 0, and then, for t > 0, η = −taξ. Then

2<〈η, aξ〉H + 〈ξ, bξ〉H = −2t‖aξ‖2 + 〈ξ, bξ〉H .

For sufficiently large t, the irght hand side is negative. Hence positivity of

[
0 a

a∗ b

]
implies that

a = 0, and then it is clear that b ≥ 0. The converse is evident, and the statement for the matrix

with 0 in the lower right position follows in the same way.

Let A and B be unital C∗ algebras, and let Φ : A → B be completely positive and unital.

Since Φ2 is 2-positive, Kadison’s inequality applied to Φ2 at

[
a b∗

0 0

]
yields

(
Φ2

([
a b∗

0 0

]))∗(
Φ2

([
a b∗

0 0

]))
≤ Φ2

([
a∗a a∗b∗

ba bb∗

])
,

and this is [
Φ(a∗a)− Φ(a)∗Φ(a) Φ(a∗b∗)− Φ(a)∗Φ(b)∗

Φ(ba)− Φ(b)Φ(a) Φ(bb∗)− Φ(b)Φ(b)∗

]
.

By Lemma 6.20, if either Φ(a∗a) = Φ(a)∗Φ(a) or Φ(bb∗) = Φ(b)Φ(b)∗, then Φ(ba) = Φ(b)Φ(a).

Conversely, if for some a ∈ A , Φ(ba) = Φ(b)Φ(a) for all b, then taking b = a∗, we have Φ(a∗a) =

Φ(a)∗Φ(a), and if for some b ∈ A , Φ(ba) = Φ(b)Φ(a) for all a, then taking a = b∗, Φ(bb∗) =

Φ(b)Φ(b)∗. We obtain:

6.21 THEOREM. Let A and B be unital C∗ algebras, and let Φ : A → B be completely positive

and unital. Then

(i) { a ∈ A : Φ(a∗a) = Φ(a)∗Φ(a) } = {a ∈ A : Φ(ba) = Φ(b)Φ(a) for all b ∈ A }, and this set

is a subalgebra of A , and Φ is a homomorphism when restricted to this set.

(ii) { a ∈ A : Φ(aa∗) = Φ(a)Φ(a)∗ } = {a ∈ A : Φ(ab) = Φ(a)Φ(b) for all b ∈ A }, and this set

is a subalgebra of A , and Φ is a homomorphism when restricted to this set.

(iii) the set

{ a ∈ A : Φ(a∗a) = Φ(a)∗Φ(a)} ∩ { a ∈ A : Φ(aa∗) = Φ(a)Φ(a)∗ } (6.40)

is a C∗ subalgebra of A , and Φ is a ∗-homomorphism when restricted to this set.
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6.22 DEFINITION (Multiplicative domain). The set in (i) of Theorem 6.21 is the left multi-

plicative domain of Φ, and the set (ii) of Theorem 6.21 is the right multiplicative domain of Φ.

Their intersection is the multiplicative domain of Φ.

6.23 DEFINITION (Invariant states). Let A be a unital C∗ algebras and let Φ : A → B be

completely positive and unital. A state φ ∈ A+,1 is invariant under Φ in case for all a ∈ A ,

φ(Φ(a)) = φ(a) . (6.41)

6.24 THEOREM. Let A be a unital C∗ algebras and let Φ : A → B be completely positive and

unital, and suppose that φ is a faithful state on A that is invariant under Φ. Define

C = { c ∈ A : Φ(c) = c } .

Then C is a C∗ algebra of A , and for all a, b ∈ A and all c ∈ C ,

Φ(acb) = Φ(a)cΦ(b) . (6.42)

Proof. By Kadison’s inequality, for c ∈ C ,

Φ(c∗c)− c∗c ≥ 0 .

Applying the faithful invariant state φ yields

φ(Φ(c∗c)− c∗c) = φ(c∗c)− φ(c∗c) = 0 .

Since φ is faithful, Φ(c∗c) = c∗c, and so c∗c ∈ C . We now have that Φ(c∗c) = Φ(c)∗Φ(c). Since C is

closed under the involution, the same applies with c replaced by c∗. Thus C is in the multiplicative

domain of Φ, and is a C∗ subalgebra of A by Theorem 6.20, which then also yields (6.42).

7 Quantum Measurement

7.1 Measurement in the early days of the Schrödinger equation

In Quantum Mechanics, the state of a system is given by a positive trace class operator ρ on a

Hilbert space H such that Tr[ρ] = 1. The state is a pure state in case ρ is rank-one.

This is more or less consistent with the terminology that we have previously introduced since

we may regard ρ as a linear functional on B(H ) through the identifincation of ρ with that linear

functional a 7→ Tr[ρa]. Not all states on B(H ) are of this form, but all σ-weakly continuous states

are: The totaliy of these may be identified with the set

{ ρ ∈ T (H ) : ρ ≥ 0 and Tr[ρ] = 1 } .

By the Spectral Theorem, the extreme points of this set is precisely the set of rank-one projections.

The time evolution of states in quantum mechanics is given by the Schroödinger equation: There

is a one parameter unitary group ut on H of the from ut = e−ith where h is a self adjoint operator

on H . If at time t = 0 the system is in the state ρ, then at time t it is in the state utρu
∗
t .
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The evolution of states is completely deterministic. However, the outcomes of experiemnts are

intrinsically random. The observable of a quantum system; i.e., the quantifiable properties of the

system that may be measured in the laboratory correspond to self adjoint operators a on H . The

totality of these observables generate a subalgebra of B(H ) called the algebra of observables.

von Neumann gave the first mathematical treatment of quantum measurement in his 1927 paper

[25]. This followed the 1926 paper of Born [3] which contains in a footnote the “Born interpre-

tation” of the meaning Schrödinger’s wave function: Born studied scattering in the new quantum

mechanical framework and concluded that the only possible interpretation of Schöedinger’s wave

function ψ(x, t) was that the outcomes of quantum measurements were inherently probabilistic, and

that with ψ(x, t) normalized so that
∫

R3 |ψ(x, t)|2dx = 1, the probability of finding the position of

the particle described by this wave function ψ in a (Borel measurable) set B ⊂ R3 is
∫
B |ψ(x, t)|2dx,

and likewise, if ψ̂(k, t) is the Fourier transfrom of ψ(x, t), then
∫
B |ψ̂(k, t)|2dk is the probability of

finding the momentum of the particle described by this wave function ψ in a (Borel measurable)

set B ⊂ R3 is In 1952, Max Born was awarded the Nobel Prize in Physics for the content of this

footnote among other contributions.

In 1927, von Neumann [25] developed this statistical interpretation further. In von Neumann’s

theory of measurement, observables correspond to self adjoint operators a on a Hilbert space H ,

and a measurement of such an observable a always yeilds a value in the spectrum of a. One of

the triumphs of Schrödinger’s work on his equation was that he was able to solve the eigenvalue

problem

(−∆− |x|−1)ψ(x) = λψ(x)

for the energy of a hydrogen atom; here ∆ denote the Laplaician and x ∈ R3. The differences

between the eigenvalues that he found corresponded precisely to the energies of spctral lines ob-

served in the light emitted from hydrogen atoms in scattering experiment: In the “old quantum

mechanics”, the possible energy levels of a hydrogen were quantized by fiat. In the “new quantum

mechanics”, they were quantized because the energy was reprentend by a self adjoint operator, not

a function on “phase space”, and the possible vlaues one coul observe were precisely the eigenvalues.

Extrapoloating form this and other early experiments, and Born’s interpretation, von Neumann

proceeded to a more general formulation.

The probability that the experiment measuring the observable represented by a self-adjoint

operator a, yields a value in a Borel set B ⊂ σ(a), is givin by

〈ψ, 1B(a)ψ〉H

if the system is in the state given by the orthogonal projection onto the normalized vector ψ ∈H .

von Neumann’s theorey was only deleoped in the context of observales (self adjoint operators) with

discrete spectrum. However, it went further than the Born interpretation in an important way:

von Neumann went on to describe the state of the system after a measurement, and the matter of

repeated measurements.

von Neumann’s discussion of measurement applied to self adjoint observable with discrete spec-

trum. Let a be such an observable, and let

a =
∑
j

λjej (7.1)
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be its spectral decomposition so that ej is the orthoongnal projector onto the jth eigenspace.

During the measurement process, the state ρ is transfromed into

Φ∗(ρ) =
∑
j

pjρj

where

pj = Tr[ejρj ] and ρj =

{
p−1
j rjρej pj 6= 0

0 pj = 0
.

By the cyclicity of the trace, pj = Tr[ejρej ] ≥ 0 since ejρej ≥ 0. Moreover,

∑
j

pj = Tr

∑
j

ρej

 = Tr[ρ] = 1 .

Thus, the pj specify a discrete probability distribution. In agreement with the Born interpretation,

for each j, pj is the probability that the measurement of a yields the value λj when the sytem is

prepared in the state ρ.

For each j with pj > 0, ρj =
1

Tr[ρej ]
ejρej is a density matrix, and it gives the state of the

system after the measurement process in the case that λj is the observed value of a.

The map Φ∗ is the predual of the map Φ defined by

Φ(x) =
∑
j

ejxej .

Notice that Φ is completely positive and unital. Moreover, since ejek = δj,kej ,

Φ(Φ(x)) =
∑
j,k

ekejxejek =
∑
j

ejxej = Φ(x)) ,

Φ is idempotent, and likewise, Φ∗ is idempotent.

This is a direct reflection of von Neumann’s repeatibitly hypothesis: If a measurement is repeated

a second time, the same result is obtained both times. Though this hypothesis fit well with the

experiments done in the early days when von Neumann made his proposal, efforts to extend it his

measurement theory to observables with continuous spectrum indicated that this hypothesis might

not be applicable in general, and Wigner [27] gave physical arguments agiaits its general validity.

7.2 Quanum instruments, operations and channels

Important progress was made by Davies and Lewis [5] who introduced the notion of a quantum

instrument, dispensed completely with the repeatibility hypothesis, and treated measurement of

variables with continuous spectrum. The following version of their definition is taken from Ozawa

[20].

7.1 DEFINITION (Quantum instrument). Let X be a complete, separable metric space, and let

B(X) denote its Borel σ-algebra. Let M be a von Neumann algebra on a separable Hilbert space

H , and let M∗ be its predual. Let P(M∗) denote the set of all positve linear transformation of
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M∗ into itslef. Let 〈·, ·〉 denote the dual pairing between M∗ and M . Then a quantum instrument

is a map I : B(X)→P(M∗) such that

(i) For each ρ ∈M∗, 〈I (X)ρ, 1M 〉 = 〈ρ, 1M 〉.
(ii) For each disjoint sequence {Bj} in B(X),

I (∪∞j=1Bj) =

∞∑
j=1

I (Bj)

where the sum is convergent in the strong operator topology on P(M∗).

A quantum instrument is called a completely positive quantum instrument in case

(iii) for each B ∈ B(X), I (B) is completely positive.

Every von Neuman measurement is given a completely positive quantum instrument. Indeed,

for a self adjoint operator a with discrete spectrum and spectral decomposition (7.1), let X be the

spectrum of a; i.e., X = {λj}. For each j, define Φ∗j by

Φ∗j (ρ) = ejρej .

Finally, for any B ⊂ X, define

I (ρ) =
∑

j:λj∈B
Φ∗j (ρ) .

Two other definition are central to the theory of quantum measurement:

7.2 DEFINITION. Let M be a von Neumann algebra. A quantum operation is the predual of

a completely positve map Φ from M to M such that Φ(1) ≤ 1. A quantum channel is a unital

quantum operation.

Note that if I is a quantum instrument for the metric space X, the I (X) is a quantum channel.

7.3 The Mean Ergodic Theorem

In the next section we shall need von Neumann’s 1931 Mean Ergodic Theorem. We begin with

some preliminaries.

Recall that for any Hilbert space H and any a ∈ B(H ),

ker(a∗)⊥ = ran(a) . (7.2)

To see this, note that for any ζ ∈ ran(a)⊥, and any η ∈ H , 〈a∗ζ, η〉H = 〈ζ, aη〉H = 0, which

implies that ran(a)⊥ ⊂ ker(a∗), and therefore ker(a∗)⊥ ⊂ ran(a)⊥⊥ = ran(a).

On the other hand, for any ζ ∈ ker(a∗), and any η ∈H , 0 = 〈a∗ζ, η〉H = 〈ζ, aη〉H = 0, which

implies that ker(a∗) ⊂ ran(a)⊥, and therefore ran(a) = ran(a)⊥⊥ ⊂ ker(a∗)⊥.

Now let u be unitary on H . Then ker(u − 1) is precisely the sets of vectors in H that are

invariant under u. Notice that

η ∈ ker(u− 1) ⇐⇒ uη = η ⇐⇒ η − u∗η ⇐⇒ η ∈ ker((u− 1)∗) .

That is, ker(u− 1) = ker((u− 1)∗), and then from (7.2), for any unitary u,

ker(u− 1)⊥ = ran(u− 1) . (7.3)
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7.3 THEOREM (von Neumann’s Mean Ergodic Theorem). Let u be any unitary on a Hilbert

space H , and let p be the orthogonal projector onto ker(u− 1). Then

lim
N→∞

1

N

N∑
n=1

un = p

where the convergence is in the strong operator toplogy.

Proof. We must show that for all η ∈H ,

lim
N→∞

1

N

N∑
n=1

unη = pη . (7.4)

Write η − η1 + η2 where η1 = pη and η2 = p⊥η. By (7.3), η2 ∈ ran(u− 1). Since unη1 = η1 = pη1

for all n, (7.4) is trivially true with η1 in place of η.

Since the operator
1

N

N∑
n=1

un is a contraction, it converges to zero strongly on ran(u− 1) =

ker(u− 1)⊥ if and only if it converges to zero strongly on ran(u− 1). Let (u− 1)ζ ∈ ran(u− 1), By

the telescoping sum identity, for each N ,

1

N

N∑
n=1

un(u− 1)ζ =
1

N
(uN+1 − u)ζ ,

and this tends to zero as N tends to infinity. Since pη2 = 0, it follows that (7.4) is true with η2 in

place of η.

We need a more general result that is obtained by combining Theorem 7.3 with a dilation

theorem of Sz.-Nagy. We introduce the concept of a dilation theorem with the sinplest example:

Let H be a Hilbert space and let v be a partial on H . Let p = (vv∗)⊥ = 1H − vv∗ be the

projector onto ran(v)⊥. Define an operator u on H ⊕H by

u =

[
v p

0 v∗

]
. (7.5)

Then since v∗v = 1H and pv = 0, uu∗ =

[
v p

0 v∗

][
v∗ 0

p v

]
=

[
1H 0

0 1H

]
= 1H ⊕H . This

shows that u is unitary on H ⊕H . Also, u2 =

[
v2 0

0 (v∗)2

]
, so that for all m ∈ N, u2m =[

v2m 0

0 (v∗)2m

]
. Therefore, of we define U : H → H ⊕H by Uη = (η, 0), we have that for all

n ∈ N,

vn = U∗unU . (7.6)

Note that U is one of the obvious embeddings of H into H ⊕H , and U∗ is the correpsonding

projection back onto H . When u and v are related in this way, we say that the unitary u is the

dilation of the isometry v, and that v is the compression of the unitary u.
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We now explain how to dilate a contraction into an isometry. Let a ∈ B(H ) be an arbitrary

contraction; i.e., ‖a‖ ≤ 1. The Hilbert space `2⊗H may be identifed with the space of all sequences

{ηj}, ηj ∈H for j ∈ N such that
∑
j = 1∞‖ηj‖2H <∞, and equipped with the inner product

〈{ηj}, {ζj}〉`2⊗H =
∞∑
j=1

〈ηj , ζj〉H .

Define w : `2 ⊗H → `2 ⊗H by

w(η1, η2, η3, . . . ) = (aη1, (1− a∗a)1/2η1, η2, η3, . . . ) .

Then w is evidently an isometry, and if we define W : H → K by Wη = (η, 0, 0, . . . ), we have

that for all n ∈ N,

an = W ∗wnW . (7.7)

Note that W is one of the obvious embeddings of H into `2 ⊗H , and W ∗ is the correpsonding

projection back onto H .

7.4 THEOREM (Sz.-Nagy’s Dilation Theorem). Let H be a Hilbert space, and let a be a con-

traction on H . Then there is a Hilbert space K and an isometry V : H → K , and a unitary u

on K such that for all n ∈ N, n ∈ N,

an = V ∗unV . (7.8)

We now combine Theorem 7.3 and Theorem 7.4: Let H be a Hilbert space, and let a be a

contraction on H . Then with V and u as in Theorem 7.4,

1

N

N∑
n=1

an = V ∗

(
1

N

N∑
n=1

un

)
V .

By Theorem 7.3, lim
N→∞

(
1

N

N∑
n=1

an

)
exists and is equal to V ∗pV where p is the projection onto

ker(u− 1). Clearly,

lim
N→∞

a

(
1

N

N∑
n=1

an

)
= lim

N→∞

(
1

N

N∑
n=1

an

)
a = lim

N→∞

(
1

N

N∑
n=1

an

)
.

It follows that aV ∗pV = V ∗pV a = V ∗pV , and then for all n ∈ N,

anV ∗pV = V ∗pV an = V ∗pV .

Averaging over n = 1, . . . , N and taking the limit N → ∞, we obtain (V ∗pV )2 = V ∗pV , and

hence V ∗pV is an orthogonal projection. If η ∈ ker(a − 1H ), then anη = η for all n, and hence

V ∗pV η = η. That is, ker(a − 1H ) ⊂ ran(V ∗pV ). Next, using aV ∗pV = V ∗pV once more,

V ∗pV (a− 1H )∗(a− 1H )V ∗pV = 0, and hence ran(V ∗pV ) ⊂ ker(a− 1H ). This shows that V ∗pV

is the orthogonal projection onto ker(a− 1H ). We have proved:

7.5 THEOREM (Mean Ergodic Theorem for Contractions). Let H be a Hilbert space. Let a be

a contraction on H . Let q be the orthogonal projection onto ker(a− 1H ). Then

lim
N→∞

1

N

N∑
n=1

an = q

where the convergence is in the strong operator topology.
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7.4 Lindblad’s No Cloning Theorem

In this section, following Lindblad, we consider quantum copying in a finite dimensional quantum

system: The Hilbert space H is simply Cn for some finite n, and the algebra of observables M

is a sub-algebra of Mn(C). In fact, following Lindblad, we make the further assumption that

M = Mn(C), so that all self adjoint n× n matrices are observable.

Let Φ : M → M be a quantum channel. Since M = Mn(C) we may apply Choi’s Theorem,

and can write

Φ(a) =
m∑
j=1

V ∗j aVj where
m∑
j=1

V ∗j Vj = 1 , (7.9)

where m ≤ n2.

We are also interested in the predual action of Φ on states: For a state ρ, define Φ∗(ρ) by

Φ∗(ρ)(a) = ρ(Φ(a)) for all a.

More genrally, Φ∗ is defined on the set of all self adjoint linear functionals on M , which we

regard as a real Banach space X. Then the positive linear functionals are a convex cone K in X

and X = K −K. Since K is invariant under Φ∗, it follows from the Krein-Rutman Theorem that

the spectral radius of Φ∗ is an eigenvalue λ of Φ∗ with an eigenvector in K. That is, there exists

ρ0 ∈ K such that Φ∗(ρ0) = λρ0. Since ρ0 is not zero, we may normalize it so that ρ0(1) = 1.

Since Φ is unital, for all n, Φ(1) = 1, and so

1 = ρ0(1) = ρ0(Φ1) = λρ(1) .

Therefore, λ = 1. Thus, ρ0 is an invariant state for Φ.

Let SΦ denote the set of invariant states:

SΦ = {ρ ∈M +
∗ : ρ(1) = 1 and Φ∗ρ = ρ }

We have just seen that SΦ is not empty, and clearly it is a compact, convex set in M∗.

For each ρ ∈ SΨ, let pρ denote the support of ρ; i.e., the smallest orthogonal projector such that

ρ(pρ) = 1, and it has the property that doe all a ∈M ,

ρ(a) = ρ(pρapρ) .

In fact, identifying ρ with the density matrix such that ρ(a) = Tr[ρa], pρ is the projection onto the

range of the density matrix rho, in which case ρ = pρρpρ.

By taking convex combinations, we find a ρ0 ∈ SΨ with maximal support pΨ. Then the range

of pΨ contains the range of ρ, considered as a density matrix, so that

pΨρpΨ = ρ for all ρ ∈ SΦ . (7.10)

By Kadison’s inequality, Ψ(pΨ) = Ψ(p2
Ψ) ≥ Ψ(pΨ)2, and hence Ψ(pΨ) is a contraction. Next,

1 = ρ0(pΨ) = ρ0(Ψ(pΨ))

and hence pΨ ≤ Ψ(pψ).
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Now consider the map Ψ̃(a) = pΨ(Ψ(pΨ(a)pΨ))pΨ. This is completely positive and Ψ̃(pΨ) = pΨ.

By (7.10), for all a, and all ρ ∈ SΦ,

ρ(Ψ̃(a)) = ρ(pΨΨ(pΨapΨ)pΨ) = ρ(Ψ(pΨapΨ)) = ρ(pΨapΨ) . (7.11)

Note that pΨ is the identity in the algebra M̃ := pΨM pΨ, and if we regard all operators in this

algebra as opaerators on HΦ = ran(pΦ), it is a von Neumann algebra and Ψ̃ is a unital completely

positive map on M̃ . By (7.11), for all a ∈ M̃ , ρ(Ψ̃(a)) = ρ(a), and thus every state in SΦ is

invariant for Ψ̃.

In the other direction, suppose that ρ̃ is invariant for Ψ̃ on M̃ . Define a state ρ on M by

ρ(a) = ρ̃(pΦapΦ) ,

and note that for all a ∈M , ρ(a) = ρ(pΦapΦ). Then for all a ∈M ,

ρ(a) = ρ̃(pΦapΦ) = ρ̃(Ψ̃(pΦapΦ)) = ρ̃(pΨΨ(pΦapΦ)pΨ) = ρ(Ψ(pΦapΦ))

Then ρ is an inavariant state for the completely positive but non-unital map a 7→ Ψ(pΦapΦ.

In summary, every invariant state for Φ is an invariant state for another completely positive

unital map Φ̃ on smaller algebra for which there is a fiathful invariant state ρ0.

Now assume that we have made this reduction and the SΦ contains a faithful state ρ0.

7.6 LEMMA. Let C be the fixed point algebra of Φ. Then C is the commutant of {V1, . . . , Vm}.

Proof. Since
∑m

j=1 V
∗
j Vj = 1, if a ∈ {V1, . . . , Vm}′ than evidently a ∈ C . That is, {V1, . . . , Vm}′ ⊂

C .

The other containment more work to prove and makes use of the faithful invariant st ρ0. For

a ∈ Mn(C), define ρ(a) = n−1Tr[a]. By Theorem 6.24, the existence of ρ0 ensures that C is a C∗

algebra. Next, for all a ∈Mn(C),

n∑
j=1

[a, Vj ]
∗[a, Vj ] =

n∑
j=1

(V ∗j a
∗ − a∗V ∗j )(aVj − Vja)

=
n∑
j=1

(V ∗j a
∗aVj − V ∗j a∗Vja− a∗V ∗j aVj + a∗V ∗j Vja)

= Φ(a∗a)− Φ(a)∗a− a∗Φ(a)− a∗a

Because C is a C∗ algebra, When a ∈ C , Φ(a∗a) = aΦ(a)∗ = a∗Φ(a) = a∗a. Therefore, when

a ∈ C the calculuation we have made above yeilds
∑n

j=1[a, Vj ]
∗[a, Vj ] = 0, and this shows C ⊂

{V1, . . . , Vm}′.

For our second use of the faithful invariant state ρ0, we equip M with the inner product

〈a, b〉ρ0 = ρ0(a∗b) ,

which makes it a Hilbert space, since ρ0 is faithful. Now note that by Kadison’s inequality,

ρ0(a∗a) = ρ0(Φ(a∗a)) ≥ ρ0(Φ(a)∗Φ(a)) ,

which shows that Φ is a contraction in this Hilbert space.
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7.7 LEMMA. Let Φ be unital completely positive map from Mn(C) to Mn(C) with faithful invariant

state ρ0. . Then

lim
n→∞

1

N

N∑
n=1

Φn =: EΦ

exists and is a unital completely positive projection from Mn(C) to Mn(C).

Proof. Since Φ is a contraction in the Hilbert space asociated to any faithful invariant state, this

is a direct consequence of Theorem 7.5.

It is obvious that for all a ∈ Mn(C), Φ(EΦ(a)) = EΦ(a), so that the range of EΦ is contianed

in C , the fixed point algebra of Φ. But obviously if a ∈ C , then EΦ(a) = a, and hence the range

of EΦ is exactly C . Again by Theorem 6.24, for all c ∈ C and all a, b ∈Mn(C),

EΦ(acb) = EΦ(a)cEΦ(b) and EΦ = Φ ◦ EΦ = EΦ ◦ Φ = EΦ ◦ EΦ . (7.12)

We refer to EΦ as the conditional expectation in Mn(C) onto the subalgebra C .

7.8 LEMMA. Let Φ be a unital completely positive map on M with a faithful invariant invariant

state ρ0. Let EΦ be the conditional expectation onto the C∗ algebra of fixed points of Φ. Then SΦ

is the image of the set of all states on M under (EΦ)∗.

Proof. Let ρ be any state on M , and consider the state (EΦ)∗ρ. Then for all a ∈M ,

E(Φ)∗ρ(Φa)) = ρ(EΦ(Φ(a)) = ρ(ΦEΦ(a)) = ρ(EΦ(a)) = (EΦ)∗ρ(a) .

Thus, (EΦ)∗ρ is an invariant state. On the other hand if ρ is an invariant state, (EΦ)∗ρ = ρ.

We now apply our knowledge of the structure of C : It is evidently a finite sum of type I factors.

Thus, our Hilbert space H = Cn is the direct sum of finitely many subspaces

H =
N⊕
n=1

Hn ,

each of which is invariant under C , and such that for each n, the center of the restriction of C to

Hn is trivial. Let pn be the projection in H onto Hn, and define Cn = C pn = pnC pn.

Since each Cn is a type I factor, each Hn can be factored as

Hn = Hn,` ⊗Hn,r

and we have that

Cn = B(Hn,`)⊗ 1Hn,r .

7.9 THEOREM. Let Φ be a unital completely positive map on M with a faithful invariant in-

variant state ρ0. Let EΦ be the conditional expectation onto the C∗ algebra of fixed points of Φ.

Then there are density matrices {σ1, . . . , σN}, where σn acts on Hn,r, such that for all y ∈ B(H ),

EΦ(y) =
N∑
n=1

TrHn,r [(1Hn,`
⊗ σn)pnypn]⊗ 1Hn,r .
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Proof. Define Ψ0 : B(H ) → B(H ) by Ψ0(a) =
∑N

n=1 pnapn which is unital and completely

positive. Since each Cn is invariant under Φ, it is clear that

EΦ = EΦ ◦Ψ0 = Ψ0 ◦ EΦ .

Therefore, EΦ has the form

EΦ(a) =

N∑
n=1

(EΦ)n(pnapn)

For each n, let un be the partial isometry embedding Hn into H so that u∗n is the projection

pn considered as a map from H to Hn, and not as an elelment of B(H ). Then for any n and any

a ∈ B(Hn,`), un(a⊗1Hn,r)u
∗
n ∈ Cn ⊂ C , and hence EΦ(un(a⊗1Hn,r)u

∗
n) = un(a⊗1Hn,r)u

∗
n, which

we can write more simply as

(EΦ)n(a⊗ 1Hn,r) = a⊗ 1Hn,r .

Since EΦ has the properties listed in (7.12), so does each (EΦ)n, and by what we have remarked

just above, since

a⊗ b = (a⊗ 1Hn,r)(1Hn,`
⊗ b) = (1Hn,`

⊗ b)(a⊗ 1Hn,r) ,

(EΦ)n(a⊗ b) = (a⊗ 1Hn,r)(EΦ)n(1Hn,`
⊗ b) = (EΦ)n(1Hn,`

⊗ b)a⊗ 1Hn,r .

Thus (EΦ)n(1Hn,`
⊗ b) belongs to Cn = B(Hn,`) ⊗ 1Hn,r and commutes with every element of

B(Hn,`)⊗ 1Hn,r . It follows that (EΦ)n(1Hn,`
⊗ b) is a multiple of the identity on Hn; i.e.,

(EΦ)n(1Hn,`
⊗ b) =: λ(b)1Hn .

Since (EΦ)n is completely positive and unital, the map sending b to λ(b) is evidently a state, and

thus there is a positve matrix σn on Hn,r with Tr[σn] = 1 such that λ(b) = Tr[σnb] for all b.

Therefore,

(EΦ)n(a⊗ b) = Tr[σnb]a⊗ 1Hn,r .

This in turn shows that for all x ∈ B(Hn),

(EΦ)n(x) = TrHn,r [(1Hn,`
⊗ σn)x]⊗ 1Hn,r .

7.10 THEOREM. Let Φ be a unital completely positive map on M with a faithful invariant

invariant state ρ0. Then there are density matrices {σ1, . . . , σN}, where σn acts on Hn,r, such

that for all whenver ρ ∈ SΦ, there are positive numbers {w1, . . . , wN} summing to 1 and density

matrices {ρ1, . . . , ρN}, where ρn acts on Hn,` such that

ρ =

N∑
n=1

wnρn ⊗ σn .

Proof. Let ρ be any state on M . Then for all y,

(EΦ)∗ρ(y) = ρ

(
N∑
n=1

TrHn,r [(1Hn,`
⊗ σn)pnypn]⊗ 1Hn,r

)
.
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Considering ρ as a density matrix, we may wrte this is

(EΦ)∗ρ(y) =
N∑
n=1

Tr[ρTrHn,r [(1Hn,`
⊗ σn)pnypn]⊗ 1Hn,r ]

=
N∑
n=1

Tr[(TrHn,r [pnρpn]⊗ σn)pnypn] .

For each n = 1, . . . , N , define wn = Tr[pnρpn]. Then if wn = 0, define ρn to be an arbitrary

density matrix on Hn.`, and in case wn > 0, define

ρn = w−1
n TrHn,r [pnρpn] .

Then we have (EΦ)∗ρ(y) =

N∑
n=1

wnTr[(ρn ⊗ σn)y], and if ρ ∈ SΦ, ρ = (EΦ)∗ρ.

A finite dimensional quantum copying machine is a particular sort of completely positive unital

map Ψ from B(H1 ⊗H2) to B(H1). The predual Ψ∗ of Ψ maps states on B(H1) to states on

B(H1 ⊗H2).

Associated to Ψ are the two maps Ψ1 and Ψ2 given by

Ψ1(a) = Ψ(a⊗ 1H2) and Ψ2(b) = Ψ(1H1 ⊗ b) .

For j = 1, 2 let Ψ∗,j denote the predual of Ψj . Then Ψ∗,j maps states on B(H1) to states on

B(Hj).

7.11 THEOREM. In the notation established above, let C be the C∗ subalgebra of B(H1) con-

sisting of elements that are invariant under Ψ1. Then for all b ∈ B(H2),

Ψ2(b) ∈ C ′ .

Proof. Let Ψ(x) =
∑

jW
∗
j xWj be the Krauss representation of Ψ. Let {ηk} and {ξ`} be orthonor-

mal bases of H1 and H2 respectively. Define A` : H1 → H1 ⊗H2 by A`ζ = ζ ⊗ ξ`, and define

Bk : H2 →H1 ⊗H2 by Bkζ = ηk ⊗ ζ.

Then for all a ∈ B(H1), a ⊗ 1H2 =
∑

`A
∗
`aA` and for all b ∈ B(H2), 1H1 ⊗ b =

∑
k B
∗
kaBk.

Therefore, Ψ1(a) =
∑

j,`W
∗
j A
∗
`aA`Wj , and then by Lemma 7.6,

C = {A`Wj}′.

Hence, for a ∈ C ,

aA`Wj = A`Wja and aW ∗j A
∗
` = W ∗j A

∗
`a .



101

Therefore, for all a ∈ C and all b ∈ B(H2),

Ψ(a⊗ b) = Ψ((a⊗ 1H2)(1H1 ⊗ b))

=
∑
`

Ψ((A∗`aA`(1H1 ⊗ b))

=
∑
j,`

V ∗j A
∗
`aA`(1H1 ⊗ b)Vj

=
∑
j,`

aV ∗j A
∗
`A`(1H1 ⊗ b)Vj

=
∑
j

aV ∗j (1H1 ⊗ b)Vj = aΨ2(b)

Since it is also true that a⊗b = (1H1⊗b)(a⊗1H2), a similar computation shows that Ψ(A⊗b) =

Ψ2(b)a. Altogether, we have aΨ2(b) = Ψ2(b)a.

Now we specialze to the case in which H1 = H2 = H , and consider a unital completely postive

map Ψ from B(H )⊗B(H ) to B(H ). Then the predual Ψ∗ maps states on B(H ) to states on

B(H )⊗B(H ). We say that Ψ∗ successfully clones a state ρ on B(H ) in case

TrH2 [Ψ∗(ρ)] = ρ and TrH1 [Ψ∗(ρ)] = ρ .

This is the same as Ψ∗,jρ = ρ for j = 1, 2. For j = 1, 2, let Cj be the fixed point algebra of Ψj . By

Theorem 7.11, the image of Ψ2 is contained in C ′1, and hence C2 ⊂ C ′1. Likdewise, C1 ⊂ C ′2. The

larger the invariant algebra, the larger the set of invariant states, and hence the set of invariant

states is larges when C1 = C ′2. But in this case, every state ρ that is invariant under both Ψ1,∗ and

Ψ2,∗ has the form

ρ =
N∑
n=1

wkρn ⊗ σn

for two fixed sets {ρ1, . . . , ρN} and {σ1, . . . , σN} of sensity matrices determined by Ψ1 and Ψ2

respectively. This is a comuting set of density matries. Thus, a quantum copying machine is

strictly limited in what it can successfully copy.

7.5 Majorization

Let a be a self-adjoint n×n matrix. Let (λ1, . . . , λn) be the eigenvalues of a, repeated according to

multiplicity, and arranged into a vector in Rn. Let {η1, . . . , ηn} be an orthonormal basis of Cn, and

define the vector (α1, . . . , αn) where for each j, αj = 〈ηj , aηj〉. (This is the diagonal sequence of a

in the basis {η1, . . . , ηn} ; i.e., the sequence of diagonal entries of the matrix representing q in this

basis.) For any vector x = (x1, . . . , xn) in Rn, let x∗ be the vector obtained from x be rearranging

its entries in non-decreasing order: x∗1 ≥ x∗2 ≥ · · · ≥ x∗n.

By the variational principle for the eigenvalues of a, for each k = 1, . . . , n,

k∑
j=1

α∗j ≤
k∑
j=1

λ∗j , (7.13)
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and since the traces may be computed in any orthonormal basis,

n∑
j=1

α∗j =

k∑
j=1

λ∗j . (7.14)

7.12 DEFINITION (Majorization in Rn). Let α = (α1, . . . , αn) and λ = (λ1, . . . , λn) be two

vectors in Rn Then λ weakly majorizes α in case (7.13) is valid for all k = 1, . . . , n, and in this case

we write α ≺w λ. We say that λ majorizes α in case α ≺ λ and moreover, (7.14) is satisfied.

Note that the decreasing rearrangement of −a is given by (−α)∗ = (−α∗n, · · ·−α∗1), and therefore

α ≺ λ if and only if −α ≺ −λ.

It is easy to see that for if p is any probability vector in Rn, i.e., a vector in Rn with non-negative

entries that sum to 1, and we define

pmin = (1/n, 1/n, . . . , 1/n) and pmax = (1, 0, . . . , 0) . (7.15)

then

pmin ≺ p ≺ pmax . (7.16)

As we shall see, majorization provides a useful measure of how “disordered” a probability vector

is, and by considering sequences of eigenvalues associated to density matrices, a useful measure of

how “disordered” a quantum state is.

Some caution is required in the passage from finite to infinite dimensions. Let H be a separable

Hilbert space, and let a be a compact self adjoint operator on H . Suppose that a has infinitely

many positive eigenvalues and but also some negative eigenvalues. If we arrange the eigenvalues

in non-increasing order, then all of the negative eigenvalues, along with any that are zero, are

pushed infinitely far out in the sequence and are lost. Thus we cannot use rearrangement to define

majorization for infinite sequences in which both signs are present.

Let c0(N,R) denote the set of real sequences α indexed by N such that limn→∞ αn = 0. Note

that if a is a self adjoint compact operator, then both its diagonal sequence and its eigenvalue

sequence belong to c0. For J ⊂ N, let |J | denote the cardinality of J . Let `1(N,R) denote the

subspace of c0(N,R) consisting of absolutely summable sequences.

7.13 DEFINITION (Majorization in c0(N,R)). Let α, λ ∈ c0(N,R). Then λ weakly majorizes α

in case for all k ∈ N

sup

∑
j∈J

λj : |J | = k

 ≥ sup

∑
j∈J

αj : |J | = k

 (7.17)

and in this case we write α ≺w λ.

In case α, λ ∈ `1(N,R), we say that λ majorizes α in case both α ≺w λ and −α ≺w −λ and

moreover,
∞∑
j=1

λj =

∞∑
j=1

αj . (7.18)

In this case we write α ≺ λ.
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In contrast to the the finite dimensional case where in the presence of (7.14) either of α ≺w λ
or −α ≺w −λ implies the other, this is not the case for infinite sequences. The definition is such

that it is still the case that α ≺ λ if and only if −α ≺ −λ, a basic symmetry that will be referenced

frequently.

The suprema in (7.17) need not be maxima. The simplest case is that in which all term in λ

have a single sing; e.g., they are all non-negative. Then of course we can form the non-increasing

rearrangement λ∗, and

sup

∑
j∈J

λj : |J | = k

 =

k∑
j=1

λ∗j . (7.19)

More generally, if we let λ∗j denote the jth non-negative term in λ and there are m non-negative

terms in λ, then (7.19) is valid for all k ≤ m.

However, if there are only m non-negative terms in λ, with m <∞, then for all k > m,

sup

∑
j∈J

λj : |J | = k

 =

∞∑
j=1

(λj)+ , (7.20)

and the supremum is not obtained: After using all of the non-negative terms, one must start using

negative terms, and these can be chosen arbitrarily close to zero sine λ ∈ c0(N,R), but not equal

to zero.

Note that if α has no positive terms, then for all k, sup
{∑

j∈J αj : |J | = k
}

= 0. More

generally, if α has only m positive terms, then for all k > m

sup

∑
j∈J

αj : |J | = k

 = 0 = sup

∑
j∈J

αj : |J | = m

 = 0 ,

and thus (7.17) is valid for all k if it is valid for k ≤ m.

The following characterization of weak majorization is essential in what follows.

7.14 THEOREM. Let α, λ ∈ c0(N,R). Then α ≺w λ if and only if for all t > 0,

∞∑
j=1

(αj − t)+ ≤
∞∑
j=1

(λj − t)+ . (7.21)

Proof. Suppose that α ≺w λ. If α is non-positive, then (7.21) is trivially true. If α has positive

terms, for any t > 0, it can have only finitely many satisfying αj ≥ t. Fix t > 0, and let k be the

cardinality of { j : αj ≥ t }. Then the identity is (7.19) is applicable and

∞∑
j=1

(αj − t)+ = sup

∑
j∈J

αj : |J | = k

− kt . (7.22)

Now fix ε > 0, and pick K ⊂ N with |K| = k such that
∑
j∈K

λj ≥ sup

∑
j∈J

λj : |J | = k

− ε.
Then

∞∑
j=1

(λj − t)+ ≥
∑
j∈K

(λj − t)+ ≥
∑
j∈K

λj − kt ≥ sup

∑
j∈J

λj : |J | = k

− ε− kt .
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Combining this with (7.22) and α ≺w λ yields (7.21) for this, and hence all, t > 0.

Conversely, suppose that (7.21) is valid for all t > 0. Taking the limit t ↓ 0, we see that

∞∑
j=1

(αj)+ ≤
∞∑
j=1

(λj)+ . (7.23)

Suppose that λ has only m positive terms, where m may be finite or infinite. For any k ≤ m, let t

be the kth smallest positive term in λ. Then using the identity (7.19) again,

∞∑
j=1

(λj − t)+ = sup

∑
j∈J

λj : |J | = k

− tk
However, for any set J ⊂ N with |J | = k,

∞∑
j=1

(αj − t)+ ≥
∑
j∈J

(αj − t)+ ≥
∑
j∈J

αj − tk. Hence

∑
j∈J

αj ≤ sup

∑
j∈J

λj : |J | = k


for all such J and all k < m. For k ≥ m, (if m is finite) sup

{∑
j∈J λj : |J | = k

}
=
∑∞

j=1(λj)+,

and for all k,

sup

∑
j∈J

αj : |J | = k

 ≤
∞∑
j=1

(αj)+ .

Hence the general conclusion follows from (7.23).

7.15 COROLLARY. Let α, λ ∈ `1(N,R) with α ≺ λ. Then

∞∑
j=1

(αj)+ ≤
∞∑
j=1

(λj)+ and

∞∑
j=1

(−αj)+ ≤
∞∑
j=1

(−λj)+ .

Proof. This follows from (7.21) in the limit t ↓ 0.

7.16 LEMMA. Let α, λ ∈ `1(N,R) be non-zero and suppose that α ≺ λ, and that all of the

entries of λ are non-negative. Then all of the entries of α are non-negative, and there is a sequence

λ̃ ∈ `1(N,R) differing from λ in at most two terms such that

α ≺ λ̃ ≺ λ

and such that max{αj} is equal to a term in λ̃. More specifically, there exist terms λm and λn in

λ such that λm ≤ max{αj} ≤ λn and such that with

λ̃m := max{αj} and λ̃n := λm + λn −max{αj} ,

and λ̃j := λj for j 6= m,n, then α ≺ λ̃ ≺ λ.
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Proof. Since λ is non-negative and −α ≺w −λ, it follows that α is non-negative as well. Consider

the set of terms in λ that are greater than or equal to max{αj}. This set in finite since λ ∈ `1(N,R)

and non-empty since α ≺ λ. Let m be its cardinality. Let {λn1 , . . . , λnm} be this set arranged in

non-increasing order.

Let λnm+1 be a term in λ with the next largest value which is necessarily non-negative but less

than max{αj}. We then have

λn1 ≥ · · · ≥ λnm ≥ max{αj} > λnm+1 .

If λnm = max{αj} we are already done, so suppose that this is not the case. Note that all terms in

λ that are not included in {λn1 , . . . , λnm+1} have a value that is no greater than λnm+1

Now define

λ̃nm = max{max{αj} , λnm + λnm+1 −max{αj}}
λ̃nm+1 = min{max{αj} , λnm + λnm+1 −max{αj}} , (7.24)

and for all j 6= k, k + 1, define λ̃j = λj . Note that
∑∞

j=1 λ̃j =
∑∞

j=1 λj =
∑∞

j=1 αj .

Observe that for k < m, or k = m+ 1,

sup

∑
j∈J

λj : |J | = k

 =

k∑
j=1

λnj =

k∑
j=1

λ̃nj = sup

∑
j∈J

λ̃j : |J | = k

 , (7.25)

and for all k > m, sup

∑
j∈J

λj : |J | = k

 = sup

∑
j∈J

λ̃j : |J | = k

. This shows that that for all

k expect possibly k = m.

sup

∑
j∈J

αj : |J | = k

 ≤ sup

∑
j∈J

λ̃j : |J | = k

 .

To deal with the final case,

sup

∑
j∈J

αj : |J | = m

 ≤ sup

∑
j∈J

αj : |J | = m− 1

+ α1

≤ sup

∑
j∈J

λj : |J | = m− 1

+ α1 = sup

∑
j∈J

λ̃j : |J | = m− 1

+ α1

=

m−1∑
j=1

λ̃nj + α1 ≤
m∑
j=1

λ̃nj . (7.26)

This proves that α ≺w λ. Since none of the negative terms of λ have been changed, the fact that

−α ≺w −λ̃ follows directly from −α ≺w −λ.

To see that λ̃ ≺ λ, note that

{λ̃mn , λ̃nm+1 , 0, 0 . . . } ≺ {λmn , λnm+1 , 0, 0 . . . }
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and then by Theorem 7.14, for all t > 0,

(λ̃mn − t)+ + (λ̃nm+1 − t)+ ≤ (λmn − t)+ + (λnm+1 − t)+ .

Since all other terms in the two sequences are equal,

∞∑
j=1

(λ̃j − t)+ ≤
∞∑
j=1

(λj − t)+

for all t > 0, and then λ̃ ≺ λ by Theorem 7.14 once more.

7.17 THEOREM (Horn-Gohberg-Marcus Theorem). Let h be a positive semidefinite trace class

operator on a separable Hilbert space H . Let {ηj}j∈N be any orthonormal basis of H . Define

λ ∈ `1(N,R) by

λj = 〈ηj , hηj〉H j ∈ N . (7.27)

Let α ∈ `1(N,R) be non-negative and non-increasing and such that α ≺ λ.

Then there exists a closed subspace H1 ⊂H and an orthonormal basis {ζj} for H1 such that

αj = 〈ζj , hζj〉H for all j ∈ N . (7.28)

If H1 is a proper subspace of H , its orthogonal complement lies in ker(h).

Proof. We build the orthonormal basis recursively using a method of Gohberg and Marcus. Since

α is non-increasing, max{αj} = α1. By Lemma 7.16 there exist terms λm and λn in λ such that

λm ≤ α1 ≤ λn and such that with

λ̃m := α1 and λ̃n := λm + λn −max{αj} ,

and λ̃j := λj for j 6= m,n, then α ≺ λ̃.

Consider the parameterized unit circle η(t) := cos tηn+sin tηm in the real span of {ηm, ηn}. Since

〈η(t), hη(t)〉H is equal to λn for t = 0 and to λm for t = π/2, continuity ensures that there is some

t0 such that 〈η(t), hη(t0)〉H = max{αj}. Define ζ1 = η(t0), and ξ1 = η(t0 + π/2). Then {ζ1, ξ1} is

orthonormal with the same span as {ηm, ηm}. Replace H with the orthogonal complement of ζ1,

and now let {ηj} denote the the orthonormal basis for this space in which ξ1 is the first element,

and the rest is given by the sequence {ηj} with the terms ηm and ηn deleted.

Replace α with the sequence obtained by deleting α1 and shifting the other terms up. Replace

λ by the sequence λ̃j = 〈ηj , hηj〉H using the new orthonormal basis. By Lemma 7.16, the new α

and λ again satisfy α ≺ λ.

We may now repeat the procedure to find, in the orthogonal complement of ζ1, a unit vector ζ2

such that 〈ζ2, hζ2〉H = α2, and again get an orthonormal set of vectors such that the corresponding

sequence of diagonal entries of h majorizes the sequence αm now with α1 and α2 split off, and the

other terms moved up.

Evidently, this operation may be repeated indefinitely, thus producing the orthonormal set {ζj}
such that (7.28) is satisfied. Let H1 be the span of the orthonormal set {ζj}. If H1 = H we are

done. It remains to show that if H1 is a proper subspace of H , its orthogonal complement lies in

ker(h).
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Let {ξk}k∈K be an orthonormal basis for H2 := H ⊥
1 . Define the compact positive operator a

by

a =

∞∑
j=1

〈ζj , hζj〉H |ζj〉〈ζj |+
∑
k∈K
〈ξk, hξk〉H |ξk〉〈ξk|

=
∞∑
j=1

αj |ζj〉〈ζj |+
∑
k∈K
〈ξk, hξk〉H |ξk〉〈ξk|

Since a has the same diagonal elements as h in the orthonormal basis {ζj} ∪ {ξk}, and since we

may compute the trace in any orthonormal basis we choose,

Tr[h] = Tr[a] =

∞∑
j=1

αj +
∑
k∈K
〈ξk, hξk〉H .

Computing the trace of h in the original {ηj} basis, using using the fact that α ≺ λ, we find

Tr[h] =
∞∑
j=1

λj =
∞∑
j=1

αj .

It follows that 〈ξk, hξk〉H = 0 for all k ∈ K, and then since h is positive, this means that hξk = 0

for all k ∈ K. Thus, h vanishes on H2.

7.18 COROLLARY. Let H be a separable Hilbert space, and let h be a positive semi-definite

trace class operator on H . Let λ ∈ `1(N,R) be the sequence of eigenvalues of h repeated according

to multiplicity and arranged in non-increasing order. Let α ∈ `1(N,R) be arranged in non-increasing

order. Then an necessary and sufficient condition for there to exists an orthonormal basis {ζj} of

H and a unitary u on H such that for all j ∈ N,

αj = 〈ζj , (u∗hu)ζj〉H and λj = 〈ζj , hζj〉H . (7.29)

is that α ≺ λ .

Proof. Because u∗hu and h have the same eigenvalues with the same multiplicities, when (7.29) and

{ηj} is an orthonormal basis of H consisting of eigenvectors of h, then α ≺ λ by the variational

principle for sums of eigenvalues. In the other direction, let {etaj} and {ζj} be the two bases

constructed in the theorem, and let u be the unitary such that uηj = ζj for all j.

7.19 COROLLARY. A necessary and sufficient condition on two non-negative and non-

increasing sequences α, λ in `1(N,R) for α ≺ λ is that there exist non-negative numbers

{wj,k : j, k ∈ N}

such that
∞∑
j=1

wj,k = 1 for all k and
∞∑
k=1

wj,k = 1 for all j . (7.30)

and

αj =
∞∑
k=1

wj,kλk for all j . (7.31)



108

Proof. Suppose α ≺ λ. Let {ηj} be any orthonormal basis for H , and define the operator

h =
∞∑
j=1

λj |ηj〉〈ηj | .

Then λ is the eigenvalue sequence of h. By Corollary 7.18, there to exists an orthonormal basis {ζj}
of H and a unitary u on H such that for all j ∈ N, such that for each j, h =

∑∞
`=1 λm|ζm〉〈ζm|

and

αj = 〈ζj , u∗huζj〉H =

∞∑
`=1

λ`〈ζju∗, ζ`〉H 〈ζ`, uζj〉H =

∞∑
`=1

λ`|〈ζ`, uζj〉H |2 .

Define wj,` = |〈ζ`, uζj〉H |2. Note that since u is unitary, both (7.30) and (7.31) are satisfied.

Conversely, suppose that both (7.30) and (7.31) are satisfied. Then for each k ∈ N,

k∑
j=1

αj =

k∑
j=1

(
k∑
`=1

wj,`λ` +
∞∑

`=k+1

wj,`λ`

)

≥
k∑
`=1

 k∑
j=1

wj,`

λ` +

k∑
j=1

( ∞∑
`=k+1

wj,`

)
λk+1

=

k∑
`=1

1−
∞∑

j=k+1

wj,`

λ` +

k∑
j=1

( ∞∑
`=k+1

wj,`

)
λk+1

=
k∑
`=1

λ` +
k∑
j=1

( ∞∑
`=k+1

wj,`

)
(λ` − λk+1) ≥

k∑
`=1

λ` .

This proves that α ≺w λ, and −α ≺w −λ is trivially true. It follows immediately from (7.30) and

(7.31) that
∑∞

j=1 αj =
∑∞

j=1 λj , and thus α ≺ λ.

7.20 THEOREM. Let f be a concave function on [0,∞). Let α, λ ∈ `1(N,R) be non-negative and

non-increasing. If α ≺ λ, then
∞∑
j=1

f(αj) ≥
∞∑
j=1

f(λj) . (7.32)

If furthermore f is strictly concave, then there is equality in (7.32) is and only if αj = λj for all j.

Finally, if f is not only concave, but also nondecreasing, then for all k ∈ N,

∞∑
j=k

f(αj) ≥
∞∑
j=k

f(λj) . (7.33)

Proof. Note first of all that since f is concave on [0,∞), f has a definite sign (0, δ) for some δ > 0,

and hence all but at most finitely many terms in the sequences {f(αj)} and {f(λj)} have the same

sign, and this both sums are well defined.

By Corollary 7.19, there exist non-negative numbers

{wj,k : j, k ∈ N}

such that (7.30) and (7.31) are satisfied.
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Then for each j

f(αj) = f

( ∞∑
`=1

wj,`λ`

)
≥
∞∑
`=1

wj,`f(λ`) . (7.34)

Therefore,
∞∑
j=1

f(αj) ≥
∞∑

j,`=1

wj,`f(λ`) =

∞∑
`=1

f(λ`) .

If there is equality, then there must be equality in (??) for each j. In case f is strictly convex, this

means that for each j, there exists j` such that wj,` = 1 for j = j` and wj,` = 0 for j 6= j`. Since α

and λ are both non increasing, this means that α = λ.

Finally suppose that f is non-decreasing as well as concave. For each k ∈ N define

g(x) = min{ f(x) , f(λk) } .

Then g is concave, and by the first part.
∑∞

j=1 g(αj) ≥
∑∞

j=1 g(λj). Therefore, since for j < k,

g(λj) = g(λk−1) ≥ g(x) for all x, and since for j ≥ k, g(λj) = f(λj),

∞∑
j=k

g(αj) =
∞∑
j=k

g(λj) +

k−1∑
j=1

[g(λk−1)− g(αj)]

 ≥ ∞∑
j=1K

f(λj) .

Then since g(x) ≥ f(x) for all x, (7.33) is proved.

7.6 Some open problems discussed in class

The Lindblad No-Cloning Theorem [15] is only proved in a finite dimensional setting. A crucial

part of the argument was a structure theorem for algebras of observables that are left invariant by

a quantum operation, the associated conditional expectation, and the associated set of invariant

states. Conditional expectations are studied in Arveson [2]; this paper discussions some aspects of

the construction in a more general setting.

Lindblad’s argument is central to another focus of current research activity that grew out of

fundamental work of Lieb and Ruskai [10, 11, 12] on Strong subadditivity of quantum entropy, as

discussed in class. As we have seen with Kadison’s inequality, knowing the cases of equality can

also be important. This is certainly the case with strong subadditivity. The cases of equality in the

finite dimensional case have been determined in a paper of Hayden, Jozsa, Petz and Winter, [7],

and the connection with Lindblad’s No-Cloning Theorem is made explicit. Again, it would be good

to go beyond the finite dimensional case. A new and interesting approach to these inequalities can

be found in the very recent paper of Sutter, Berta and Tomamichael [23].

With regard to Lin’s Theorem discussed earlier in the course, there is a very interesting recent

paper of Ogata [18] who proves an old conjecture of von Neumann, discussed in class, concerning

approximation of almost commuting operators. This is non-quantitative and non-constructive. The

very recent quantitative version of Lin’s Theorem due to Kachkovskiy and Safarov [8] may provide

some clues as to how to prove a quantitative and constructive version.

Also, Neilsen’s Theorem [16] which characterizes the pure states that can be reached form a

given pure state using only LOCC operations is a beautiful application of the theory of majorization,

but there is no such result yet for mixed states.
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The proceedings volume Entropy and the Quantum by Simms and Ueltschi [22] contains a

number of introductory lectures to open problems in the area. The lectures in this volume by

Luc Rey-Belet on quantum large deviations are particularly interesting in terms of the challenges

posed. There are many, many other interesting open problems, but this is a selection of problems

and references discussing problems that might be particularly timely.
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