
Notes on the the solutions of the exercises from the second set

1 The first problem entailed showing that Lp∩Lr, 1 ≤ p < r ≤ ∞ is a Banach space when

equipped with the norm

|||f ||| = ‖f‖p + ‖f‖r .

The main point here is the completeness. Suppose {fn} is a Cauchy sequence for the

norm ||| · |||. Then since |||f ||| ≥ ‖f‖p and |||f ||| = ‖f‖r, it is also a Cauchy sequence for the Lp

and Lr norms. Since Lp is complete, there is some g ∈ Lp so that limn→∞ fn = g in the

Lp norm, and likewise there is some h ∈ Lr so that limn→∞ fn = h in the Lr norm. Every

Lp convergent sequence has a subsequence converging almost everywhere, and likewise

for Lr, so some subsequence of {fn} converges to g, and then a further subsequence of

this converges to h. Hence h = g, and so the limit – call it f – is in Lp ∩ Lr, and

limn→∞ |||fn − f ||| = 0. This shown the completeness.

Regarding the fact that for p ≤ q ≤ r, the inclusion map Lp ∩Lr → Lq is continuous,

since this map is linear, we need only show it is bounded. But this follows directly from

‖f‖q ≤ ‖f‖λp‖f‖1−λr ≤ λ‖f‖p + (1− λ)‖f‖q ≤ |||f |||

where q−1 = λp−1 + (1− λ)r−1.

2 The first problem entailed showing that Lp+Lr, 1 ≤ p < r ≤ ∞ is a Banach space when

equipped with the norm

|||f ||| = inf{‖g‖p + ‖h‖r : g + h = f } .

Here there is a bit more to do to show that this is a norm. The main thing to show

is that if |||f ||| = 0, then f(x) = 0 almost everywhere. To see this, suppose one has two

sequences {gn} and {h}n with f = gn + hn for all n, but

lim
n→∞

(‖gn‖p + ‖hn‖r) = 0 .

Then of course gn → 0 in Lp and hn → 0 in Lr. Since Lp (and Lr) sequences have

subsequences that converge almost everywhere, passing to a subsequence, we have

lim
n→∞

gn(x) = lim
n→∞

hn(x) = 0

for almost every x. But f = hn + gn for all n, so f(x) = 0 for almost every x.
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Most people proved the completeness in a nice way by adapting th proof of complete-

ness in Lp spaces. Again for the continuity of the imbedding Lq → Lp +Lr for p ≤ q ≤ r,
since this map is linear, it suffices to show it is bounded. So take any f in the unit ball in

Lq. Then

f = 1{|f |≤1}f + 1{|f |>1}f ,

and so, since r > q,

‖1{|f |≤1}f‖rr ≤ ‖1{|f |≤1}f‖qq ≤ ‖f‖qq = 1 .

Likewise, since q > p,

‖1{|f |≥1}f‖pp ≤ ‖1{|f |≥1}f‖qq ≤ ‖f‖qq = 1 .

Therefore,

|||f ||| ≤ ‖1{|f |≥1}f‖pp + ‖1{|f |≤1}f‖rr ≤ 2 ,

and so the inclusion is bounded, and the bound is no greater than 2. (However, one can

improve the argument. One way is to cut at height t, instead of the arbitrary height 1,

and then to optimize over t. But this is not needed here.

3 This problem was to show that if if {fn} is a sequence in Lp, 1 ≤ p <∞, that converges

to f almost everywhere, then limn→∞ ‖fn − f‖p = 0 if and only if limn→∞ ‖fn‖p = ‖f‖p.
The more involved part is the “if” part, and most people did this in a good way. However,

there were many complicated proofs of the “only if” part. Any proof that uses dominated

convergence is a bit too complicated since in fact for it any norm, one has

‖f‖ = ‖(f − fn) + fn‖ ≤ ‖f − fn‖+ ‖fn‖

and so (swapping the roles of f and fn)∣∣‖f‖ − ‖fn‖∣∣ ≤ ‖f − fn‖ .
Hence if fn converges to f in norm, the norm of fn converges to the norm of f , and this is

true in any normed vector space, whether the norm is defined in terms of integrals or not.

4 This exercise involved showing that for 1 < p < ∞, if {fn} is a bounded sequence in

Lp that converges almost everywhere to f , then {fn} converges weakly to f . (Note that

necessarily f ∈ Lp by Fatou’s Lemma.)

We have to show that for any g ∈ Lq, 1/q + 1/p = 1,

lim
n→∞

∫
X

fngdµ =
∫
X

fgdµ .
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The simplest way to proceed, ignoring the hints somewhat, is to use the fact that

simple functions are dense in Lq. Pick any ε > 0, and choose h ∈ Lq with ‖g − h‖q < ε.

Then ∣∣∣∣∫
X

(fn − f)gdµ
∣∣∣∣ ≤ ∣∣∣∣∫

X

(fn − f)hdµ
∣∣∣∣+
∣∣∣∣∫
X

(fn − f)|g − h|dµ
∣∣∣∣ .

Then by Hölder’s inequality,∣∣∣∣∫
X

(fn − f)|g − h|dµ
∣∣∣∣ ≤ ‖fn − f‖p‖g − h‖q ≤ 2

(
sup
n≥0
‖fn‖p

)
ε .

Since epsiion > 0 is arbitrary, it suffices to show that

lim
n→∞

∫
X

fnhdµ = 0 . (∗)

But since h is simple, h = 0 off a set A of finite measure, and also h is bounded. Now it

is easy to use Egorov’s Theorem to prove (∗).
6 Let fn(x) = cos(2πnx) on L2([0, 1]). To see that {fn} converges weakly to zero, one can

use the fact that continuously differentiable functions that vanish at x = 0 and x = 1 are

dense in L2([0, 1]). Let g be any such function. Then for n > 0, integrating by parts,∫ 1

0

fng(x)dx =
1

2πn

∫ 1

0

d
dx

sin(2πnx)g(x)dx = − 1
2πn

∫ 1

0

sin(2πnx)g′(x)dx .

Thus, by the Schwarz inequality,∣∣∣∣∫ 1

0

fng(x)dx
∣∣∣∣ ≤ 1

2πn
2−1/2‖g′‖2 ,

and this clearly goes to zero as n→∞. Since such functions g are dense in L2([0, 1]), {fn}
converges weakly to zero.

7 Recall that for any measurable function and any 1 ≤ p ≤ infty, with 1/q + 1/p = 1,

‖f‖p = sup
‖g‖g≤1

∫
X

fgdµ .

This is the duality formula.

Hence once you have shown that∫ [∫
K(xy)f(y)dy

]
g(x)dy ≤ φ(1/2)‖f‖2‖g‖2 ,

which is a special case of the result of part (a), you have that

‖Kf‖2 ≤ φ(1/2)‖f‖2 , and hence ‖K‖ ≤ φ(1/2) .

There is no need to redo the computation of part (a) again for the norm computation. A

similar remark applies in the final problem.
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