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1 intorduction

Given a topological space (X,U), there are three natural normed vector spaces of continuous func-
tions:

1.1 DEFINITION (Spaces of continuous functions). Let (X,U) be a topological space. We define:

(i) Cc(X) is the normed vector space of continuous, compactly supported functions f on X with
values in C on which the norm, ‖ · ‖∞, is given by ‖f‖∞ = sup{ |f(x)| : x ∈ X }.
(ii) C0(X) is the normed vector space of continuous functions f on X with values in C such that
for eaxh ε > 0, there exists a compact set Kε,f such that |f(x)| < ε for all x outside of Kε,f . The
norm is once again ‖ · ‖∞, given by ‖f‖∞ = sup{ |f(x)| : x ∈ X }.
(iii) Cb(X) is the normed vector space of continuous functions f on X with values in C such that
‖f‖∞ = sup{ |f(x)| : x ∈ X } <∞. The norm is once again ‖ · ‖∞.

When X is not compact, Cc(X) is not complete. Take for instance X = Rn. Let φn be a
continuous radial decreasing function function with φn(x) = 1 for |x| ≤ n, and φn(x) = 0 for
|x| ≥ 2n. Now let f be given by f(x) = e−x

2
, and define fn = φnf . Then it is clear that for n > m,

‖fn − fm‖∞ ≤ e−m
2

and so {fm} is a Cauchy sequence in Cc(X). But clearly there is no function g ∈ Cc(X) such that
limn→∞ ‖fn − g‖∞ = 0.

However, it is easy to see that C0(X) is the norm closure of Cc(X), and both it and Cb(X) are
Banach spaces.

1.2 THEOREM. C0(X) equipped with the sup norm is a Banach space. If X is a locally compact
Hausdorff space, then the subsapce Cc(X) is dense.

Proof: If {fn} is a Cauchy seuqence in C0(X), then {fn(x)} is a Cauchy sequence in C. Hence the
limit exists for each x, and defines a function f by

f(x) = lim
n→∞

fn(x) .
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Given the uniform convergence, it is easy to check that f ∈ C0(X) so that C0(X) is complete.
To see that Cc(X) is dense, pick f ∈ C0(X) and ε > 0. Let Kε be a compact set such that

|f(x)| ≤ ε for all x /∈ Kε. BecasueX is locally compact, it is possible to find an open set U containing
Kε such that U has compact closure. Then by Urysohn’s Lemma, there exists a continuous function
ϕ with K ≺ ϕ ≺ U such that. Then it is clear that ϕ inCc(X), and ‖fϕ− f‖∞ ≤ ε.

In this chapter of the notes, our goal is to study the spaces of continuous linear functional on
these function spaces. We shall identify there dual spaces with certain spaces of measures, and these
spaces of measures will be our primary focus. In particular, we shall be concerned with finding
precise and concrete descriptions of these dual spaces, and with finding useful descriptions of the
compact sets in them, where compact is defined with reference to the weak-∗ topology.

To be successful in this program, we shall of course need to know something about the topology
of the underlying space X; Theorem 1.2 already gives some hint of this. In particular, we shall
need it to be sufficiently rich in both open and compact sets.

There is a crucial balance to be struck here: The more open sets a topology contains the fewer
compact sets it contains and vice-versa. Hence only under certain topological conditions can we
carry out our program. There are two generally useful topological frameworks in which the program
can be completed in a fully satisfactory manner. The first is that in which X is a locally compact
Hausdorff space, and the other is that in which X is a complete, separable metric space. Both
are important, and somewhat complementary. We begin with the locally compact Hausdorff space
theory.

2 The Riesz-Markov Theorem for locally compact Hausdorff

spaces

Throughout this section, let (X,U) be a locally compact Hausdorff space. The spaces Cc(X), C0(X)
and Cb(X) are more than topological spaces: They contain a distinguished cone of non-negative
elements: We say that a function f on X is non-negative in case for each x, f(x) ∈ R, and (x) ≥ 0.
In this case we write f ≥ 0.

Let L be a linear functional on Cc(X). We say that L is a positive linear functional on Cc(X)
in case

f ≥ 0 ⇒ L(f) ≥ 0 .

There is a close connection between the topology on Cc(X) and the partial order structure on
Cc(X) induced by its cone of positive elements.

2.1 THEOREM. Let L be a positive linear functional on Cc(X). Then for each compact K ⊂ X,
there exists a finite constant CK such that

|f | ≺ K → |L(f)| ≤ CK‖f‖∞ .

Proof: By a basic lemma concerning LCH spaces, there exists an open set U with compact closure
U such that

K ⊂ U ⊂ U ,
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and then by Urysohn’s Lemma, there exists a continuous function ϕ on X such that

K ≺ ϕ ≺ U .

Then evidently ‖f‖∞ϕ− |f | ≥ 0, and hence L(‖f‖∞ϕ− f) ≥ 0. Thus,

L(f) ≤ L(‖f‖∞ϕ) = L(ϕ)‖f‖∞ .

Thus,
sup{|L(f)| : |f | ≺ K , ‖f‖∞ ≤ 1 } ≤ L(ϕ)‖f‖∞ .

We may take CK = L(ϕ), or, better yet,

CK = inf{L(ϕ) : K ≺ ϕ ≺ X } .

To construct an example of a positive linear functional on Cc(X), let µ be a Borel measure on
X that is finite on every compact set K ⊂ X.

2.2 DEFINITION (Radon mesure). A Radon measure on a locally compact Hausdorf space X
is a positive Borel measure µ on X such that µ(K) <∞ for all compact sets K ⊂ X.

2.3 DEFINITION (innner and outer regularity). A Borel measure µ is outer regular in case for
each Borel set E

µ(E) = inf{ µ(U) : E ⊂ U , U open } . (2.1)

A Borel measure µ is inner regular in case for each Borel set E

µ(E) = sup{ µ(K) : K ⊂ E , K compact } . (2.2)

A Borel measure µ is inner regular for open sets in case (2.2) hold for all open E.

As we shall see, on any locally compact Hausdorff space, Radon measures are automatically
outer regular, and inner regular for open sets. These properties are sometimes included in the
definition of Radon measures, and then the condition that X is a locally compact Hausdorff space
can be dropped. However, since we are working in the setting of locally compact Hausdorff spaces,
the regularity is a theorem, and not part of the definition.

2.4 THEOREM (Riesz-Markov Theorem). Let L be any positive linear functional on Cc(X).
Then there exists a unique Radon measure µ such that

L(f) =
∫
X
fdµ for all f ∈ Cc(X) . (2.3)

Moreover,
µ(U) = sup{ L(f) : f ≺ U , f ∈ Cc(X) } (2.4)

for all open sets U , and

µ(K) = inf{ L(f) : K ≺ f , f ∈ Cc(X) } (2.5)

for all compact sets K. Finally, µ is outer regular, and inner regular for open sets.
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Proof: Step 1: Use L to construct an outer measure µ∗. We define a set function µ∗ on arbitrary
subsets E of X by

µ∗(U) = sup{ L(f) : f ≺ U , f ∈ Cc(X) }

for open sets U , and then

µ∗(E) = inf{ µ(U) : E ⊂ U , U open } .

It is clear the µ∗(∅) = 0, and that if A ⊂ B, then µ∗(A) ≤ µ∗(B). Therefore, to show that mu∗

is an outer measure, we must show that for any sequence {En}n∈N of subsets of X,

µ∗

( ∞⋃
n=1

En

)
≤
∞∑
n=1

µ∗(En) .

Let E denote the union cup∞n=1En. It suffices to consider the case in which µ∗(E) < ∞, in which
case, µ∗(En) <∞ for all n.

Pick any ε > 0. Then by construction, there exists an open set Un with En ⊂ Un, and
µ∗(Un) ≤ µ∗(En) + 2−nε. But then

E ⊂ U :=
∞⋃
n=1

Un ,

and
∞∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(Un) + ε .

It therefore suffices to prove that

µ∗ (U) ≤
∞∑
n=1

µ∗(Un) . (2.6)

To do this, choose a compactly supported f such that f ≺ U and

µ∗(U)− ε ≤ L(f) . (2.7)

Let K denote the support of f . Then {Un}n∈N is an open cover of K, and so there exists a
finite subcover, which we may take to be {U1, . . . , UN}.

Let {h1, . . . , hN} be a partition of unity on K, subordinate to the open cover {U1, . . . , UN}.
Then

f =
N∑
n=1

fhn and fhn ≺ Un n = 1, . . . , N .

It follows that

L(f) =
N∑
n=1

L(fhn) ≤
N∑
n=1

µ∗(Un) ≤
∞∑
n=1

µ∗(Un) .

Combining this with (2.7), we obtain (2.6).
Step 2 : Show that every open set U belongs to the Caratheodory σ-algebra of the outer measure

µ∗.
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The Caratheodry σ-algebra of outer measure µ∗ consists of the sets A such that for every subset
E of X,

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) .

Since E = (E ∩ A) ∪ (E ∩ Ac), and µ∗ is an outer measure, it is automatic that µ∗(E) ≤ µ∗(E ∩
A) + µ∗(E ∩Ac) for any set A. Thus, it remains to be shown that if U is open, then

µ∗(E) = µ∗(E ∩ U) + µ∗(E ∩ U c) (2.8)

for all E ⊂ X.
To do this, first suppose E is open. Then E ∩ U is open, and hence, for any ε > 0, there exists

an f ≺ E ∩U such that L(f) ≥ µ∗(E ∩U)− ε. Now let K denote the support of f . Then E ∩Kc is
open, and so there exists some g ≺ E ∩Kc such that L(g) ≥ µ∗(E ∩Kc)− ε. Then since f + g ≺ E
( the both have compact, disjoint support contained in E),

µ∗(E) = L(f + g) = L(f) + L(g)

≥ µ∗(E ∩ U) + µ∗(E ∩Kc)− 2ε

≥ µ∗(E ∩ U) + µ∗(E ∩ U c)− 2ε

where the last inequality hold due to the fact that f ≺ U mean K ⊂ U , and hence Kc ⊂ U c. Since
ε > 0 is arbitrary, we have (2.8), with equality in fact, for all open sets E.

To prove it in general, choose an open set V with E ⊂ V and µ∗(V ) ≤ µ∗(E) + ε. Then

µ∗(E) + ε ≥ µ∗(V ) = µ∗(V ∩ U) + µ∗(V ∩ U c) ≥ µ∗(E ∩ U) + µ∗(E ∩ U c) .

Thus, the Caratheodory σ-algebra of the outer measure µ∗ contains all open sets, and therefore
contains all Borel sets. We now let µ denote the restriction of µ∗ to the Borel σ-algebra. The
by Caratheodory’s Theorem µ is a countably additive Borel measure, and it satisfies (2.4) by
construction, and is outer regular by construction.

Step 3 : Prove that µ satisfies (2.5). As an imediate consequence, µ is then finite on all compact
sets, and is therefore a Radon measure. To carry out this step, let be any K is any compact set,
and suppose that f satisfies K ≺ f ≺ X. Pick any ε > 0, and define Uε = { x : f(x) ≥ 1 − ε }
Then for all g ≺ Uε, (1− ε)−1 ≥ g, and hence

(1− ε)−1L(f) ≥ L(g) .

Since G ≺ Uε is arbitrary,
(1− ε)−1L(f) ≥ µ(Uε) ≥ µ(K) .

Since ε > 0 is arbitrary,
µ(K) ≤ L(f) . (2.9)

To get the opposite inequality, we use the outer regularity: There exists an open set U such
that K ⊂ U and µ(U) ≤ µ(K) + ε. By our basic lemma for locally compact Hausdorff spaces, there
exists an f with K ≺ f ≺ U . Then µ(U) ≥ L(f), and so

µ(K) ≥ µ(U)− ε ≥ L(f)− ε .
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This gives us the opposite of (2.9), and hence proves (2.5).
Step 4 : Prove that for all f ∈ Cc, L(f) =

∫
X fdµ. For this, it suffices to suppose that f ≥ 0,

for we can separately consider the real and imaginary, and then the positive and negative parts.
Moreover, since f is bounded, we may suppose that 0 ≤ f ≤ 1 Pick some large integer N , and the
define

fj =
(
f − j − 1

N

)
+

∧ 1
N

j = 1, . . . , N .

Then

f =
N∑
j=1

fj .

Let Kj−1 denote the support of fj , j = 1, . . . , N , which is compact.
Note that Kj ≺ Nfj , and hence by (2.5),

µ(Kj) ≤ L(Nfj).

Also, if U is any open set containing Kj−1, then Nfj ≺ U , and hence L(Nf) ≤ µ(U). Then, by
outer regularity, and since U is an arbitrary open set containing Kj−1,

L(Nfj) ≤ µ(Kj−1) .

Altogether,
1
N
µ(Kj) ≤ L(fj) ≤

1
N
µ(Kj−1) .

Next, note that since
1Kj (x) ≤ Nfj(x) ≤ 1Kj−1(x)

for all x,
1
N
µ(Kj) ≤

∫
X
fjdµ ≤

1
N
µ(Kj−1) .

From here one readily concludes that∣∣∣∣L(f)−
∫
X
fdµ

∣∣∣∣ ≤ µ(supp(f)
N

,

which completes this step.
Step 5 : Prove that µ is inner regular for open sets. This is a very simple consequence of (2.5):

If U is any open set, pick some ε > 0 and some f ≺ U such that L(f) ≥ µ(U)−ε. Let K = supp(f).
Then by (2.5) there exists a g with K ≺ g such that µ(K) ≥ L(g) − ε. But since g = 1 on the
support of f , g ≥ f , and so

µ(K) ≥ L(g)− ε ≥ L(f)− ε ≥ µ(U)− 2ε .
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3 The Hahn-Saks Theorem Theorem

Let X denote a localy compact Hausdorff space that is σ-compact; i.e., such that there exists an
increasing sequence {Kn}n∈N of compact sets with X = ∪∞n=1Kn.

Let M(X) denote the space of real continuous linear fnctionals on C0(X). That is,

M(X) = (C0(X))∗ .

Our first goal is to give a concrete description of M(X). As the notation may suggest, it will turn
out to be a Banch space of measures – signed measures – on X.

We already know that some of the linear functionals in M(X) are measures. Indeed, let
L ∈M(X), and suppose that L is a positive linear functional on C0(X) in the sense that

f ≥ 0⇒ L(f) ≥ 0 .

Then the restriction of L to Cc(X) is a positive linear functional on Cc(X), and so by the Riesz-
Markov Theorem, there is a unique Radon measure µL so that µL(K) <∞ for all compact sets K
and such that

L(f) =
∫
X
fdµL (3.1)

for all f ∈ Cc(X).
Now let Kn be a sequence of compact sets in X with ∪nKn = X. For each n choose ϕn satisfying

Kn ≺ ϕn ≺ X. Then

µL(X) = lim
n→∞

µL(Kn)

≤ lim
n→∞

∫
X
ϕndµL

≤ lim
n→∞

L(ϕn)

≤ lim
n→∞

‖L‖M‖ϕn‖∞
= ‖L‖M .

Thus µL is not only a Radon measure, it is actually a finite Borel measure.
We now show that the general linear functional L on C0(X) can be expressed in terms of finite

Borel measures, though not necessarily positive. To do this, we shall decompose L into the difference
of two positive linear functionals:

L = L+ − L− , (3.2)

and then shall identify each of L+ and L− with finite Borel measures, as above.
Now it is completely clear how to take a function f(x) apart into its paositive and negative

parts
f(x) = f+(x)− f−(x) ,

but it is not so clear how this is to be done for a linear functinal L. The way to do this was found
by Hahn, and so it is called the Hahn decomposition. We now explain how this is done.

Let L ∈M(X). For f ∈ X with f ≥ 0, define
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L+(f) = sup{ L(h) : 0 ≤ h ≤ f } . (3.3)

We shall show that this gives us the “positive part” of L. Our first step toward goal is to prove the
following:

3.1 LEMMA. For all non–negative functions f and g in X, and all positive real numbers α,

L+(αf + g) = αL+(f) + L+(g) .

Proof: First consider the special case g = 0. It is clear from the definition that L+(αf) = αL+(f).
Thus, it suffices to show that

L+(f + g) ≥ L+(f) + L+(g) and L+(f + g) ≤ L+(f) + L+(g) . (3.4)

The first of the inequalities in (3.4) is very easy to prove: Given ε > 0, the definition of L+

ensures that there are functions h̃f and h̃g so that

0 ≤ h̃f ≤ f and 0 ≤ h̃g ≤ g

and
L(h̃f ) ≥ L+(f)− ε

2
and L(h̃g) ≥ L+(g)− ε

2
.

Clealry 0 ≤ f̃h + f̃g ≤ f + g, and so

L+(f + g) ≥ L(h̃f + h̃g) = L(h̃f ) + L(h̃g) ≥ L+(f) + L+(g)− ε .

Since ε > 0 is arbitray, we have the first inequality in (3.4).
The second of these inequality in (3.4) is the heart of the matter. Again fix any ε > 0. By the

definition of L+, there is a function h ∈ X with

0 ≤ h(x) ≤ f(x) + g(x) (3.5)

for all x, and
L(h) ≥ L+(f + g)− ε .

Define hf by
hf (x) = min{f(x), h(x)}

and hg = h− g.
For x such that hf (x) = f(x),

hg(x) = h(x)− hf (x) = h(x)− f(x) ≤ g(x)

by (3.8), while for x such that hf (x) = h(x), hg(x) = h(x)− h(x) = 0. In either case,

0 ≤ hf ≤ f and 0 ≤ hg ≤ g .

Therefore, by the linearity of L and the definition (1) of L+,

L(h) = L(hf ) + L(hg) ≤ L+(f) + L+(g) .
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This shows that L+(f + g) ≤ L+(f) +L+(g) + ε, and since ε > 0 is arbitrary, the second inequality
in (3.4) is proved.

We now wish to extend L+ to all of X. Suppose that f ∈ X and let

f = g − h and f = g̃ − h̃ (3.6)

be two ways of writing f as the difference on non-negative elements of X. Then

g + h̃ = g̃ + h

and by this together with the lemma,

L+(g) + L+(h̃) = L+(g + h̃) = L+(g̃ + h) = L+(g̃) + L+(h) .

Clearly then,
L+(f)− L+(g) = L+(f̃)− L+(g̃) . (3.7)

Therefore, we can extend L+ to all of X by defining L+(f) = L+(g) − L+(h), where f and g are
any non–negative functions in X such that f = g − h, because the reuslt is independent of the
choice of g and h by the analysis that led from (3.6) to (3.7).

To be specific, we may as well take g = f+ and h = f−:

3.2 DEFINITION. L+ is defined on X by

L+(f) = L+(f+)− L+(f−) ,

and L− is defined on X by
L−(f) = L+(f)− L(f) . (3.8)

3.3 THEOREM. Both L+ and L− are bounded linear functionals on X

Proof We first show that L+ is linear. Clearly it is homogenous, so it suffices to show that for all
f1 and f2 in X, L+(f1 + f2) = L+(f1) + L+(f2). But

(f1 + f2)+ − (f1 + f2)− = ((f1)+ + (f2)+)− ((f1)− + (f2)−)

and so by the independence property established above, i.e., that (3.6) implies (3.7), and then the
additivity of L+ on positve functions,

L+(f1 + f2) = L+((f1 + f2)+)− L+((f1 + f2)−)

= L+((f1)+ + (f2)+)− L+((f1)− + (f2)−)

= L+((f1)+) + L+((f2)+)− L+((f1)−)− L+((f2)−)

= [L+((f1)+)− L+((f1)−)]− [L+((f2)+)− L+((f2)−)]

= L+(f1) + L+(f2) .

This proves the linearity. Finally, for f ≥ 0, it is clear that

0 ≤ L+(f) ≤ sup{L(h) | 0 ≤ h ≤ f} ≤ sup{‖L‖M(X)‖h‖∞ | 0 ≤ h ≤ f} ≤ ‖L‖M(X)‖f‖∞ .
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Evidently then,

|L+(f)| ≤ max{L+(f+) , L+(f−)}
≤ ‖L‖M(X) max{‖f+‖∞ , ‖f−‖∞}
≤ ‖L‖M(X)‖f‖∞ .

This shows that L+ is bounded, and that in fact,

‖L+‖M(X) ≤ ‖L‖M(X) .

Thus it is shown that L+ is a bounded linear functional. Finally, since L− is defined as the difference
of two bounded linear functionals, it is clear that L− is itself a bounded linear functional.

By the remarks made at the beginning of this section, we know that there are positive finite
Borel measures µ+ and µ− so that for all f ∈ X

L+(f) =
∫
X
fdµ+ and L−(f) =

∫
X
fdµ− . (3.9)

It follows that for all f ∈ X,

L(f) =
∫
X
fdµ+ −

∫
X
fdµ− . (3.10)

We have now shown that every L in M(X) is represented by the difference of two finite Borel
measures, as in (3.10). However, the particualr measures in (3.10) that we constructed using the
Hahn decomposition technique are special. It turns out that:

• The measures µ+ and µ− “live on separate subsets of X. That is, there is a Borel set A such
that µ−(A) = 0 and µ+(Ac) = 0.

• The norm of L, ‖L‖M, is given by the total masses of µ+ and µ− through

‖L‖M = µ+(X) + µ−(X) . (3.11)

These facts are quite useful. Before discussing them further, Let us define a term for the
circumstance that two measures “live on separate subsets sets”:

3.4 DEFINITION (Mutually Singular). Two positive measures µ1 and µ2 on a sigma algebra S
are mutually singular in case there is a measurable set A so that

µ1(Ac) = 0 and µ2(A) = 0 . (3.12)

3.5 LEMMA. The two measures µ+ and µ− in (3.11) are mutually singular.

Proof: Define the finite Borel mesure µ by µ = µ++µ−. Then µ+ and µ− are absolutely continuous
with respect to µ, and so there exist non-negative Borel functions g+ and g− in L1(X,B, µ) such
that µ+ = g+µ and µ− = g−µ.



CL April 14, 2009 11

Fix any δ > 0. Let E denote the set

{x : g−(x) ≥ g+(x) } ∩ { x : g+(x) > δ } .

Suppose µ(E) > 0. Then, by inner regularity, there exists a compact set K such that K ⊂ E and
µ(K) > µ(E)/2. Fix ε > 0 (and much smaller than µ(K)). By outer regularity, there exist an open
set U with K ⊂ U and µ(K) ≥ µ(U)− ε. By Urysohn’s Lemma, there exists a continuous function
f with K ≺ f ≺ U . Then for any h with 0 ≤ h ≤ f ,

L(h) = L+(h)− L−(h) =
∫
X
hg+dµ−

∫
X
hg−dµ =

∫
K
h(g+ − g−)dµ+

∫
U\K

h(g+ − g−)dµ .

But on K, g+ − g− ≤ 0, and∫
U\K

h(g+ − g−)dµ ≤
∫
U\K

(g+ + g−)dµ ≤ µ(U\K) ≤ ε .

Therefore,
L(h) ≤ ε for all 0 ≤ h ≤ f .

By the definition of L+, this means that L+(f) ≤ ε. Then since K ≺ f , µ+(K) ≤ ε. But since
g+ > δ on E and hence on K, µ(K) ≤ εδ. Since ε > 0 is arbitrary, µ(K) = 0. Thus, it is impossible
that µ(E) > 0 for any δ > 0, and hence for all x, g+(x)g−(x) = 0.

Therefore, define A = {x : g+(x) > 0 }. Then µ+(Ac) = 0, and µ−(A) = 0.

We now show that there is only one way to write L ∈ M as the difference of two mutually
singular Borel measures. In particular, there is only one way to represent L as the difference of
two mutually singular Borel measures: the way given in (3.10) in terms of the measures µ+ and µ−
provided by the Hahn decomposition.

3.6 LEMMA. Let µ1, µ2, ν1 and ν2 be Borel measures such that for all continuous functions f ,∫
X
fdµ1 −

∫
X
fdµ2 =

∫
X
fdν1 −

∫
X
fdν2 . (3.13)

Suppose also that µ1 and µ2 are mutualy singular, and that ν1 and ν2 are mutually singular as well.
Then µ1 = ν1 and µ2 = ν2.

Proof: Let A be such that (3.12) holds, and let B be such that

ν1(Bc) = 0 and ν2(B) = 0 . (3.14)

It follows directly from (3.12) and (3.14) that

µ2(A ∩B) = 0 and ν2(A ∩B) = 0 .

We now claim that
µ1(Ac ∪Bc) = 0 and ν1(Ac ∪Bc) = 0 . (3.15)

Therefore, if we define C = A ∩B, then (3.12) and (3.14) both continue to hold true if we replace
A and B respectively by C. To see the validity of (3.15), note that

µ1(A ∩Bc) + ν2(A ∩Bc) = 0 .
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In particular, since µ1(Ac) = 0, µ1(Ac ∪Bc) = 0. In the same way, we see that ν1(Ac ∪Bc) = 0.
Now because of (3.13), for any Borel set E,

µ1(E)− µ2(E) = ν1(E)− ν2(E) .

But then,

µ1(E) = µ1(E ∩ C) = µ1(E ∩ C)− µ2(E ∩ C) =

ν1(E ∩ C)− ν2(E ∩ C) = ν1(E ∩ C) = ν1(E) .

Thus, µ1 = ν1. It now follows that µ2 = ν2.
Finally, we show how the fact that µ+ and µ− are mutually singular implies that (3.11) holds.

As usual, we prove this equality using two inequalities. The first is easy, and does not use the fact
that µ+ and µ− are mutually singular.

|L(f)| =
∣∣∣∣∫
X
fdµ+ −

∫
X
fdµ−

∣∣∣∣
≤

∫
X
|f |dµ+ +

∫
X
|f |dµ−

≤ (µ+(X) + µ−(X)) ‖f‖∞ .

This shows that
‖L‖M(X) ≤ µ+(X) + µ−(X) .

For the other bound, let A be a Borel set such that µ+(Ac) = µ−(A) = 0, and let

f = 1A − 1Ac .

Evidently, ‖f‖∞ = 1. Now let ν be the measure

µ = µ+ + µ− .

We know that we can approximate any bounded measurable function arbitrarily closely in the
L1(X,µ) norm by a continuous function without increasing the supremum norm. Thus, for any
ε > 0, there is a continuous function f̃ such that ‖f̃ − f‖L1(X,µ) ≤ ε and ‖f̃‖∞ ≤ 1. Then

|L(f̃)| =
∣∣∣∣∫
X
f̃dµ+ −

∫
X
f̃dµ−

∣∣∣∣
≥

∣∣∣∣∫
X
fdµ+ −

∫
X
fdµ−

∣∣∣∣− ∫
X
|f − f̃ |dν

= µ+(A) + µ−(Ac)− ε
≥ µ+(X) + µ−(X)− ε .

Since ε > 0 is arbitrary, we have from this and (15) that ‖L‖M(X) = µ+(X) + µ−(X).
Summarizing, we have proved the following theorem:
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3.7 THEOREM (Hshn-Saks Theorem). Every continuous linear functional L on C0(X) is of the
form given in (11) where the measures µ+ and µ− are mutually singular finite Borel measures.
Moreover,

‖L‖M(X) = µ+(X) + µ−(X) .

We can deduce a number of consequences of this analysis that deserve further discussion. We
begin with a deinition:

3.8 DEFINITION. A signed measure on X is a real valued function µ on the Borel σ–algebra of
X such that there exist two positive finite borel measures µ1 and µ2 such that for all Borel sets E,

µ(E) = µ1(E)− µ2(E) . (24)

The set of signed measures is evidently a real vector space. (Complex measures are definied in
the analougous way, and would constitute a complex measure space.) If f is a bounded measurable
function, we define the integral

∫
X fdµ by∫
X
fdµ =

∫
X
fdµ1 −

∫
X
fdµ2 . (25)

We get a continuous linear functional L on C0(X) from

L(f) =
∫
X
fdµ. (3.16)

The Hahn-Saks Theorem then gives us the existence of uniquely determined positive Borel measures
µ+ and µ− that are mutually singular – i.e., supported on disjoint sets – and such that

µ(E) = µ+(E)− µ−(E) (3.17)

for all Borel sets E in X.

3.9 DEFINITION. For any signed measure µ, the positve measure |µ| given by

|µ| = µ+ + µ−

is called the total variation measure of µ, and and the number

‖µ‖TV = µ+(X) + µ−(X)

is called the total variation norm of µ.

It is easy to see from our analysis above that

‖µ‖TV = sup
{∫

X
fdµ

∣∣∣∣ f ∈ C0(X) , −1 ≤ f ≤ 1
}
, (3.18)

and from this the Minkowski inequality is easily seen to hold, so that ‖ · ‖TV is actually a norm, as
the name indicates, and in fact, ‖ · ‖TV = ‖ · ‖M. We will use these notations interchangably.
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We know that the dual of a Banach space is complete in the dual norm, and so M(X) is
complete in the total variation norm. Moreover C0(X) andM(X) are a dual pair of Banach spaces
with the bilnear form 〈g, µ〉 defined on C0(X)×M(X) by

〈g, µ〉 =
∫
X
gdµ .

The fact that ‖µ‖M = sup{ 〈g, µ〉 : ‖g‖∞ ≤ 1 } is true by definition, and then the fact that
‖µ‖M = ‖µ‖TV is given by (3.18).

To see that
‖g‖∞ = sup{ 〈g, µ〉 : ‖µ‖M ≤ 1 } ,

observe that there is an x0 ∈ X so that |g(x0)| = ‖g‖∞. Let µ0 be the signed Borel measure defined
by

µ0(E) =

{
sgn(g(x0) if x0 ∈ E
0 if x0 ∈ Ec

Then
‖g‖∞ =

∫
X
gdµ0

and ‖µ0‖M = 1. Hence C0(X) and M(X) are in fact a dual pair of Banach spaces.
However, it is not in general the case that C0(X) is the dual of M(X). For example, let E be

any Borel set such that 1E is not continuous – this is the usual case.
Define a linear functional on M by

Λ(µ) = µ(E) =
∫
X

1Edµ .

Clealry Λ is linear and
|Λ(E)| ≤ |µ|(E) ≤ |µ|(X) = ‖µ‖M ,

so Λ is indeed bounded, and so is an element of (M(X))∗. But if there were a function g ∈ C0(X)
for which

Λ(µ) =
∫
X
gdµ ,

we would have ∫
X

(1E − g)dµ = 0

But this is impossible since g cannot equal 0 or 1 everywhere – no continuous function can. Taking
µ to be the Borel measure that is a unit mass concentrated at some point x where 0 < g(x) < 1,
we get a contradition.

This is very similar to the situation we encountered with the dual pair (L1, L∞), and this
similalirty is worth exploring further.

Let λ be a fixed positive Borel measure measure on X. We say that a signed measure µ in M
is absolutely continuous with respect to λ in case |µ| is absolutely continuous with respect to λ in
the sense already defined for positive measures. Evidently, this amounts to the requirement that
both µ+ and µ− are absolutely continuous with respect to λ.
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Clearly the subset of M consisting of signed measures that are absolutely continuous with
respect to λ is a subspace. Using the Radon-Nikodymn Theorem, we can identify this subspace
with L1(X,B, λ) as follows. Given f ∈ L1(X,B, λ), define a signed measure µf by

µf (E) =
∫
X

1Efdλ

for all Borel sets E. Evidently µf+ and µf− are mutually singular and µf = µf+ − µf− . It follows
that

|µf | = µf+ + µf−

and that

‖µf‖M = µf+(X) + µf−(X)

=
∫
X

(f+ + f−)dλ

= ‖f‖L1(X,B,λ) .

The mapping
f 7→ µf

from L1(X,B, λ) to M is clearly linear, and by the above, it is an isometry: a norm preserving,
and hence distance preserving, map. The Radon–Nikodymn Theorem says that a signed measure
µ is in the image of this map if and only if it is absolutely continuous with respect to λ.

Although this subspace is an isometric copy of L1(X,B, λ), it is not a a closed subspace in the
weak C0(X) toplogy onM(X). For example, let X = [0, 1], and let λ denote Lebesgue measure on
X. For each positive integer n, define the function fn in L1(X,B, λ) by

fn(x) =

{
n if 0 ≤ x ≤ 1/n

0 if 1/n < x ≤ 1 .

This sequence is not a Cauchy sequence in L1(X,B, λ), and therefore it is not convergent. Indeed,
an easy computation shows that for n > m,

‖fn − fm‖L1(X,B,λ) = m

(
1
m
− 1
n

)
+ (n−m)

1
n
.

Evidently then,
lim
n→∞

‖fn − fm‖L1(X,B,λ) = 1

for all n, so this sequence if far from being a Cauchy sequence. Becasue the map f 7→ µf is an
isometry,

lim
n→∞

‖µfn − µfm‖M = 1

and the sequence {µfn} is not Cauchy, and hence not convergent, in M(X).
However, let δ0 be the Borel measure on X defined by

δ0(E) =

{
1 if 0 ∈ E
0 if 0 ∈ Ec

.
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It is clear that for all g ∈ C0(X),

lim
n→∞

∫
X
gfndλ = g(0) =

∫
X
gdδ0 .

This means that in the weak C0(X) toplogy on M(X),

lim
n→∞

µfn = δ0 .

This example shows that the weak C0(X) toplogy onM(X) is the “right” topology for working
with the intuition that in some sense we must have limn→∞ µfn = δ0 since the measures µfn are
concentrating ever more tightly around x = 0. In this topolgy, the statement limn→∞ µfn = δ0
is true; in the norm topology it is not. Also, you see that while {fn} is “trying to converge to
something”, that “something” is just not in L1(X,B, λ), so this would be the wrong space in which
to look for the limit. The right space is M(X), and the right topology is the weak C0(X) toplogy.
This toplogy is quite frequently used, and so there are briefer terms of refeence for it:

3.10 DEFINITION. The weak C0(X) toplogy onM(X) is called the vauge topology or the weak–∗
toplogy.

The term “vauge topology” sounds perjorative, which is unfortunate since for many questions, as
explained above, this is the “right” toplogy. What people had in mind was this: Since C0(X) is only
a subset of the dual of M(X), the weak C0(X) topology is weaker than what would usually called
the “weak topology”, namely the (M(X))∗ weak topology on M(X). The term “vague”, meaning
“wave” in French, is meant to indicate “weaker than weak”. However, (M(X))∗ is not a nice
Banach space, and the (M(X))∗ weak topology on M(X) is essentially useless, so a comparisson
with it is not very meaningful.

We close this section with a nice characterization of weak convergence in C0(X). Recal, that
since no other space is specifoied, this means the M(X) weak convergence. Theroem 4 (Weak

Convergence in C0(X) and Pointwise Convergence) A sequence of functions {fn} in C0(X)
converges weakly if and only

sup
n
{‖fn‖∞} <∞

and
lim
n→∞

fn(x) = f(x)

for all x ∈ X.
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Proof: Suppose that {fn} converges weakly to f in C0(X). Let µ be the point mass at x. Then

f(x) =
∫
X
fdµ = lim

n→∞

∫
X
fndµ = lim

n→∞
fn(x) .

Moreover, the uniform boundedness principle implies that if {fn} converges weakly to f in C0(X),
then supn{‖fn‖∞} <∞.

On the other hand, if limn→∞ fn(x) = f(x) for all x ∈ X, and if |fn(x)| ≤ C ≤ ∞ for all n and
x, then

lim
n→∞

∫
X
|fn − f |d|µ| = 0

for any finite Borel measure µ by dominated convergence since 2C is in L1(X,B, |µ|).


