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1 Introduction

What is it that one analyzes in real analysis? Very often it is some function defined on an infinite
dimensional vector space with values in another vector space – possibly simply R, or possibly also
infinite dimensional. Real or complex valued functions on a vector space that itself consists of
functions (on some other space) are often called functionals, and functional analysis is a significant
part of real analysis.

The basic strategy in real analysis is approximation. In particular, one often tries to approximate
“general” elements of some infinite dimensional vector space by “nice” elements from some well
understood vector space, possibly even finite dimensional.

For example, consider the vector space C([0, 1]) consisting of continuous real valued functions
on [0, 1]. The Weirstrass Approximation Theorem says that for any f ∈ C([0, 1]), and any ε > 0,
there is a polynomial p such that

sup
0≤t≤1

|f(t)− p(t)| ≤ ε .

1 c© 2009 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.
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The quantity sup0≤t≤1 |f(t) − p(t)| is a measure of the distance between f and p in C([0, 1]).
That is, the function duniform on C([0, 1])× C([0, 1]) defined by

duniform(f, g) = sup
0≤t≤1

|f(t)− g(t)|

is a metric on C([0, 1]), and equipped with this metric, C([0, 1]) is a metric space.
According to the Wierstrass Approximation Theorem, given any f ∈ C([0, 1]), for each n ∈ N,

we can find a polynomial pn such that duniform(f, pn) ≤ 1/n, so that

lim
n→∞

duniform(f, pn) = 0 ,

which we express by writing
f = lim

n→∞
pn ,

or by saying that the sequence {pn}n∈N converges (uniformly) to f .
Many of the central questions in real analysis have to do with convergence questions, and

especially continuity and compactness.
In a metric space setting, the continuity question is essentialy this: Suppose (X, dX) and (Y, dY )

are two metric spaces, and φ : X → Y is a function form X to Y . Suppose that {xn}n∈N is a
convergent sequence in X. That is, there is an x ∈ X such that

lim
n→∞

xn = x ,

with respect to the metric dX . Does it then follow that limn→∞ φ(xn) = φ(x)? If so, one would
say that φ is continuous.

Also in a metric space setting, the compactness question is essentially this: Given a metric
space (X, dX) and an infinite sequence {xn}n∈N, can one always find a subsequence {xnk}k∈N that
converges to some x ∈ X? If so, then X is compact.

As we shall see, these two notions – continuity and compactness – provide the key to the
analysis of may problems in real analysis, especialy when combined with other basic notions such
as convexity, countability, completeness, monotonicity, duality and separability, about which we
shall have more to say later in the course.

For now, let us focus on continuity and compactness. While most often we will be working with
the notions in a metric space setting, this is not always possible, and it is not always convenient
even when it is possible. It is advantageous to develop these notions in a more general setting, that
of topological spaces. By way of introduction to this, let us briefly review the notion of continuity
in the metric space setting, and then proceed with the generalization.

2 Continuity in metric spaces

A function f from X to Y is continuous if a sufficiently small change in the input results in a small
change in the output. Here is the precise version of this in the metric space setting:
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2.1 DEFINITION (Continuous functions from one metric space to another). Let (X, dX) and
(Y, dY ) be two metric spaces. Let f be a function from X to Y . Then f is continuous at x0 ∈ X
in case for every ε > 0, there is a δε > 0 such that

dX(x, x0) < δε ⇒ dY (f(x), f(x0)) < ε . (2.1)

The function f is continuous in case it is continuous at each x0 ∈ X.

2.2 THEOREM (Continuity and sequences). Let (X, dX) and (Y, dY ) be two metric spaces. Let
f be a function from X to Y . Then f is continuous at x0 ∈ X if and only if for every sequence
{xk} in X

lim
k→∞

xk = x0 ⇒ lim
k→∞

f(xk) = f(x0) . (2.2)

Proof: Suppose that f is continuous, and that limk→∞ xk = x0. Pick any ε > 0. Choose N so
large that for all k > N , d(x, x0) < δε. Then, for all k > N , d(f(x), f(x0)) < ε. Since ε is arbitrary,
this shows that limk→∞ f(xk) = f(x0).

Next suppose that f is not continuous at x0. Then there exists some ε > 0 so that for every
δ > 0, there is at least one point x satisfying dX(x, x0) < δ such that dY (f(x), f(x0)) > ε.
Define a sequence {xk} as follows: For each k, choose xk so that dX(xk, x0) < 1/k such that
dY (f(xk), f(x0)) > ε. Then limk→∞ dX(xk, x0) = 0, but it is not the case that limk→∞ f(xk) =
f(x0). Thus, when f is not continuous at x0, (2.2) does not hold true. Hence, whenever (2.2) does
hold true, it must be the case that f is continuous at x0.

There is another characterization of continuity involving the notion of open sets, which we now
define:

2.3 DEFINITION (Open sets in metric spaces). Let X be a metric space with metric d. Given
a number r > 0, and a point x ∈ X, let Br(x) be defined by

Br(x) = { y ∈ X : d(y, x) < r } .

This set is called the open ball of radius r about x.
A subset U of X is open in case either:

(1) It is the empty set ∅, or else

(2) For each x ∈ U , there is an r > 0, depending on x, such that

Br(x) ⊂ U .

It is possible, and as we shall see, useful to characterize the (global) continuity of functions
between two metric spaces simply in terms of open sets, without explicit reference to the the
specific metrics themselves.

2.4 THEOREM (Continuity and open sets). Let X and Y be metric spaces with metrics dX and
dY resepctively. Let f be a function from X to Y . Then f is continuous if and only if for every
open set U in Y , f−1(U) is open in X.
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Proof: Suppose that f is continuous, and let U be an open set in Y . If f−1(U) = ∅, then f−1(U)
is open by (1). Otherwise, if f−1(U) 6= ∅, consider any x ∈ f−1(U). Then f(x) ∈ U , and since U
is open, there exists a ε > 0 such that Bε(f(x)) ⊂ U . Then, since f is continuous at x0, there is a
δ > 0 so that

dX(x̃, x) < δ ⇒ dY (f(x̃), f(x)) < ε .

Hence
f(Bδ(x)) ⊂ Bε(f(x)) ⊂ U .

But this means that
Bδ(x) ⊂ f−1(U) .

Since x was any point in f−1(U), we have shown that f−1(U) constains an open ball about each
of its members, and hence is open.

Conversely, suppose that f has the property that whenever U is open in Y , f−1(U) is open in
X. Fix any x ∈ X and any ε > 0. f−1(Bε(f(x))) is open and contains x. Therefore, there is some
δε > 0 such that

Bδε(x) ⊂ f−1(Bε(f(x))) .

But then
f(Bδε(x)) ⊂ Bε(f(x)) ,

which is just another way to write (2.1). Since ε is arbitrary, f is continuous at x. Since x is
arbitrary, f is continuous.

3 Topological spaces

Since we can characterize continuous functions in terms of open sets, without explicitly mentioning
a metric at all, it is sometimes useful to “strip away” the metric structure, and just talk about the
open sets.

3.1 DEFINITION (Topological Spaces). Let X be any set, and let O be any collection of sets
in X satisfying:

(1) The empty set ∅ belongs to O, as does X itself.

(2) The union over any arbitray set of sets in O belongs to O.

(3) The union over any finite set of sets in O belongs to O.

In this case, O is said to be a topology on X, and the sets belonging to O are called em open
sets in X (for the topology in question). A subset A of X is closed in case its complement, Ac is
open.

The pair (X,O) is said to be a topological space. Finally, if O1 and O2 are two topologies on X
such that O1 ⊂ O2, then O1 is weaker than O2, or, put differently, O2 is stronger than O1

Note that by De Morgan’s laws, the intersection of any arbitrary set of closed sets in X is itself
closed.

The next definitions introduces some more useful terminology
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3.2 DEFINITION (Interior, closure and neighborhoods). Let (X,O) be a topological space, and
A a subset of X.The interior of A, Ao, is the union of all of the open sets contained in A. The
closure of A, A, is the intersection of all of the closed sets containing A. Finally for any x ∈ X,
the set Nx of em neighborhoods of x consists of all sets B such that x ∈ Bo.

3.3 DEFINITION (Hausdorff, normal). A topological space (X,O) is called Hausdorff if for any
two distinct elements x, y ∈ X, there are disjoint open sets sets U and V with x ∈ U and y ∈ V .

It is called normal if for each x ∈ X, the singleton {x} is closed, and moreover, for any two
disjoint closed sets A and B, there are disjoint open sets U and V with A ⊂ U and B ⊂ V .

It is easy to see, and left as an exercise, to see that if X is any metric space, and O is the
collection of all open sets in X, as defined above in terms of open balls, O does indeed constitute a
topology on X. Thus by Theorem 2.4, the definition of continuity that we make next is consistent
with our existing notion of continuity in the metric space setting.

3.4 DEFINITION (Continuous functions between topological spaces). Let (X,OX) and (Y,OY )
be two topological spaces. A function f from X to Y is continuous at x ∈ X in case for every
neighborhood V of f(x), there is a neighborhood U of x such that f(U) ⊂ V .

A function f from X to Y is continuous whenver U is open in Y , f−1(U) is open in X.

It is easy to see that f : X → Y is continuous if and only if it is continuous at each x ∈ X.
We are almost ready to get back to proving theorems. The next theorem we prove concerns one

of our core issues: approximation. Given a topological space (X,OX), and a subset A of X, what
does it mean to “approximate” x ∈ X\A by elements of A? We shall take it to mean that every
neighborhood U of x contains points in A:

3.5 DEFINITION (Limit points in a topological space). Let (X,OX) be a topological space. If
A is any set in X, a point x ∈ X is a limit point of X in case every for every open set U that
contains x,

A ∩ U 6= ∅ .

Note that if (X,OX) is Hausdorff, and x is a limit point of A ⊂ X, with x /∈ A, then not
only is A ∩ U non-empty for every neighborhood U of x: A ∩ U must contain infinitely many
points. To see this, suppose y ∈ A ∩ U . Let Vx and Vy be disjoint open sets containing x and y

respectively. Then Vx∩U is another neighborhood of x, contained in U , so A∩ (Vx∩U) 6= ∅. Since
A ∩ (Vx ∩ U) ⊂ A ∩ U , and is missing at least y. Repeating this procedure, it is clear that we can
repeatedly remove elements from A∩U without ever emptying it, and so it must contain infinitely
many points.

We must be careful to distinguish this notion of limit point of a set from the limit of a sequence.
In particular: Let {xk} be a sequence of elements of X. Then we say that {xk} is convergent to
x in case every open set U continaing x also contains all but finitely many terms in the sequence
{xk}. (Of course, a sequence {xn}n∈N is a function from N to X, though it is common practice to
identify the sequence with its range, which is a subset of X. So “limits” in the context of sequences,
and “limit points” of sets in topological spaces are quite distinct notions.)

Note that in a Hausdorff space, a sequence can have at most one limit, but (identified with its
range, and considered as a set) it may have more than one limit point, since x is a limit point of
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{xn}n∈N if and only if every open set U continaing x also infinitely many terms in the sequence
{xk}, while limn→∞ xn = x if and only if every neighborhood U of x contains all but finitely many
terms in the sequence. Notice the important difference between “infinitely many” and “all but
finitely many”!

In a metric space, there is of course a characterization of limit points in terms of sequences;
x is a limit point of A if and only if there is a sequence {xn}n∈N of elements in A such that
limn→∞ xkn = x.

We are now ready for the theorem that justifies the terminology “closed”:

3.6 THEOREM (Closed sets and limit points). Let (X,O) be any topological space. A subset A
of X is closed if and only if A contains all of its limit points.

Proof: Suppose that A is closed, and x ∈ Ac. Since Ac is open, there is an open set U containing x
that has an empty intersection with A. Thus, x is not a limit point of A. Since x was an arbitrary
point outside A, A must contain all of its limit points.

On the other hand, suppose that A contains all of its limit points. We must show that A is
closed, or, what is the same thing, that Ac is open. Consider any point x ∈ Ac. Since it is not a
limit point of x, there is an open set Ux containing x that has empty intersection with A. For each
x ∈ Ac, chose such a Ux. But then, since Ux contains x,

Ac ⊂
⋃
x∈Ac

Ux

On the other hand, since each Ux ⊂ Ac, ⋃
x∈Ac

Ux ⊂ Ac

Thus, A =
⋃
x∈Ac

Ux, and by (2) in the definition of topological spaces,
⋃
x∈Ac

Ux is open.

We close this section with one more definition:

3.7 DEFINITION (Density). Let (X,O) be a toplogical space. Let A ⊂ B ⊂ X. Then A is
dense in B in case the closure of A contains B.

By Theorem 3.6, A is dense in B if and only if every point in B is a limit point in A; i.e, if
every point in B can be approximated arbitrarily well by points in A.

4 Compactness

4.1 DEFINITION (Compact Sets). Let (X,OX) be a topological space. A subset K is called
compact in X in case for every collection U of open sets that covers K; i.e.,

K ⊂
⋂
u∈U

U ,

there is a finite subset G of U that also covers K:

K ⊂
⋂
u∈G

U .

G is called a finite subcover of A.
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Our first example of a theorem involving compactness is the classical result known as Dini’s
Theorem. In proving this, we shall make use of the following fact: If U is any set of open subsets
of X, then by De Morgan’s laws, (⋃

U∈U
U

)c
=

n⋂
U∈U

U c ,

Thus U is an open cover if and only if { U c : U ∈ U } is a set of closed subsets of X with empty
intersection.

Therefore, X is compact if and only if whenever K is a set of closed subsets of X such that⋂
K∈K

K = ∅ ,

there is a finite subset {K1, . . . ,Kn} ⊂ K such that

n⋂
j=1

Kj = ∅ .

This analysis is often summarized by saying that X is compact if and only if X has the “finite
intersection property”.

4.2 THEOREM (Dini’s Theorem). Let X be a compact space, and let {fn}n∈N be a sequence of
real valued functions on X, and suppose that there is a continuous real valued function f on X

such that for each x ∈ X, the sequence {fn(x)}n∈N is monotone non-decreasing,

lim
n→∞

fn(x) = f(x) .

Then
lim
n→∞

fn = f

uniformly.

In other words, pointwise convergence, together with compactness and montonicity, imply uni-
form convergence. Also note that replacing each fn by−fn, one converts a monotone non-decreasing
sequence into a montone non-increasing sequence, and so the theorem remains true if one replaces
“monotone non-decreasing” by “monotone non-increasing”.
Proof: Fix ε > 0. Define the sets K`, ` ∈ N, by

K` := { x ∈ X : f(x)− f`(x) ≥ ε } = { x ∈ X : |f(x)− f`(x)| ≥ ε } .

Since f and f` are continuous, K` is closed. Also, since for each x, lim`→∞ f`(x) = f(x),

∞⋂
k=1

K` = ∅.

Then, by the compactness of X, there is some n ∈ N such that

n⋂
`=1

K` = ∅.
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Hence, for all ` > n, and all x, |f`(x) − f(x)| < ε. Since ε > 0 is arbitrary, this shows that
{fn(x)}n∈N converges uniformly to f .

Next, we turn to one of the main theorems on compactness.

4.3 THEOREM (Compactness, Continuity, and Minima). Let (X,O) be any topological space,
and let K be a compact subset of X. Let f be a functions from X to R that is continuous when R
is equipped with its usual metric topology. Then there exosts and x ∈ K so that

f(x) ≥ f(y) for all y ∈ K . (4.1)

Proof: Consider the open sets (−n, n) in R, since f is continuous,

U = { f−1((−n,∞)) : n ∈ N }

is an open cover of X, and hence K. Since K is compact, there exists an open subcover. But for
n > m, f−1((−m,∞)) ⊂ f−1((−n,∞)), so there is an n with K ⊂ f−1((−n,∞)). In particular, f
is bounded from below on K.

Now let a be the greatest lower bound of the numbers f(y) for y ∈ K. We claim that there
exists an x ∈ K with f(x) = a. If so, then plainly (4.1) is true.

To prove this, let us suppose that there is no such x. Then

U = { f−1((a+ 1/n,∞)) : n ∈ N }

is an open cover of K. This means that there is a finite subcover, and again, since the sets in the
open cover are nested, a single one of them, say f−1((a+ 1/n,∞)), covers K. But this would mean
that f(y) ≥ a+ 1/n for each y in k, which is not possible since a is the greatest lower bound.

Any point x for which (4.1) is true is called a maximizer of f on X. Likewise, any point x for
which

f(x) ≤ f(y) for all y ∈ K . (4.2)

is called a minimizer of f on X.
There are several important things to notice from this proof. First, if f is continuous, so is

−f , and a minimizer of −f is a maximizer of f . Hence the theorem implies the existence of both
minimizers and maximizers for continuous functions on compact sets.

Now suppose we have a real valued function f defined on a sets K, and we want to know if
f has a minimizer in K. If we can find a toplogy on K that makes f continuous, and makes K
compact, then we can apply the previous theorem.

However, the demands of continuity and compactness pull in opposite directions when we look
for our topology: The topology has to have sufficiently many open sets in it for f to be continuous,
since we need f−1(U) to be open for every open set U in R. On the other hand, the more open
sets we include in our topology, the more open covers we have to worry about when showing that
every open cover has a finite subcover.

Very often, one is stuck between a rock and a hard place, and there is no topology that both
makes f continuous, and K compact. Indeed, there are many very nice functions f – such as the
exponential function of R – that simply do not have minimizers or maximizers. While R is compact
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under the trivial topology O = {∅,R}, and while the exponential function is continuous under the
usual metric topology on R, the fact that the exponential function does not have either a maximizer
or a minimizer.

A situation that is frequently encountered in applications is that a function f on X does have,
say, a minimizer, but not a maximizer. Also in this situation, it is impossible to find a topology for
which f is continuous and X is compact, since them both minima and maxima would exist.

However, if we are just looking for minima, it is worth noticing that in our proof of Theorem 4.3,
we did not use the full strength of the continuity hypothesis. The same proof yields the same
conclusion if we assume only the property that f−1((t,∞)) is open for each t in R.

4.4 DEFINITION (Upper and lower semicontinuous function). Let (X,OX) be a topological
space. A function f from X to R is called lower semicintinuous in case for all t in R, f−1((t,∞))
is open. It is called upper semicintinuous in case for all t in R, f−1((−∞, t)) is open.

Thus, we can prove existence of minimizers for f on X by finding a topology that makes f lower
semicontinuous, and K compact. This turns out to be a very useful strategy, as we shall see.

Still, to use either Theorem 4.2 or Theorem 4.3, we need criteria for compactness. How can we
tell if a set X is compact? In metric spaces, we can reduce this to a question about sequences.

4.5 DEFINITION (Sequential compactness). A topological space (X,O) is sequentially compact
in case every sequence {xn}n∈N has a convergent subsequence {xnk}k∈N.

4.6 THEOREM (Compactness and subsequences in a Metric space). Let (X, d) be any metric
space, and let K be any subset of X. Then K is compact if and only if every infinite sequence {xk}
of elements of K has an infinite subsequence {xkn} that converges to some x in K.

In other words, a metric space is compact if and only if it is sequentially compact. In the
broader setting of topological spaces, there is no relation between compactness and sequential
compactness. There are topological spaces that are compact, but not sequentially compact, and
there are sequentially compact spaces that are not compact.

The notion of compactness as we have defined it in terms of open covers is a 20th century notion.
In the 19th century, mathematicians thought about compactness issues in terms of sequential
compactness.

It is important to note that this thoerem is not true in the general setting of topological spaces; it
is important that the topology be a metric topology. Likewise, in the general topological setting, it
is not true that a function f is continuous if and only if it takes convergent sequences to convergent
sequences.

The close connection between sequences and continuity and compactness that one has in metric
spaces does not carry over to the more general topological setting at all. Fortunately, almost all of
the topologies that we shall encounter are metric topologies.

Proof of Theorem 4.6: There are four steps to the proof that we give.

Step 1: K is bounded: We first show that K is bonded, which means that

sup
x,y∈K

d(x, y) <∞ .



CL January 22, 2009 10

This supremum is called the diameter of K.
To see that the diameter is finite, suppose that it is not. Under this hypothesis, we construct a

sequence {xn}n∈N as follows. First, fix any x ∈ X. Now for each n ∈ N , choose some xn ∈ K\Bn(x).
The set K\Bn(x) is not empty when the diameter of K is infinite.

Then, by hypothesis, there is a subsequence {xnk}k∈N and some y ∈ K such that

lim
k→∞

xnk = y . (4.3)

Then by the triangle inequality, we would have

d(x, xnk) ≤ d(x, y) + d(y, xnk) .

But this cannot be: By construction, d(x, xnk) > nk, while d(x, y) is some fixed, finite number,
and for all sufficiently large k, d(y, xnk) ≤ 1, by (4.3). This contradiction shows that K must be
bounded.

Step 2: K contains a dense sequence: We next show that there is a sequence {xn}n∈N that is dense
in K; i.e., that for every ε > 0, and every x ∈ K, there is some n such that d(xn, x) < ε.

In other words, the sequence {xn}n∈N passes arbitrarily close to every point in K. Here is how
to construct it:

Pick the first term x1 arbitrarily. We then define the rest of the sequence recursively as follows:
Suppose that {x1, . . . , xk} have been chosen. For each y ∈ K, define

dk(y) := min
1≤j≤k

{d(y, xj)} .

This is, by definition, the distance from y to the set {x1, . . . , xk} ⊂ K, and of course, this is no
greater than the diameter of K, which is finite by the first step.

Therefore, dk, defined by
dk := sup

y∈K
dk(y)

is no greater than the diameter of K.
Armed with this knowledge, we are ready to choose xk+1: We choose xk+1 to be any element

of K with
dk(xk+1) ≥ 1

2
dk .

We now claim that limk→∞ dk = 0. It should be clear that {xn}n∈N is dense if and only if this
is the case. So, to complete Step 2, we need to prove that limk→∞ dk = 0.

Towards this end, the first thing to observe is that {dk}k∈N is a monotone decreasing sequence,
bounded below by zero: Indeed, for any sets A ⊂ B ⊂ K, the distance from y to B is no greater
than the distance from y to A. Therefore, we only have to show that some subsequence of {dk}k∈N
converges to zero.

To do this, let {xkn}n∈N be a convergent subsequence of {xk}k∈N, and let y be the limit; i.e.,

lim
n→∞

xkn = y .

Then of course since by the triangle inequality

d(xkn , xkn+1) ≤ d(xkn , y) + d(y, xkn+1) ,
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and since
lim
n→∞

d(xkn , y) = lim
n→∞

d(y, xkn+1) = 0 ,

we have
lim
n→∞

d(xkn , xkn+1) .

But since
xkn ∈ {x1, . . . , xkn+1−1} ,

d(xkn , xkn+1) ≥ dkn+1−1(xkn+1) ≥ 1
2
dkn+1−1 .

Therefore,
lim
n→∞

dkn+1−1 = 0 ,

and then, since the entire sequence is monotone decreasing, limk→∞ dk = 0. Hence, the sequence
we have constructed is dense.

Step 3: Given any open cover of K, there exists a countable subcover. To prove this, consider any
open cover G of K. Consider the set of open balls Br(xk) where r > 0 is rational, and {xk}k∈N
is the dense sequence that we have constructed in Step 2. This set of balls is countable since a
countable union of countable sets is countable.

The countable subcover is constructed as follows: For each rational r > 0 and each k ∈ N,
choose Ur,k to be some open set in G that contains Br(xk) if there is such a set, and otherwise,
do not define Ur,k. Let U be the set of open sets defined in this way; clearly U is countable by
construction.

We now claim that U is an open cover of K. Clearly the sets in U are open.
To see that they cover, pick any x ∈ K. Since G is an open cover of K, x ∈ V for some V ∈ G.

Then, since V is open, for some rational r > 0, B2r(X) ⊂ V .
Then, since {xk}k∈N is dense, there is some k with xk ∈ Br(x). But then x ∈ Br(xk) and

Br(xk) ⊂ B2r(x) ⊂ V ,

(where the first containment holds by the triangle inequality). This shows that for the pair (r, k),
there is some V ∈ G containing Br(xk). Therefore, by construction, Ur,k ∈ U contains Br(xk), and
hence x ∈ Ur,k. Since x is an arbitrary element of K, U covers K.

Step 4: Some finite subcover of the countable cover is a cover. Now order the sets in our countable
cover U into a sequence of open sets {Uk}k∈N that covers K.

Suppose that for each n, it is not the case that

K ⊂
n⋃
k=1

Uk . (4.4)

Then we can construct a sequence {xn}n∈N be choosing

xn ∈ K\

(
n⋃
k=1

Uk

)
.

Let {xnj}j∈N be a convergent subsequence with limj→∞ xnj = y ∈ K. Then, since U is an open
cover of K, there is some Uk with y ∈ Uk. But then all but finitely many terms of the sequence
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{xnj}j∈N lie in Uk, and so the whole sequence lies in some finite union of the sets in U . This is a
contradiction, and so (4.4) is true for some n ∈ N.

In the next two sections, we shall prove two powerful theorems on approximation and compact-
ness in an infinite dimensional vector space, C(X,R), the space of real valued continuous functions
on a compact Hausdorff space X, equipped with the uniform metric

d(f, g) = sup
x∈X
{|f(x)− g(x)|} .

Note that by Theorem 4.3 and the fact that X is compact, there exists an x0 ∈ X such that

|f(x0)− g(x0)| = sup
x∈X
{|f(x)− g(x)|} .

It is then very easy to see that d is indeed a metric on C(X,R).

5 The Arzelà-Ascoli Theorem

Let X be a compact topological space, and consider the metric space, and hence topological space,
consisting of C(X,R) equipped with the uniform metric.

5.1 DEFINITION (Equicontinuous, pointwise bounded). Let F ⊂ C(X,R). Then F is equicon-
tinuous in case for each ε > 0 and each x ∈ X, there is a neighborhood Uε of x such that

y ∈ Uε ⇒ |f(y)− f(x)| < ε .

Also, F is pointwise bounded in case for each x ∈ X, {f(x) : f ∈ F } is a bounded subset of R.

The first thing to observe is that if F is a compact subset of C(X,R), then F is both equicon-
tinuous and pointwise bounded.

Indeed, suppose that F is compact. To show that F is pointwise bounded, fix x ∈ X, and for
each f ∈ F , define the set

Uf = {g ∈ F : |g(x)− f(x)| < 1 } .

Since the function g 7→ |g(x) − f(x)| is evidently continuous on C(X,R), Uf is open. Since Uf
clearly contains f , we have

F =
⋃
f∈F

Uf .

Since F is compact, there exists a finite subcover; i.e, there exists a set {f1, . . . , fn} in F such that

F =
n⋃
j=1

Ufj .

But then

{f(x) : f ∈ F } ⊂
n⋃
j=1

(fj(x)− 1, fj(x) + 1) .

which is clearly a bounded subset of R.
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To show that F is equicontinuous, fix ε > 0. For each f ∈ F , define Vf by

Vf = { g ∈ F : d(g, f) < ε/4 } .

Clealry, each Vf is open, and ⋃
f∈F

Vf = F .

Hence there exists a finite set {f1, . . . , fn} ⊂ F such that

n⋃
j=1

Vfj = F .

Next, for each x ∈ X, define Ux ⊂ X by

Ux =
n⋂
j=1

{ y ∈ X : |fj(y)− fj(x)| < ε/4} .

Evidently, Ux is a finite intersection of open sets, and therefore open. Also, x ∈ Ux. Thus⋃
x∈X

Ux = X ,

and then since X is compact, there is a finite set {x1, . . . , xm} ⊂ X such that

m⋃
k=1

Uxk = X .

Now, fix any x ∈ X. By the above, x ∈ Uxk for some k ∈ {1, . . . ,m}. For any f ∈ F , there is
some j ∈ {1, . . . , n} such that d(f, fj) < ε/4. But then for any y ∈ Uxk ,

|f(y)− f(x)| ≤ |f(y)− fj(y)|+ |fj(y)− fj(x)|+ |fj(x)− f(x)|

≤ ε

4
+ |fj(y)− fj(x)|+ ε

4
(5.1)

where the first inequality is the triangle inequality, the second uses the fact that d(f, fj) < ε/4.
Then, once more by the triangle inequality, and then the definition of Uxk ,

|fj(y)− fj(x)| ≤ |fj(y)− fj(xk)|+ |fj(xk)− fj(x)| ≤ ε

4
.

Altogether, we have |f(x) − f(y)| < ε whenever y ∈ Uxk , and f ∈ F , so that Uxk is the required
neighborhood of x. Hence, F is equicontinuous.

Thus, a necessary condition for F to be compact in C(X,R) is that F be equicontinuous and
pointwise bounded. The Arzelà-Ascoli Theorem says that these conditions are essentially sufficient
as well:

5.2 THEOREM (Arzelà-Ascoli). Let X be a compact topological space space, and let F be an
equicontinuous and pointwise bounded subset of C(X,R). Then the closure of F is compact.
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Proof: The first thing to observe is that if F be an equicontinuous and pointwise bounded, then so
is the closure of F . Hence, let us assume that F is closed as well as equicontinuous and pointwise
bounded. We shall then show that F is compact.

By Theorem 4.6, it suffices to show that for any infinite sequence {f`}`∈N in F , there is a
convergent subsequence. Therefore, fix any infinite sequence {f`}`∈N in F .

Now, for each n ∈ N, use the compactnes of X and the equicontinuity of F to select a finite set
of points {x1, . . . , xm} so that

X =
m⋃
i=1

{ y ∈ X : |f(y)− f(xi)| < 1/n for all f ∈ F } .

Since for each i, the set {f(xi) : f ∈ F } is a bounded subset of R, we can choose a subsequence
of {f`}`∈N along which f`k(xi) converges for each i.

Since convergent sequences are Cauchy, it follows that for all j, k large enough,

|f`j (xi)− f`k(xi)| ≤
1
n
.

But then since each x ∈ X belongs to { y ∈ X : |f(y)− f(xi)| < 1/n for all f ∈ F } for some i,
we have (for this i),

|f`j (x)− f`k(x)| ≤ |f`j (x)− f`k(xi)|+ |f`j (xi)− f`k(xi)|+ |f`j (xi)− f`k(x)| ≤ 3
n
.

Now by Cantor’s diagonal argument, we construct a Cauchy subsequence, and then by the
completeness of C(X,R), this Cauchy sequence converges. Since F is closed, the limit f of this
subsequence belongs to F .

6 The Stone-Wierstrass Theorem

The Stone-Wierstrass Theorem is an approximation theorem that generalizes the classical Wier-
strass Approximation Theorem that we discussed at the beginning of these notes.

We begin with two definitions. Let X be a compact topological space, and let C(X,R) be the
space of continuous real valued functions on X equipped with the uniform metric. A subset A
of C(X,R) is an algebra in case A is a vector subspace over R of C(X,R) equipped with its usual
rules of addition and scalar multiplication, and if, moreover, for every f and g in A, the pointwise
product fg also belongs to A.

A subset A of C(X,R) is separating in case for pair of distinct points x, y in X, there is an
f ∈ A such that f(x) 6= f(y).

Notice that if X is not Hausdorff, not even C(X,R) the space of all continuous real valued
functions on X is separating. Indeed, if X is not Hausdorff, there exist two distinct points x and
y in X such that every neighborhood U of x contains y. But then for any continuous function f ,
f(x) = f(y). Indeed, if |f(x)− f(y)| := r > 0, then f−1((f(x)− r.2, f(x) + r/2)) would be an open
neighborhood of x that excluded y. Thus, for all continuous f , f(x) = f(y), so not even C(X,R)
separates, let alone any proper subset of C(X,R). Hence throughout this section, we shall only be
concerned with Hausdorff topological spaces.
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The primary example of a separating algebra to keep in mind is X = [0, 1], with A being the
algebra of all polynomials in the real variable x ∈ [0, 1]. To see that this algebra is separating,
consider the polynomial p(x) = x. Then for x0 6= x1 in X, p(x0) 6= p(x1).

6.1 THEOREM (Stone-Wierstrass). Let X be a compact topological space, and let A be a subset
of C(X,R) that is a separating algebra. Let B be the uniform closure of A. Then either B = C(X,R),
or else B consisits of all continuous functions on X that vanish at some fixed point x0. In particular,
if A contains the constant functions, B = C(X,R).

We will prove Theorem 6.1 as a consequence of two lemmas, and shall make use of the partial
order in C(X,R): If f, g ∈ C(X,R), we write f ≤ g in case f(x) ≤ g(x) for all x ∈ X. With this
partial order, C(X,R) is a lattice: Given any f, g ∈ C(X,R) there is a unique function g∧f ∈ C(X,R)
such that g ∧ f ≤ f, g, and such that h ≤ g ∧ f whenever h ≤ f, g. Of course, g ∧ f is defined by

g ∧ f(x) = min{ f(x) , g(x) } ,

which is continuous.
Likewise, given any f, g ∈ C(X,R) there is a unique function g ∨ f ∈ C(X,R) such that f, g ≤

g ∨ f , and such that g ∨ f ≤ h whenever f, g ≤ h. Of course, g ∧ f is defined by

g ∨ f(x) = max{ f(x) , g(x) } ,

which is continuous.
A subset F of C(X,R) is itself a lattice if and only if whenever f, g ∈ F , then both f ∧ g and

f ∨ g belong to F . Then observing that

f ∧ g =
1
2

(f + g − |f − g|) and f ∨ g =
1
2

(f + g + |f − g|) , (6.1)

we see that a subset F of C(X,R) is itself a lattice if and only if whenever f ∈ F , then |f | ∈ F .

6.2 LEMMA (Limit point criterion for lattices in C(X,R)). Let X be a compact Hausdorff space.
Let F ⊂ C(X,R) be a lattice.

If f is any element of C(X,R) with the property that for every x, y ∈ X, there exists a function
fx,y ∈ F for which

fx,y(x) = f(x) and fx,y(y) = f(y) . (6.2)

Then f is a limit point of F ; i.e., it belongs to the closure of F .

Proof: Fix any f ∈ C(X,R) with the property every x, y ∈ X, there exists a function fx,y ∈ F
such that (6.2) is satisfied. Fix any ε > 0. We must show that there exists some g ∈ F with
|g(x)− f(x)| < ε for all x ∈ X.

First, for each (x, y) ∈ X ×X, make some choice of fx,y, and define the open set Ux,y ⊂ X by

Ux,y = { z : fx,y(z) < f(z) + ε } .

Evidently, x, y ∈ Ux,y. Therefore
X =

⋃
x∈X

Ux,y ,
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and then, since X is compact, there exists a finite set {x1, . . . , xn} ⊂ X such that

X =
n⋃
j=1

Uxj ,y .

Now define the function fy by

fy = fx1,y ∧ fx2,y ∧ · · · ∧ fxn,y .

Since F is a lattice, fy ∈ F , and
fy ≤ f + ε

in the lattice order; i.e., everywhere on X.
Furthermore, since fxj ,y(y) = f(y) for each j, fy(y) = f(y). Therefore, defining the open set

Vy by
Vy := { z ∈ X : f(z)− ε < fy(z) } ,

we have y ∈ Vy, and hence
X =

⋃
y∈X

Vy ,

hen, since X is compact, there exists a finite set {y1, . . . , ym} ⊂ X such that

X =
m⋃
k=1

Vyk .

Now define g by
g = fy1 ∨ fy2 ∨ . . . ,∨fym .

Then since F is a lattice, g ∈ F , and by construction,

f − ε ≤ g ≤ f + ε ,

which means that |f(x)− g(x)| < ε for all x ∈ X.

6.3 LEMMA (A closed algebra in C(X,R) is a lattice). Let X be a compact Hausdorff space. Let
B be a closed subset of C(X,R) that is also a subalgebra of C(X,R). Then B is a lattice.

Proof: By the remarks we have made concerning (6.1), it suffices to show that for all f ∈ B,
|f | ∈ B. Since X is compact and f is continuous, f is bounded above and below, and hence there
is a finite positive number c such that |cf | ≤ 1. Then since |cf | = c|f |, we may freely suppose that
f | ≤ 1.

Therefore, fix any f ∈ B with |f | ≤ 1, We shall complete the proof by showing that there exists
a sequence of polynomials {pn}n∈N so that

|f | = lim
n→∞

pn(f2) (6.3)

in the uniform topology. Since B is an algebra, pn(f2) ∈ B for each n, and then since B is closed,
|f | ∈ B.
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For any number a ∈ [0, 1], we define a sequence {bn}n∈N recursively as follows: We set b1 = 0
and then for al n ∈ N,

bn+1 = bn +
a− b2n

2
.

Notice that

b1 = 0 , b2 =
a

2
, b3 = a− a2

8
,

and so forth. It is easy to see by induction that for each n, there is a polynomial pn, independent
of the value of a, so that such that bn = pn(a).

We claim that
√
a = limn→∞ bn. This will give us a sequence of polynomials {pn}n∈N such that

for each a ∈ [0, 1], √
a = lim

n→∞
pn(a) ,

and therefore, such that
|f(x)| = lim

n→∞
pn(f2(x))

for all x in X. Then, since X is compact, Dini’s Theorem implies that (6.3) is true with uniform
convergence.

Hence, we need only verify the claim that
√
a = limn→∞ bn. To do this, note that

√
a− bn+1 =

√
a− bn −

(
√
a− bn)(

√
a+ bn)

2
= (
√
a− bn)

(
1−
√
a+ bn

2

)
.

Since a ≤ 1, as long as bn ≤
√
a, the right hand side is non-negative, and therefore bn+1 ≤

√
a.

Since b1 ≤
√
a, it follows that

√
a is an upper bound for the sequence {bn}n∈N.

Now, knowing that b2n ≤ a for all n, it is clear from the definition that {bn}n∈N is a monotone
non-decreasing sequence. Therefore the limit b = limn→∞ bn exists and satisfies

b = b+
a− b2

2
.

This means that b2 = a, and since b ≥ 0, b =
√
a.

Proof of Theorem 6.1: Fix x 6= y in X, and consider the linear transformation from A to R2

given by
f 7→ (f(x), f(y)) .

The range of this linear transformation is a subspace S of R2.
Since A separates, there can be at most one point x0 ∈ X for which g(x0) = 0 for all g ∈ A.
Let us first assume first that neither x nor y is such a point. Since A is an algebra, and a vector

space in particular, if g is in A so is very multiple of g. By assumption, there is some g ∈ A such
that g(x) 6= 0, and by choosing an appropriate multiple, we may arrange that g(x) = 1.

Thus, S contains a vector of the form (1, a). ( with Since A separates, we can choose g ∈ A so
that a 6= 1.

Now there are two cases to consider. If also a 6= 0, then the two vectors (1, a) and (1, a2) are
linearly independent, and (1, a2) also belongs to S since A is an algebra (so that g2 ∈ A). On the
other hand if a = 0 then S contains the vector (1, 0), and, since there is some other g with g(y) = 1,
there is some b ∈ R such that (b, 1) inS. Hence in this case, S contains the two vectors (1, 0) and
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(b, 1) which are linearly independent. Either way, S = R2, and so we have proved that as long as
g(x) 6= 0 and h(y) ne0 for some g, h ∈ A, then S is all of R2.

This has the consequence that for any f ∈ C(X,R), we can find a function fx,y ∈ A for which

(f(x), f(y)) = (fx,y(x), fx,y(y)) . (6.4)

Now we have two cases once more: Suppose first that there is no point x0 ∈ X with f(x0) = 0
for all f ∈ A. Then the above argument applies for all x and y in X and all f ∈ C(X,R), we
can find fx,y ∈ A such that (6.4) is true. Moreover, by Lemma 6.3, B is a lattice. Therefore, by
Lemma 6.2, f is a linit point of B, and since B is closed, f ∈ B. Since f is an arbitrary element of
C(X,R), we see that in this case, B = C(X,R).

The remaining case to consider is that in which there is one point x0 such that g(x0) = 0 for
all g ∈ A, and henceB, so that B is certainly contained in the closed subset of C(X,R) consisting
of continuous functions f on X such that f(x0) = 0.

Let f be any such function. The argument made above show that as long as neither x nor y
equals x0, then there is some g ∈ A, and hence B, for which (6.4) is true. Now suppose that x = x0,
and y 6= x0. Then we trivially have

f(x0) = g(x0) = 0

for all g ∈ B. And since A separates, and is a vector space, we can choose g so that f(y) = g(y).
Therefore, for any f ∈ C(X,R) with f(x0) = 0, no matter how x and y are chosen, we can can find
gx,y ∈ B so that (6.4) is true.

Then the argument made above shows that every f ∈ C(X,R) with f(x0) = 0 is a limit point
of B, and hence belongs to B. Therefore, in this second case, B is the subset of C(X,R) consisting
of functions f with f(x0) = 0.

In our proof of Theorem 6.1, we made use of the fact that our functions f were real valued, and
not complex valued: The real numbers are ordered, while the complex numbers are not, and the
order on the complex number played a crucial role in the proof through our use of Lemma 6.2.

This is not simply an artifact of the proof: If in the statement of the theorem we replace C(X,R)
by, C(X,C), the space of continuous complex valued functions on X, the statement becomes false.

To see this, take X to be the closed unit disc in the complex plane C. Take A to be the algebra
of all complex polynomials in the complex variable z, which clearly separates. Polynomials in z

are analytic, and uniform limits of analytic functions are analytic, and so the closure of A consists
of functions that are analytic in the interior of the the unit disc. Obviously, not every continuous
function of the closed unit disc is analytic in the interior of the disc; f(z) = z∗, the complex
conjugate of z, is an example. Hence, the uniform closure of A is not the full set of continuous
complex valued functions on the closed unit disc.

However, under one simple additional condition on the algebra A, one can reduce the complex
valued case to the real case.

A (complex) subalgebra A of the algebra of complex valued function on a compact Hausdorf
space is called a ∗-algebra in case it is closed under complex conjugation. That is, whenver f ∈ A,
then f∗ ∈ A, where f∗ is the function defined by f∗(x) = (f(x))∗ for all x ∈ X.

In this case, for every f ∈ A, the real and imaginary parts of f both belong to A. It is also
easy to see that when A separates, so does the real algebra consisting of the real and imaginary
parts of functions in A. Applying the Stone-Wierstrass Theorem to this algebra, one can separately
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approximate, in the uniform metric, the real and imaginary parts of any continuous complex valued
function on X by functions in A.

In summary, we have:

6.4 THEOREM (Complex Stone-Wierstrass). Let X be a compact topological space, and let A be
a subset of C(X,C) that is a separating ∗-algebra. Let B be the uniform closure of A. Then either
B = C(X,C), or else B consisits of all continuous functions on X that vanish at some fixed point
x0. In particular, if A contains the constant functions, B = C(X,R).

Here is one important application of Theorem 6.4: Let X be the unit circle in C, with its usual
topology. Let A ⊂ C(x,C) be the set consisting of functions f of the form

f(z) =
n∑

j=−n
ajz

n

for some n ∈ N, and some numbers a−n, . . . , an in C. (Each element of X is a complex number
z, and zn denotes the nth power of z.) The elements of A are called complex trigonomentric
polynomials

It is easy to see that A is a ∗-algebra, and that A separates. Hence, by Theorem 6.4, A is dense
in C(X,C). This proves:

6.5 THEOREM (Density of Complex Trigonometric Polynomials). Let X be the unit circle in
C, with its usual topology. Then the set of complex trigonometric polynomials is dense in C(X,C),
with respect to the uniform topology.

7 Tychonoff’s Theorem

Let X be a set. The Cartesian product of X with itself, X×X, is the set of all ordered pairs (x1, x2)
of elements of X. Of course (x1, x2) is the graph of a unique function f : {1, 2} → X, namely the
one with f(1) = x1 and f(2) = x2. (One can accomodate Cartesian products of two different sets
Y and Z in this framework by considering X = Y ∪Z and restricting attention to functions f such
that f(1) ∈ Y and f(2) ∈ Z. No real generality is lost in taking the sets to be the same, and the
notation is much simpler, so that is how we shall proceed.)

More generally, given any set non-empty S, the Cartesian product of X indexed by S, denotes
XS , is the set of all functions from S to X. For example, XN is the set of all infinite sequences
{xn}n∈N of elements of X.

On any Cartesian product, there is a natural family of functions with values in X, namely the
coordinate functions: For each s ∈ S, define

ϕs : XS → X

by
ϕ(f) = f(s) .

That is, one simply evaluates the function f ∈ XS at s.
Note that when S = {1, 2}, ϕj((x1, x2)) = xj , which is why the ϕs are called coordinate

functions.
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Now suppose that X is a topological space. Is there a nice topology on XS for which all of the
coordinate functions are continuous? Of course, there are plenty of topologies on XS for which all
of the coordinate functions are continuous, but they are not necessarily very nice: For example, if
we equip XS with the power set topology; i.e., the topology consisting of all subsets of XS , then
every function on XS is continuous.

However, with such a topology, as long as X has infinitely many elements, XS will not be
compact. On the other hand, if we take X = [0, 1] and S = {1, 2}, then we can identify XS with
the closed unit square in R2. If we equip this with its usual metric toplogy, then both coordinate
functions are clearly continuous, and the Cartesian product itself is compact.

Tychonoff’s theorem says that there is a natural topology on any Cartesian product that is
“nice” in the sense that under this topology we have both:

(1) If X is compact, then so is XS, no matter what non-empty set S is.

(2) For each s ∈ S, the coordinate function ϕs is continuous

To find such a topology O, we must include enough open sets to make each φs continuous,
and should avoid introducing too many more than that. The more open sets we include, the more
open covers there are to consider, and if we produce to many of these, some might well lack finite
subcovers.

The way to proceed turns on the following very simple observation: Suppose that Y is any set,
and A is any set of subsets of Y . Let U and V be two topologies on Y such that A ⊂ U and A ⊂ V.
Then U ∩ V is also a topology – it is very easy to see that is satisfies the three requirements in the
definition, and clearly, it contains A.

More generally, consider the set of all topologies U on Y that contain A. The intersection of all
of the topologies is again a topology that contains A. By construction, it is the weakest topology
on Y that contains A in the sense that any other topology that contains A also contains every set
in this one. One often refers to this topology as the topology of Y generated by A.

7.1 DEFINITION (Product topology). Let (X,O) be a toplogical space, and S a nonempty set.
The product toplogy on a Cartesian product XS the weakest topology on XS containing all of the
sets of the form

φ−1
s (U) , s ∈ S , U ∈ O .

By construction, each of the coordinate functions is continuous when XS is equipped with the
product Topolgy. Moreover:

7.2 THEOREM (Tychonoff’s Theorem). Let X be a compact topological space, and S any non-
empty set. Then XS, equipped with the product topology, is compact.

The special case of this theorem in which X is a compact metric space and S is countable (or
finite) is fairly easy to prove using the theorems presented so far in these notes. This is developed
in the exercises that follow. The general case involves either the theory of “nets” or the theory of
“filters”, and this would be a digression, since we shall not invoke the general case in this book,
nor shall we have any other occasion to use the theory of nest of filters. Furthermore, the proof
of the general case involves the axiom of choice in a much more subtle way than does the spacial
case. This is not a problem, but discussion of these subtleties would take us far afield. (The axiom
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of choice enters the subject, even in the special case, in an essential way: It is the axion of choice
whihc assures us that XS is non-empty: one can always choose, for each x ∈ s, some x(s) ∈ X.)

It is well worth knowing the general case nonetheless. It shows that advantage of the 20th
century notion of compactness, as defined above, in terms of open covers, with respect to the 19th
century notion of sequential compactness. As shown in the exercises, if we take X = [0, 1] with is
usual toplology, and equip XX , the set of all function from [0, 1] to [0, 1], then XX is not sequentially
compact, but is compact– by Tychonoff’s Theorem. Many theorems in which compactness is an
hypothesis remain true if this hypothesis is replaced by sequential compactness (see the exercises).
Tychonoff’s Theorem is an important example where this is not the case.

8 Exercises

1. Let (X,O) be a topological space. If Y is any subset of X, define a topology OY to be the set
of subsets of Y of the form

U ∩ Y for some U ∈ O .

Show that OY is a topology on Y . (It is called the induced or relative topology.)

2. Problem 9 in Chapter 4 of the text.

3. Problem 17 in Chapter 4 of the text.

4. Show that Theorem 4.2 in these notes, Dini’s Theorem, remains true if the hypothesis that X
is compact is replaced by the hypothesis that X is sequentially compact.

5. Show that Theorem 4.3 in these notes, remains true if the hypothesis that K is compact is
repalced by the hypothesis that K is sequentially compact.

6. Let (X, dX) and (Y, dY ) be two metric spaces. (a) Show that the function d on (X×Y )×(X×Y )

defined by
d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

is a metric on X × Y .

(b) Show that the metric topology induced by d on X × Y is at least as strong at the product
topology on X × Y .

(c) Show that with metric topology induced by d, X × Y is sequentially compact.

(d) Show that with metric topology induced by d, and with the product topology, X×Y is compact.

7. Let (X, dX) and (Y, dY ) be two metric spaces. Let C(X × Y,R) denote the set of real valued
functions on X × Y that are continuous with respect to the product topology on X × Y . Let A be
the set of real valued functions h on X × Y that are of the form

h(x, y) =
n∑
j=1

fj(x)gj(y) ,

for some n ∈ N, some {f1, . . . , fn} ⊂ C(X,R) and some {g1, . . . , gn} ⊂ C(Y,R). Show that A is
dense in C(X × Y,R). (Note: The usual notation for the set of functions A is C(X,R) ⊗ C(Y,R),
and it is called the tensor product of C(X,R) and C(Y,R).)
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8. Let X = [0, 1] equipped with its usual topology. Show that XX , equipped with the product
topology, is not sequentially compact. (Hint: Since by definition the set XX consists of functions
from [0, 1] to [0, 1], we need to display a sequence {fn}n∈N of such functions that has no convergent
subsequence. Each x ∈ [0, 1] has a unique binary expansion under the usual convention, say,

x = 0.011010111000100101010101 . . . .

Let bn be the nth bit function, which “picks off” the nth bit. That is, for the x with the binary
epansion displayed (partially) above,

b1(x) = 0 b2(x) = 1 b3(x) = 1 ,

and so forth. Show that no subsequence of {bn}n∈N is convergent.


