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1 Introduction

Lately we have been studying various aspects of real analysis of functions and measures on fairly
general topological spaces – epsecial locally compact Hausdorff spaces and complete, separable
metric spaces. Rn is both of these and more: It is also an abelian group. This group structure adds
a special flavor to the analysis of functions and measures on Rn.

Let f be any measurable function on Rn, and fix any y ∈ Rn. Then since the map x mapstox−y
is clearly continuous from Rn to Rn, and since the composition of measurable functions with
continuous functions results in measurable functions, the function τyf defined by

τyf(x) = f(x− y) (1.1)

Throughout this section µ shall denote Lebesgue measure on Rn, and for !1 ≤ p ≤ ∞, Lp shall
denote Lp(Rn,B, µ) where B is the Borel σ-algebra.

Since Lebesgue measure is translation invariant; i.e., for all E ∈ B, and all y ∈ Rn,

µ(τ−1
y (E) = µ(E) ,

and consequently, for all 1 ≤ p ≤ ∞, and all f ∈ Lp,

‖τyf‖p = ‖f‖p . (1.2)
1 c© 2009 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.
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The basis of everything that follows in this section of notes is the following fundamental theorem:

1.1 THEOREM (Continuity of translation). For all 1 ≤ p <∞, and all f ∈ Lp,

lim
y→0
‖τyf − f‖p = 0 . (1.3)

That is, for all 1 ≤ p < ∞, and all f ∈ Lp, the map y 7→ τyf is continuous from Rn to Lp. For
p =∞, this map is not continuous except in trivial cases such as when f is constant.

Proof: Since Rn is a locally compact Hausdorff space, and 1 ≤ p <∞, we know that for any ε > 0,
there exists a g ∈ Cc(Rn) such that ‖g − f‖p < ε. But then by Minkowski’s inequality,

‖τyf − f‖p ≤ ‖τyf − τyg‖p + ‖τyg − g‖p + ‖g − f‖p
≤ ε+ ‖τyg − g‖p + ε , (1.4)

where we have used the fact that τy is linear and (1.2) to conclude

‖τyf − τyg‖p = ‖τy(f − g)‖p = ‖f − g‖p ≤ ε .

Next since g ∈ inCc(Rn), there is some R > 0 such that for all |y| < 1 the support of τyg
lies in BR(0), the centered ball of radius R in Rn. Furthermore, since every continuous compactly
supported function on Rn is uniformly continuous, there is a δ > 0 so that

|y| < δ ⇒ |τyg(x)− g(x)| ≤ ε

µ(BR(0))

uniformly in x. It then follows that

|y| < δ ⇒ ‖τyg − g‖ ≤ ε .

Combining this with (1.4), we have ‖τyf − f‖p ≤ 3ε whenever |y| ≤ δ.
To see that y 7→ τff is not generally continuous in L∞, consider the case in which f is the

charactersitic function of the unit ball in Rn. Then it is clear that for all y 6= 0, ‖τyf − f‖∞ = 1.

2 Convolutions

2.1 The convolution of functions in Lp spaces

For f ∈ L∞ and g ∈ L1, define f ∗ g, the convolution of f and g, by

f ∗ g(x) =
∫

Rn

f(x− y)g(y)dµ(y) . (2.1)

for each x, the integrand is clearly integrable as a function of y, and we can do the integral pointwise,
for each x. It is clear that the result is abounded function of x: We have ‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖1

Notice that (2.1) can be written, formally at least, as

f ∗ g(x) =
∫

Rn

τyf(x)g(y)dµ(y) .
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When g is non-negative and satisfies
∫

Rn gdµ = 1, this allows us to think of f ∗ g as an “average of
translates of f”.

It turns out that f ∗ g is well defined for g ∈ L1 and f ∈ Lp for any 1 ≤ p ≤ ∞. This is most
clear for f ∈ L1. Then by Fubini’s Theorem, for almost every x, the integrand in (2.1) is integrable,
so that f ∗ g(x) is defined almost everywhere and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1

with equality holding in case f and g are non-negative. Also, making several simple changes of
variable,

f ∗ g(x) =
∫

Rn

f(x− y)g(y)dµ(y) =
∫

Rn

f(−y)g(y + x)dµ(y) =
∫

Rn

g(x− y)f(y)dµ(y)− g ∗ f(x) .

That is, the convolution product is commutative. This product structure makes L1 a commutative
algebra. However, our main interest here is not so much with the convolution algebera on L1 as it
is in the extension of the convolution product to f and g in other Lp and Lq spaces for which the
integral in (2.1) is not integrable (almost everywhere) for such obvious reasons as it is when g ∈ L1

and f ∈ L∞ or F ∈ L1.
In what follows p′ shall always denote the conjugate index to p; that is,

1
p

+
1
p′

= 1 .

For all h ∈ Lp′
and all f ∈ Lp, 1 ≤ p <∞, the map

y 7→
∫

Rn

h(x)τyf(x)dµ(x)

is continuous by Theorem 1.1), and therefore measurable. By Hölder’;s inequality and (1.2), it is
bounded by ‖h‖p′‖f‖p. Therefore, for g ∈ L1,

h 7→
∫

Rn

[∫
Rn

h(x)τyf(x)dµ(x)
]
g(y)dµ(y)

is a well-defined linear functional on Lp
′
, and moreover, it is bounded by ‖f‖p‖g‖1.

By the Riesz Representation Theorem, there is then a unique element of Lp that we define to
be f ∗ g such that∫

Rn

[∫
Rn

h(x)τyf(x)dµ(x)
]
g(y)dµ(y) =

∫
Rn

h(x)f ∗ g(x)dµ(x) ,

and
‖f ∗ g‖p ≤ ‖f‖p‖g‖1 . (2.2)

If f ∈ L1capLp and h ∈ L∞

capLp
′
, then we can apply Fubini’s Theorem to conclude that∫

Rn

[∫
Rn

h(x)τyf(x)dµ(x)
]
g(y)dµ(y) =

∫
Rn

h(x)
[∫

Rn

f(x− y)g(y)dµ(y)
]

dµ(x) ,
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so in this case f ∗g(x) is given pointwise by the integral
∫

Rn f(x−y)g(y)dµ(y), so that our notation is
consistent with (refconv1). The definition that we have just made, using the Riesz Representation
Theorem, extends the definition of f ∗ g from f ∈ L1capLp, g ∈ L1 to all of f ∈ Lp, g ∈ L1.
Moreover, we see that with this definition, ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

There is one more case in which we can easily make pointwise sense of the integral∫
Rn f(x− y)g(y)dµ(y): Suppose f ∈ Lp and g ∈ Lp;. Then by Hölder’s inequality,∫

Rn

f(x− y)g(y)dµ(y) ≤
(∫

Rn

|f(x− y)|pdµ(y)
)1/p(∫

Rn

|g(y)|p′
dµ(y)

)1/p′

= ‖f‖p‖g‖p′ .

That is, when f ∈ Lp and g ∈ Lp′
, f ∗ g is defined pointwise by (2.1), and moreover,

‖f ∗ g‖∞ ≤ ‖f‖p‖g‖p′ . (2.3)

We now fix some f ∈ Lp, 1 ≤ p <∞, and define a linear transformation T on L1 ∩ L∞ by

g 7→ Tg = f ∗ g .

We see from (2.2) and (2.3) that for any non-zero g ∈ L1 ∩ L∞,

‖Tg‖p
‖g‖1

≤ ‖f‖p and
‖Tg‖p
‖g‖p′

≤ ‖f‖p . (2.4)

In other words, the norm of T as an operator from L1 to Lp, ‖T‖1→p, is bounded by ‖f‖p, and the
norm of T as an operator from Lp

′
to L∞, ‖T‖p′→∞, is also bounded by ‖f‖p.

We may now apply the Riesz-Thorin Theorem to conclude that T extends to be a bounded
operator from Lq to Lr where for 0 ≤ t ≤ 1,

1
q

= t
1
p′

+ (1− t)1
1

and
1
r

= t
1
∞

+ (1− t)1
p
. (2.5)

The Riesz-Thorin Theorem says that then

‖T‖q→r ≤
(
‖T‖p′→∞

)t (‖T‖1→p)1−t ≤ ‖f‖tp‖f‖1−tp = ‖f‖p .

That is, for any g ∈ L1 ∩ L∞,
‖f ∗ g‖r ≤ ‖g‖q‖f‖p , (2.6)

with q and r given by (2.5) for some 0 ≤ t ≤ 1. In fact, it is easy to eliminate t from (2.5):
Subtracting, one finds

1
q
− 1
r

= t

(
1
p′

+
1
p

)
+ (1− t)− 1

p
= 1− 1

p
.

Thus, (2.6) holds whenever p, q and r satisfy 1/p + 1/q = 1 + 1/r. We now show that ‖f ∗ g‖r
cannot be bounded by any multiple of ‖g‖q‖f‖p unless 1/p + 1/q = 1 + 1/r. To see this, we note
that the dual formula for the Lr norm, (2.6) is equivalent to

∫
Rn h(x)f ∗g(x)dµ(x) ≤ ‖h‖r′‖g‖q‖f‖p

for all h ∈ Lr′ . In other words,∫
Rn

∫
Rn

h(x)f(x− y)g(y)dµ(x)dµ(y) ≤ ‖h‖r′‖g‖q‖f‖p , (2.7)
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Now fix λ > 0, and make the repalcements h(x) → hλ(x) := h(x/λ), f(x) → fλ(x) := f(x/λ) and
g(x)→ gλ(x) := g(x/λ). Changing variables, one computes that∫

Rn

∫
Rn

h(x/λ)f((x− y)/λ)g(y/λ)dµ(x)dµ(y) = λ2n

∫
Rn

∫
Rn

h(x)f(x− y)g(y)dµ(x)dµ(y) .

Likewise (∫
Rn

|h(x/λ)|r′dµ(x)
)1/r′

= λn/r
′‖h‖r′ ,

with similar identities for f and g. The results is that if (2.7) holds for hλ, fλ and gλ for all λ > 0,
we have

λ2n

∫
Rn

∫
Rn

h(x)f(x− y)g(y)dµ(x)dµ(y) ≤ λn/p′+n/q+n/p‖h‖r′‖g‖q‖f‖p .

Clearly, the powers of λ on the two sides of this inequality must be equal, or else we can get a
contradiction by taking either λ→ 0 (if the power on the left is the lesser) or λ→∞ (if the power
on the left is the greater). Hence, the inequality (2.7), or equivalently, the inequality (2.6) cannot
hold in general unless

2 =
1
r′

+
1
q

+
1
r
,

which of course is equivalent to 1/p+ 1/q = 1 + 1/r.
Let us summarize our conclusions in a theorem:

2.1 THEOREM (Young’s inequality). For all 1 ≤ p, q, r ≤ ∞ with 1/p+ 1/q = 1 + 1/r, and all
f ∈ Lp, the linear transformation

g 7→ f ∗ g :=
∫

Rn

f(x− y)g(y)dµ(y)

defined initially for g ∈ L1 ∩ L∞, so that the integrand is integrable for each x, extends to be a
contractive linear transformation form Lq to Lr so that in particular, (2.7) holds for all h ∈ Lr′,
f ∈ Lp and g ∈ Lq.

2.2 Approximate identities

The following theorem expresses an important continuity property of convolutions, and has many
applications:

2.2 THEOREM (Approximate identities). For any g ∈ L1(Rn) with
∫

Rn g(x)dµ(x) = 1, and any
t > 0, define gt(x) = t−ng(x/t). Then, for all 1 ≤ p <∞, and all f ∈ Lp,

lim
t→0
‖f − f ∗ gt‖p = 0 . (2.8)

Proof: First suppose that g has compact support, so that for some R <∞, g(y) = 0 for all |y| > R.
Then note that, making the obvious change of variables,

f ∗ gt(x) =
∫

Rn

t−nf(x− y)g(y/t)dµ(y) =
∫

Rn

f(x− ty)g(y)dµ(y) .



6

Also, since
∫

Rn g(x)dµ(x) = 1,

f(x) =
∫

Rn

f(x)g(x)dµ(x) .

Therefore,

f ∗ gt(x)− f(x) =
∫

Rn

[f(x− ty)− f(t)] g(y)dµ(y) .

By Theorem 1.1, for all ε > 0, there exists a δ > 0 so that

t|y| < δ ⇒ ‖τtyf − f‖p ≤ ε .

But since g(y) > 0 for |y| > R, whenerver t < δ/R,(∫
Rn

|[f(x− ty)− f(x)]g(y)|pdµ(x)
)1/p

≤ ‖τtyf − f‖p|g(y)| ≤ ε|g(y)|

for all y ∈ Rn. Then by Minkowski’s inequalitiy,

‖f ∗ gt − f‖p =
(∫

Rn

∣∣∣∣∫
Rn

[f(x− ty)− f(x)]g(y)dµ(y)
∣∣∣∣p dµ(x)

)1/p

≤(∫
Rn

|[f(x− ty)− f(x)]g(y)|pdµ(x)
)1/p

≤ ε‖g‖1 . (2.9)

Since ε > 0 is arbitrary, this proves the theorem in the case that g has compact support. For
general g ∈  L1, choose g̃ ∈ L1 so that ‖g − g̃‖ < ε,

∫
Rn g̃(x)dµ(x) = 1, and g̃ has compact support.

A simple computation shows that ‖g̃t − g‖1 = ‖g̃ − g‖1 = 1 for all t > 0, and so

‖f ∗ gt − f‖p ≤ ‖f ∗ gt − f ∗ g̃t‖p + ‖f ∗ g̃t − f‖p = ‖f ∗ (gt − g̃t)‖p + ‖f ∗ g̃t − f‖p .

But ‖f ∗ (gt − g̃t)‖p ≤ ‖f‖p‖g − g̃‖1 ≤ ‖f‖pε, and by the first part of the proof, ‖f ∗ g̃t − f‖p < ε

for all sufficiently small t. That is,

‖f ∗ gt − f‖p ≤ (‖f‖p + 1)ε

for all sufficiently small t. Since ε > 0 is arbitrary, this proved the result.
We will apply Theorem 2.2 many times. Our first application is to prove that for 1 ≤ p < ∞,

the set C∞c (Rn) of compactly supported, infinitely differentiable functions is dense in Lp.
The first thing to do is to exhibit one such function. Define h : R→ R by h(s) = exp(1/(1−s2))

for −1 ≤ s ≤ 1, and h(s) = 0 otherwise. It is easy to check that h is infinitely differentiable at
s = ±1, and it is obviously so for all other s. This gives us one non-zero function in C∞c (R)

We will now show that for ant f ∈ Lp, 1 lep <∞,
For the n dimensional case, define

g(x) = Cn
n∏
j=1

h(xj) ,

where Cn is a constant chosen to make
∫

Rn g(x)dµ(x) = 1
We will now use g to construct an approximate identity and show that for any f ∈ Lp, 1 lep <∞,

f ∗ gt is infinitely differentiable. Then since by Theorem 2.2, limt→0 f ∗ gt = f in the Lp norm,
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this will show that the infinitely differentiable functions are dense in Lp. Moreover, we already
know how to approximate f ∈ L0 by a compactly supported function, and it is clear that if f is
compactly supported, then so is f ∗ gt since the support of g is also compact, and hence bounded.
This will yields us the following theorem:

2.3 THEOREM. For all 1 ≤ p <∞, C∞c (R) is dense in Lp.

Proof: As explained above, the essential point is to show that for all f ∈ Lp, 1 ≤ p <∞, f ∗ gt(x)
is infinitely differentiable as a function of x. (Note that since gt ∈ Lp

′
, the integral defining f ∗gt(x)

is converges for every x, and not only almost every x.)
To prove the differentiability, fix f ∈ Lp, and g ∈ C∞c (R) such that

∫
Rn g(x)dµ(x) = 1. Then fix

any z ∈ Rn, any t > 0, and any s ∈ R. Define

Gs(w) =
[gt(x− y + sz)− gt(x− y)]

s
,

so that
f ∗ gt(x+ sz)− f ∗ gt(x)

s
= f ∗Gs(x) . (2.10)

We now claim that
G(w) := sup

|s|≤1
|Gs(w)| ∈ L1 ∩ L∞ .

To see this, observe that by the Mean Value Theorem gives us∫
Rn

[gt(x− y + sz)− gt(x− y)]
s

∫
Rn

z · ∇gt(x− y + c(s, x− y, z)z) , (2.11)

for some c(s, x − y, z) between 0 and s. A simple argument using the fact that g ∈ C∞c (Rn) leads
to the conclusion that for fixed x and z, and all |s| < 1, the right hand side is bounded uniformly
in s; i.e., G(w) ∈ L∞.

Next, since gt ∈ C∞c (Rn), there is some fixed R < ∞ so that the ball of radius R contains the
support of the right hand side for each |s| < 1. The uniform L1 bound then follows from this
uniform bound on the support, and and the uniform L∞ bound derived above.

Then since L1 ∩ L∞ ⊂ Lp′
, G(w) ∈ Lp′

, we have

|Gs(x− y)f(y)| ≤ |G(x− y)||f(y)| ,

and the right hand side is integrable in y. Therefore, by the Dominated Convergence Theorem,

lim
s→0

Gs ∗ f =
∫

Rn

(
lim
s→0

Gs(x− y)
)
f(y)dµ(y) =

∫
Rn

z · ∇gt(x− y)f(y)dµ(y) .

This shows that x 7→ f ∗ gt(x) is differentiable. Moreover, the function w 7→ z · ∇gt(w) is again
in C∞c (Rn), so the argument can be repeated to see that x 7→ f ∗ gt(x) is twice differentiable.
Continuing, one concludes that x 7→ f ∗ gt(x) is infinitely differentiable.
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3 The Fourier transform

3.1 The Fourier transform on L1.

3.1 DEFINITION (The Fourier transform on L1). For f ∈ L1, define the function f̂ on Rn by

f̂(k) =
∫

Rn

e−2πk·xf(x)dµ(x) , (3.1)

where k · x denote the usual inner product of k and x in Rn. The map F : f → f̂ is called the
L1-Fourier transform.

The integral defining f̂(x) is obviously convergent for each x. and it is also clear that for each
k, |f̂(k)| ≤ ‖f‖1, so that ‖f̂‖∞ ≤ ‖f‖1. A little less obvious is the fact that k 7→ f̂(k), and that is
continuous and that limk→∞ f̂(k) = 0, so that f̂ ∈ C0(Rn).

3.2 THEOREM (Riemann-Lebesgue Theorem). The map F : f → f̂ is a contraction from L1

into C0(Rn).

Proof: F is clearly linear, and we have already observed that it is bounded with norm one, so it
is a contraction.

To see that k 7→ f̂(k) is continuous, observe that for any k, h ∈ Rn,

f̂(k + h)− f̂(k) =
∫

Rn

[
e−2π(k+h)·x − e−2πk·x

]
f(x)dµ(x)

The integrand is dominated by 2|f(x)| for all k, h ∈ Rn, and so by the Dominated Convergence
Theorem,

lim
h→0

(f̂(k + h)− f̂(k)) =
∫

Rn

lim
h→0

[
e−2π(k+h)·x − e−2πk·x

]
f(x)dµ(x) = 0 .

This proves the continuity.
To show that limk→∞ f̂(k) = 0, we shall apply Theorem 1.1.
Note that since e−iπ=−1,

e−2πk·x = −e−2πk·(x+k/(2|k|2) .

Therefore,

f̂(k) =
1
2

∫
Rn

[
e−2πk·x − e−2πk·(x+k/(2|k|2)

]
f(x)dµ(x)

=
1
2

∫
Rn

e−2πk·x [f(x)− f(x− k/(2|k|2))
]

dµ(x) .

Therefore,

|f̂(k)| ≤ 1
2
‖f − τk/(2|k|2)f‖1 .

But by Theorem 1.1, limk→∞ ‖f − τk/(2|k|2)f‖1 = 0.

The proof yields useful information that is not recorded in Theorem 3.2. It shows that the rate
at which |f̂(k)| → 0 and k →∞ depends quantitatively on how fast ‖f − τyf‖1 → 0 and y → 0.

We next observe that the Fourier transform carries the convolution product in L1 over into
pointwise multiplication in C0(Rn).
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3.3 THEOREM (The Fourier transform and convolution). For all f, g ∈ L1, f̂ ∗ g = f̂ ĝ.

Proof: By definition, and then Fubini’s Theorem,

f̂ ∗ g(k) =
∫

Rn

(∫
Rn

f(x− y)g(y)dµ(y)
)
e−2πk·xdµ(x)

=
∫

R2n

f(x− y)g(y)e−2πk·xdµ(x, y)

=
∫

R2n

f(x− y)g(y)e−2πk·(x−y)e−2πk·ydµ(x, y)

=
∫

R2n

f(z)g(y)e−2πk·(z)e−2πk·ydµ(z, y)

=
(∫

Rn

f(z)e−2πk·zdµ(z)
)(∫

Rn

g(y)e−2πk·yddµ(y)
)

= f̂(k)ĝ(k) . (3.2)

In more detail, the first equality follws from the definitions, the second from Fubini’s Theorem, the
third from simple manipulation, the fourth from the fact that the transformation (x, y) 7→ (z, y) :=
(x−y, y) preserves Lebesgue measure as it has unit Jacobian, and the fifth is from Fubini’s Theorem
once more.

We close this section with a lemma that will prove useful in the next section.

3.4 LEMMA (Translations and the Fourier Transform). For all y ∈ Rn, let My denote the
multiplication operator on Lp, 1 ≤ p ≤ ∞, given by

Myf(x) := e2πix·yf(x) ,

which is a contraction on Lp for all 1 ≤ p ≤ ∞. Then For all y ∈ Rn and all f ∈ L1,

τ̂yf = M−y , (3.3)

and
M̂yf = τyf . (3.4)

Proof: By definition, and then an obvious change of variables,

τ̂yf(k) =
∫

Rn

e−2πik·xf(x− y)dµ(x) =
∫

Rn

e−2πik·(x+y)f(x)dµ(x) = e−2πik·yf̂(k) .

The proof of (3.4) is similar.

3.2 The Fourier transform on L2.

For a general f ∈ L2, there is no reason to expect e−2πk·xf(x) to be integrable in x. Therefore, one
cannot directly use (3.1) to define f̂(k) for general f ∈ L2, or any other Lp, p > 1 for that matter.

However, the Fourier transform F is defined by (3.1) on L1 ∩ L2, which is dense in L2. As we
shall now show, F is an L2 isometry on L1 ∩ L2; that is for all f ∈ L1 ∩ L2,

‖f̂‖2 = ‖f‖2 . (3.5)
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In particular, the linear transformation F : L1 ∩ L2 → L2 is bounded, and therefore continuous,
and so by closure extends to a map, still denoted F :, from L2 to L2.

Indeed, suppose that (3.5) is proved for all f ∈ L1 ∩ L2. Fix any f ∈ L2, and let {fn}n∈N be
any sequence in L1 ∩L2 with limn→∞ ‖fn− f‖2 = 0. Then {fn}n∈N is a Cauchy sequence in L2, so
that limm,n→∞ ‖fn − fm‖2 = 0. But then by (3.5), limm,n→∞ ‖f̂n − f̂m‖2 = 0, so that {f̂n}n∈N is a
Cauchy sequence in L2. By the Riesz-Fischer Theorem, this sequence has a limit in L2, and so we
define f̂ to be the limit. That is:

f̂ = lim
n→∞

f̂n . (3.6)

To see that this definition of f̂ depends only on f , and not on the particular sequence {fn}n∈N
that we used to approximate f , let {gn}n∈N be any other sequence in L1 ∩ L2 with limn→∞ ‖gn −
f‖2 = 0. Then as above, {ĝn}n∈N is a Cauchy sequence in L2, and has a limit ĝ. We claim that
ĝ = f̂ . To see this, pick n large enough that

‖f̂ − f̂n‖2 < ε ‖f − fn‖2 < ε ‖ĝ − ĝn‖2 < ε and ‖f − gn‖2 < ε .

Then
‖f̂ − whg‖2 ≤ ‖f̂ − f̂n‖2 + ‖f̂n − ĝn‖2 + ‖ĝn − ĝ‖2 ≤ 2ε+ ‖f̂n − ĝn‖2 .

But by (3.5) again,

‖f̂n − ĝn‖2 = ‖fn − gn‖2 ≤ ‖fn − f‖2 + ‖f − gn‖2 ≤ 2ε .

Altogether, ‖f̂ − whg‖2 ≤ 4ε, and since ε > 0 is arbitrary, this means that ĝ = f̂ . In summary,
once we have shown (3.5), we will know that the left hand side of (3.6) is independent of the choice
of the particular sequence {fn}n∈N used to approximate f , and therefore depends only on f itself.
Thus, we can use (3.6) to define the Fourier transform on all of L2. It is clear that this extension
is linear. Finally note that

‖f̂‖2 = lim
n→∞

‖f̂n‖2 = lim
n→∞

‖fn‖2 = ‖f‖2 ,

so that (3.5) will then holds for all f ∈ L2.
The key to proving (3.5) is the following simple computation, together with the thoerem on

approximate identities.

3.5 LEMMA. Let g(x) = e−π|x|
2

and, for t > 0, gt(x) = t−ng(x/t). Then for each t > 0,

ĝt(k) = e−t|π|k|
2
. (3.7)

3.6 Remark. Note that for an f ∈ L1, f̂(0) =
∫

Rn f(x)dµ(x), and so as a special case of (3.7), we
have that

∫
Rn gt(x)dµ(x) = 1 for all t. In particular, by the Theorem 2.2, for all f ∈ Lp, 1 ≤ p <∞,

limt→0 f 7→ f ∗ gt = f in Lp.

Proof: Since gt ∈ L1, we have

ĝt(k) =
∫

Rn

t−ne−π|x/t|
2
e−2πik·xdµ(x) =

∫
Rn

e−π|x|
2
e−2πik·txdµ(x) =

∫
Rn

n∏
j=1

e−π|xj |2−2πitk·xj dµ(x) .
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But clearly, ∫
Rn

n∏
j=1

e−π|xj |2−2πitk·xj dµ(x) =
n∏
j=1

(∫ ∞
−∞

e−π|xj |2−2πitk·xj dxj

)
.

Now, completing the square,∫ ∞
−∞

e−π|x|
2−2πtk·xdx = e−tπ|k|

2

∫ ∞
−∞

e−π|x−itk|
2
dx .

It remains to show that with ϕ(k) defined by ϕ(k) :=
∫∞
−∞ e

−π|x−itk|2dx, ϕ(k) = 1 for all k. For
k = 0, this reduces to the familiar, and readily checked, fact that

∫∞
−∞ e

−π|x|2dx = 1. Hence it
remains to show that ϕ(k) is constant. To do this, we differentiate. An easy argument like the one
used in the proof of Theorem 2.3, but simpler, shows that one may differentiate under the integral
sign and then:

d
dk
ϕ(k) =

∫ ∞
−∞

d
dk
e−π|x−itk|

2
dx = − 1

it

∫ ∞
−∞

d
dx
e−π|x−itk|

2
dx = − 1

it
e−π|x−itk|

2

∣∣∣∣+∞
−∞

= 0 .

This proves (3.7).

3.7 LEMMA. For all f ∈ L1 ∩ L2, ‖f̂‖2 = ‖f‖2.

Proof: By the the Riemann-Lebesgue Theorem, when f ∈ L1 ∩ L2, k 7→ |f̂(k)|2 is a bounded,
continuous function on Rn, Thus, the intergral

∫
Rn |f̂(k)|2dµ(k) is well defined, though for all we

know right now, is possibly +∞. In any case, we have, my the Monotone convergence Theorem∫
Rn

|f̂(k)|2dµ(k) = lim
t→0

∫
Rn

|f̂(k)|2e−πt|k|2dµ(k) . (3.8)

Then, by the definition of the Fourier transform,∫
Rn

|f̂(k)|2e−πt|k|2dµ(k) =
∫

Rn

[∫
Rn

∫
Rn

f(x)f(y)e−2πk·(y−x)dµ(x)dµ(y)
]
e−πt|k|

2
dµ(k) .

Since f(x)f(y)e−πt|k|
2

integrable on Rn × Rn × Rn, we may apply Fubini’s Theorem to conclude∫
Rn

[∫
Rn

∫
Rn

f(x)f(y)e−2πk·(y−x)dµ(x)dµ(y)
]
e−πt|k|

2
dµ(k) =∫

Rn

∫
Rn

f(x)f(y)
[∫

Rn

e−2πk·(y−x)e−πt|k|
2
dµ(k)

]
dµ(x)dµ(y)

Then by Lemma 3.5, ∫
Rn

e−2πk·(y−x)e−πt|k|
2
dµ(k) = t−ne−π|(x−y)/t|

2
.

Combining this with the last two calculations yields∫
Rn

|f̂(k)|2e−πt|k|2dµ(k) =
∫

Rn

∫
Rn

f(x)f(y)t−ne−π|(x−y)/t|
2
dµ(x)dµ(y) .

Applying Fubini’s Theorem one more, we do the integral in y and obtain∫
Rn

|f̂(k)|2e−πt|k|2dµ(k) = 〈f, f ∗ gt〉 ,
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where 〈·, ·〉 is the inner product in L2, and gt(z) = t−ne−π|z/t|
2
. But by Theorem 2.2, limt→0 f∗gt = f

in L2, and so by (3.8), ∫
Rn

|f̂(k)|2dµ(k) = lim
t→0
〈f, f ∗ gt〉 = 〈f, f〉 = ‖f‖22 .

The main result of this section is the following thoerem, which says that not only is F : f 7→ f̂

an isometry from L2 into L2, its range is actually all of L2, so that F : f 7→ f̂ is a unitary
transformation of L2 onto itself.

3.8 THEOREM (Plancherel’s Theorem). The L2 Fourier transform F : f 7→ f̂ is a unitary
transformation of L2 onto L2. Furthermore, for all f, g ∈ L2,

〈f̂ , ĝ〉 = 〈f, f〉 . (3.9)

Proof: Since we have already proved that F : f 7→ f̂ an isometry from L2 into L2, once we show
that the range of F is all of L2, we will have shown that F is an isometry of L2 onto itself, and
hence unitary.

Therefore, let V denote the range of F . We first note that V is a closed subspace of L2: If g lies
in the closure of V , then by definition, there is a sequnce {fn}n∈N in  L2 so that limn→∞ f̂n = g. But
then the sequence {f̂n}n∈N, being convergent, is Cauchy. By the isometry property of F , {fn}n∈N
is also Cauchy, and therefore has a limit f . But then f̂ = limn→∞ f̂n, and so g = f̂ . Thereofre, g
lies in the range of F ; i.e., g ∈ V . This proves that V is closed.

Now, if V is a proper subspace of L2, there exists a non-zero continuous linear functional on L2

that is zero on all of V . By the Riesz Representation Theorem, this means that there is a non-zero
h ∈ L2 so that 〈h, g〉 = 0 for all g inV . Therefore, to prove that V = L2, we need only show that
if h ∈ L2 is orthgonal to every vecotr in V , then h = 0.

To see this, note that by Lemma 3.5, with gt(k) := t−ne−π|k/t|
2
, gt ∈ V for all t > 0, and then

by Lemma 3.4, τygt ∈ V for each y ∈ Rn and all t > 0.
It follows that 〈h, τygt〉 = 0 for each t > 0, and each y ∈ Rn. But 〈h, τygt〉 = h ∗ gt(y), so that

h ∗ gt = 0. But by Theorem 2.2, h = limt→0 h ∗ gt. Thus, h = 0. This proves that F maps L2 onto
L2, and completes the proof that F is unitary.

Next, for any f, g ∈ L2, note that

Re(〈f, g〉) =
‖f + g‖22 + ‖f − g‖22

4
.

It follows from this, the linearity of F , and the isometry property that R(〈f̂ , ĝ〉) = R(〈f, g〉). Since
Im(〈f, g〉) = −Re(〈f, ig〉), (3.9) then follows.

The inverse of a unitary operator is its Hermitian adjoint. so to compute a formula for the inverse
of the Fourier transform, it suffices to compute the adjoint F∗ of F . To do this, let f, g ∈ L1 ∩L2.
Then by the definitions and Fubini’s Theorem,

〈f,Fg〉 =
∫

Rn

f(k)
(∫

Rn

e−2πik·xg(x)dµ(x)
)

dµ(k) =
∫

Rn

(∫
Rn

f(k)e−2πik·xg(x)dµ(k)
)
g(x)dµ(k) .
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Thus, if we define F∗f by

F∗f(x) =
∫

Rn

f(k)e2πik·xg(x)dµ(k) ,

we have
〈f,Fg〉 = 〈F∗f, g〉 ,

and it follows that f 7→ F∗f is indeed the Hermitian adjoint, and hence the inverse, to F .
We can now give a simple but significant reinterpretation of Lemma 3.4. For any f ∈ L1 ∩ L2,

and any y ∈ Rn, we have that F(τyf) = M−y(Ff) and hence

τyf = F∗(M−y(Ff)) .

That is
τy = F∗M−yF ,

which says that the unitary transformation F diagonalizes the translation operator τy.
Now for f ∈ C∞c (Rn), it is certainly the case that for any y ∈ Rn,

lim
s→0

1
s

(I − τsy)f(x) y · ∇f(x) .

By the above, for all s 6= 0

F∗ 1
s

(I − τsy)F =
1
s

(I −M−sy) .

Thus, the Fourier transform diagonalizes the approximate differentiation operator
1
s

(I − τsy), and
by taking limits, diagonalizes the differentiaion operator. Developing this idea would take us into
the study of unbounded operators, so we will not develop it here, but it is the basis of many
applications of the Fourier transform in the study of partial differential equations.

3.3 The Fourier transform in Lp, 1 < p < 2

We have seen that the Fourier transform F defined on L1∩L2 by the integral formula (3.1) satisfies
the bounds ‖F‖1→∞ = 1 and ‖F‖2→2 = 1. We now apply the Riesz-Thorin inequality to prove the
Hausdorff-Young Theorem:

3.9 THEOREM (Hausdorff-Young Theorem). For all 1 < p < 2, the Fourier transform F defined
on L1 ∩ L2 extend to a contraction from Lp to Lp

′
. That is, for all f ∈ L1 ∩ L2 and all 1 < p < 2,

‖f̂‖p′ ≤ ‖f‖p .

Proof: Since 1 < p < 2, there is some 0 < t < 1 such that

1
p

= t
1
1

+ (1− t)1
2
.

Now define q by
1
q

= t
1
∞

+ (1− t)1
2
.

solving for q, one finds q = p′. Then by the Riesz-Thorin Theorem,

‖F‖p→p′ ≤ (‖F‖1→∞)t (‖F‖2→2)1−t = 1t11−t = 1 .


