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The exercsies come from Folland’s text. The numbering follows the numbering in the text.

1 Solutions to Exercises from Chapter 1

3: Show that every σ-algebra M that contains infinitely many distinct sets has a cardinality that is at

least as large as that of the continuum.

SOLUTION: Let A ∈M be such that neither A nor Ac is empty. Define

MA = {A ∩B : B ∈M} .

Then MA and MAc are both σ-algebras, and

MA =MA ∪MAc .

If MA contains inifnitely many distinct sets, then, by the pigeonhole priciple,at least one of MA and

MAc contains inifnitely many distinct sets.

We now construct an infinite strictly decrwasing nested family of sets in M. First, pick A ∈M such

that neither A nor Ac is empty. Define E1 to be A if MA contains inifnitely many distinct sets, and

otherwise take E1 = Ac, in whihc case MAc contains inifnitely many distinct sets. Either way, ME1

contains inifnitely many distinct sets.

Now with Ej defined for j < n, pick A inMEn−1 such that neither A nor Ac is empty. Define En to

be A if MA contains inifnitely many distinct sets, and otherwise take En = Ac. Then, MEn contains

inifnitely many distinct sets.

Clearly {En}n∈N is a sequence in M such that En+1 ⊂ En for all n, and the containment is strict:

En ∩ Ecn+1 6= ∅. Now define Fn = En ∩ Ecn+1. This is evidently a sequence of infinitely many disjoint,

non-empty sets in M.

Now for each x ∈ [0, 1], let {b1(x), b2(x), b3(x), . . . } be the sequence of bits in its canonical binary

expansion. Define

Ax =
⋃
{Fn : bn(x) 6= 0 }

Then, as a counable union of sets in M, Ax ∈M, and clearly the map

x 7→ Ax

is injective into M. This proves that the cardinality of M is at least as large as that of the continuum.
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REMARK The were a number of mistaken contruction of the infinite disjoint sequence of non-empty

sets. Many attempts went roughly along the following lines:

Ler {En}n∈N be a sequence of infinitely many distinct sets in M. Define F1 = E1, and for n > 1

define Fn ∈M by

Fn = En ∩ (F1 ∪ · · · ∪ Fn−1)c .

(Note that M is closed under the operations used to form Fn.)

The problem is that for all but finitely many n, Fn = ∅.For example, let E2 = Ec1. Then F1 = E1,

F2 = Ec1, and Fn = ∅ for all n ≥ 3. Also, one could have Em = X, the whole spaces, for some m. Then

Fn = ∅ for all n > m.

4: An algebra A is a σ-algebra if and only if it is closed under countable increasing unions.

SOLUTION: All σ-algebras are algebra that are closed under countable union, and hence they are

ertinaly closed under countable increasing unions. For the converse, let A be an algebra that is closed

under countable increasing unions.

Algebras are always closed under complements, so we need only show that A under countable unions.

Using the identity Given any sequence {An}n∈N in A, define Bn = ∪nj=1Aj . Then for all n, Bn ⊂ Bn+1,

and Bn ∈ A since any algebra is closed under finite unions. But

∞⋃
j=1

Aj =
∞⋃
j=1

Bj ∈ A

by the closure undert countable increasing unions. Hence A is closed under countalbe unions.

5: If M = σ(E), then M is the union of all of the σ-algebras generated by countable subsets of E .

countable increasing unions.

SOLUTION: Let F be a countable subset of E . Then clearly,

σ(F) ⊂ σ(E) =M .

Therefore, if we define

N :=
⋃
{σ(F) : F ⊂ E is countable } ,

we have N ⊂M.

Note that E ⊂ N . Hence, if we show that N is a σ-algebra, it will follow that M ⊂ N . Together

with what we have said above, this would prove that N =M.

If A ∈ N , then A ∈ σ(F) for some cuntable subset F of E . But σ(F) is closed undercomplementation,

so

Ac ∈ σ(F) ⊂ N .

Thus, N is closed under complementation.

Next, let {An}n∈N be a sequence of sets in N . Then each An ∈ σ(F\) for some cuntable subset F\ of

E . Define

F =
∞⋃
n=1

Fn ,

whihci s a countable subset of E since countable unions of countable sets are countable. Thus,

An ∈ σ(F) ⊂ N
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for all n, and since σ(F) is closed under countable unions,

∞⋃
n=1

An ∈ σ(F) ⊂ N .

Thus, N is closed under countable unions as well as complements, and hence is a σ-algebra.

2 Solutions to Exercises from Chapter 2

3: If {fn} is a sequence of complex valued measurable functions on (X,M), then

E := {x : lim
n→∞

fn(x) exists }

is a measurable set.

SOLUTION: Suppose that f is real. Let g1(x) = lim infn→∞ fn(x) and let g2(x) = lim supn→∞ fn(x).

These are measurable by proposition 2.7, and then h = g1 − g2 is measurable by Proposition 2.6. Then

since

E = {x : h(x) = 0} = h−1({0}) ,

and since {0} is a Borel subset of R, E ∈M.

For f complex, apply the argument separately to the real and imaginary parts of f , and take the

intersection of the two sets on which the separate limits exist.

4: If f−1((r,∞)) is measurable for each rational r, then f is measurable.

SOLUTION: It suffices to show that f−1((r,∞)) is measurable for each a ∈ R. Let rn be a sqnece of

rational that decreases to a. Then

f−1((a,∞)) =

∞⋃
n=1

f−1((rn,∞)) ,

and the latter is a countable union of measurable sets.

5: If X = A ∪B where A and B are measureable, the f is measaureable if and only if the restrictions of

f to A and B are measureable.

SOLUTION: Assume f is real values, or else apply the following to the real and imaginary parts. For

all a ∈ R,

f−1((a,∞)) ∩A = (f |A)−1((a,∞))

and likewise for B.

Thus is f is measuarable, the left side is measurable and hence f |A is measurale, and likewise for f |B.

On the other hand, if f |A is measurale, so is the left side, and likewise f−1((a,∞)) ∩A.

8: Show that if f : R→ R is monotone, then f is Borel measurable.

SOLUTION: Suppose, without loss of generality, that f is monotone increasing, Then for all a ∈ R,

either f−1((a,∞)) = R or ∅, or is of the form [b,∞) or (b,∞) for some b ∈ R. In any case, f−1((a,∞)) ∈
BR for all a, and since these rays generate BR, f is Borel measurable.

11: Show that if f : Rn → C is separately continuous in each if x1, . . . , xn, then f is Borel measurable.
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SOLUTION: We proceed by induction on the dimension. The case n = 1 is trivial since for n = 1,

separate continuity is continuity, which implies Borel measurability.

Now suppose the proposition is established for all n ≤ k, and let f : R× Rk be a function such that

for each x ∈ R, f(x, ·) is Borel measurable on Rk, and such that for each y ∈ Rk, f(·, y) is continuous on

R. By the inductive hypothesis, if f : Rk+1 → R is separately continuous it satisfies this property, and

so it suffices to show under these more general conditions that f is Borel measurable on Rk+1.

For each integer i, define ai = i/n, and define the functions

φi(x) =
x− ai
ai+1 − ai

1(ai,ai+1](x) and ψi(x) =
x− ai+1

ai+1 − ai
1(ai,ai+1](x) .

These are both evidently the products of two Borel functions on Rk+1, since the coordinate projection

(x, y) 7→ x is continuous and hence Borel, we see that φi and ψi are Borel on Rk+1 for each i.

Next, by continuity of coordinate projections and by hypothesis,

(x, y) 7→ y 7→ f(ai, y)

is Borel on Rk+1 for each i.

Now again using the fact that sums and products of Borel functions are Borel,

fn(x, y) =
∑
i∈Z

[f(ai+1, y)φi(x) + f(ai, y)ψi(x)]

is Borel measurable on Rk+1. (Note that the sum converges since each summand is non-zero for exactly

one value of x.)

Notice that for each x and y, fn(x, y) is a convex combination of f(ai, y) and f(ai+1, y) for the unique

value of i such that ai < x ≤ ai+1. Since |ai − x| + |ai+1 − x| = 1/n, and since for each y, f(·, y) is

continuous,

lim
n→∞

fn(x, y) = f(x, y) .

Since pointwise limits of Borel functions are Borel, f is Borel.

13: Let {fn} be a sequence in L+(X,M, µ) such that fn → f pointwise, and such that∫
X
fdµ = lim

n→∞

∫
X
fndµ <∞ .

Then ∫
E
fdµ = lim

n→∞

∫
E
fndµ

for all E ∈M. However, this need not be true if
∫
X fdµ =∞.

SOLUTION: Let E ∈M. By Fatou’s Lemma,∫
E
fdµ =

∫
X

1Efdµ ≤ lim inf

∫
X

1Efndµ = lim inf
n→∞

∫
E
fndµ .

Since E ∈M is arbitrary, we also have that∫
Ec
fdµ ≤ lim inf

n→∞

∫
Ec
fndµ . (2.1)
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But this is the same as ∫
X
fdµ−

∫
E
fdµ ≤ lim inf

n→∞

(∫
X
fndµ−

∫
E
fndµ

)
=

∫
X
fdµ+ lim inf

n→∞

(
−
∫
E
fndµ

)
=

∫
X
fdµ− lim sup

n→∞

∫
E
fndµ .

where we used the fact that if {an} is a convergence sequence in R with limn→∞ an = a, and {bn} is any

sequence in R, then lim infn→∞(an + bn) = a+ lim infn→∞ bn.

Now, since by hypothesis
∫
X fdµ is finite we may cancel it and conclude that

lim sup
n→∞

∫
E
fndµ ≤

∫
E
fdµ .

Combining this with (2.1), we conclude that limn→∞
∫
E fndµ =

∫
E fdµ.

To see that the condition
∫
X fdµ <∞ is necessary, consider (X,M, µ) = (R,L,m), and define

fn(x) =


1 x ≤ 0

1/n 0 < x ≤ n
0 x > n

.

With f = 1(−∞,0], fn → f pointwise. Let E = (0,∞). Then
∫
E fdm = 0, while

∫
E fndm = 1 for all n.

19: Let {fn} be a sequence in L1(X,M, µ) such that fn → f uniformly. Then, if µ(X) <∞, f ∈ L1 and

limn →∞‖fn − f‖1 = 0. However, if µ(X) =∞ this need not be the case.

SOLUTION: Since fn → f uniformly, and hence pointwise, f is measurable. Now, suppose first that

µ(X) <∞. Since fn → f uniformly, for any ε > 0, there is an Nε so that for all n ≥ Nε, |fn(x)−f(x)| < ε.

But then for n ≥ Nε ∫
X
|fn − f |dµ ≤

∫
X
εdµ = εµ(X). (2.2)

Then since |f | ≤ |fn|+ |fn − f |, ∫
X
|f |dµ ≤

∫
X
|fNε |dµ+ εµ(X) <∞ ,

and so f ∈ L1.

Moreover, by (2.2), ‖fn − f‖1 ≤ εµ(X) for all n ≥ Nε, and since µ(X) < ∞, this means that

limn→∞ ‖fn − f‖1 = 0.

Now let fn ∈ L1(R,L,m) be given by

fn =
1

n
1[0,n]

and let f(x) = 0 for all x. Then for all x ∈ R and all ε > 0, |fn(x) − f(x)| < ε for all n > 1/ε. Thus,

fn → f uniformly. But
∫
R fndm = 1 for all n, and

∫
R fdm = 0.

25: Let f(x) = x−1/21(0,1). Let {qn}n∈N be an enumeration of the rationals, and define

g(x) =

∞∑
n=1

2−nf(x− qn) .
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Then g ∈ L1, and hence g is finite a.e., but for for all λ ≥ 1, every open interval I,

m(I ∩ {x g(x) > λ}) > 0 ,

so that g (and every function equal to it a.e.) is unbounded on every interval (and hence discontinuous

at every point). Moreover, g2 is finite a.e., but is not integrable on any interval.

SOLUTION: By direct computation,
∫
R fdm = 2, and by the translation invariance of the Lebesgue

integral,
∫
R f(· − qn)dm = 2 for all n. It follows that for all N ∈ N

∫
R

(
N∑
n=1

2−nf(· − qn)

)
dm ≤ 2 ,

and then by the Lebesgue Monotone Convergence Theorem,∫
R
gdm = lim

N→∞

∫
R

(
N∑
n=1

2−nf(· − qn)

)
dm ≤ 2 .

Hence g ∈ L1, and thus is finite a.e.

Next, note that for all λ ≥ 1

g(x) ≥ 2−nf(x− qn) ≥ λ on (qn, qn + 2−n/λ) .

If I = (a, b) is any open interval, then for some n, qn ∈ I, and then m(I ∩ (qn, qn + 2−n/λ)) > 0. On this

set, g ≥ λ. Hence m(I ∩ {x g(x) ≥ λ}) > 0 for all open intervals I.

If g were continuous at some x0, necessarily g would be bounded on an interval about x0. But we

have shown that this is not the case.

Finally, since f2(· − qn) is not integrable on any open interval containing qn, and since every open

interval in R contains qn for infinitely many n, and since g2 ≥ 2−2nf2(·−qn) for all n, g2 is not integrable

on any open interval.

36: If a Cauchy sequence of indicator fuctions is in L1(X,M, µ), it convergs to an indicator function in

L1(X,M, µ).

SOLUTION: Let {1En}n∈N be Cauchy sequence of indicator fuctions is in L1(X,M, µ). Then there is

a subsequence {1Enk}k∈N that converges µ-a.e. and in L1 to a measureable function f . Since 1Enk (x) ∈
{0, 1} for all k, f(x) ∈ {0, 1} on the set of convergence. Without loss of generality, we may redifine f to

be zero on the null set where there is no convergence. Thus, f(x) ∈ {0, 1} for all x, so f = 1E where

E = F−1({1}).

41: If (X,M, µ) is a σ-finite measure space, and fn → f a.e. µ there exist measurable sets

E1 ⊂ E2 ⊂ E3 ⊂ ...

with µ(∩∞n=1E
c
n) = 0 and such that fn → f uniformly on each En.

SOLUTION: Let An be a partition of X into measurable sets of finite measure. Let E1 be a subset of

A1 with µ(A1\E1) < 1 on which fn → f uniformly. This set exists by Egoroff’s Theorem.

Let B2 = A2 ∪ (A1\E1). Let E2 be a subset of B2 with µ(B2\E2) < 1/2. Notice that

(B2\E2) ∪ (E1 ∪ E2) = A1 ∪A2 , (2.3)
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and hence

(A1 ∪A2)\(E1 ∪ E2) ⊂ B2\E2 ,

and hence

µ((A1 ∪A2)\(E1 ∪ E2)) < 1/2 .

Continuing, in this way, we inductively define

Bn = An ∪Bn−1

and then define En to be a subset of B2 with µ(Bn\En) < 1/2n on which fn → f uniformly. This set

exists by Egoroff’s Theorem. If we suppose that

(Bn−1\En−1) ∪ (∪n−1j=1Ej) = (∪n−1j=1Aj) , (2.4)

which is true for n = 3 by (2.3), Then

(Bn\En) ∪ (∪nj=1Ej) = Bn ∪ (∪n−1j=1Ej)

= An ∪ (Bn−1 ∪ (∪n−1j=1Ej))

= An ∪ (∪n−1j=1Aj) = ∪n−1j=1Aj .

Thus, by induction, our construction yields (2.4) for all n. It follows that

µ((∪n−1j=1Aj)\ ∪
n−1
j=1 Ej) ≤ µ(Bn\En) < 2−2 .

In particular, for all m,n

µ(Am ∩ (∩nj=1E
c
j )) < 2−n

and so by continuity from above, using the fact that Am has finite measure,

µ(Am ∩ (∩∞j=1E
c
j )) = 0 .

Finally,

∩∞j=1E
c
j ) = ∪∞m=11[Am ∩ (∩∞j=1E

c
j )] .

and a countable union oset of measure zero is a set of measure zero. Hence

µ(∩∞j=1E
c
j )) = 0

as was to be shown.


