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The exercsies come from Folland’s text. The numbering follows the numbering in the text.

1 Solutions to Exercises from Chapter 1

3: Show that every o-algebra M that contains infinitely many distinct sets has a cardinality that is at
least as large as that of the continuum.

SOLUTION: Let A € M be such that neither A nor A¢ is empty. Define
Mys={ANB : Be M} .
Then M4 and M 4c are both o-algebras, and
Mpag=MagUMge .

If M4 contains inifnitely many distinct sets, then, by the pigeonhole priciple,at least one of M 4 and
M 4c contains inifnitely many distinct sets.

We now construct an infinite strictly decrwasing nested family of sets in M. First, pick A € M such
that neither A nor A° is empty. Define E; to be A if M4 contains inifnitely many distinct sets, and
otherwise take £y = A° in whihc case M e contains inifnitely many distinct sets. Either way, Mg,
contains inifnitely many distinct sets.

Now with E; defined for j < n, pick A inMg
be A if M4 contains inifnitely many distinct sets, and otherwise take E, = A°. Then, Mpg, contains

., such that neither A nor A° is empty. Define E,, to
inifnitely many distinct sets.

Clearly {E,}nen is a sequence in M such that F,1; C E, for all n, and the containment is strict:
E,NES ; # 0. Now define F,, = E, N ES, ;. This is evidently a sequence of infinitely many disjoint,
non-empty sets in M.

Now for each = € [0,1], let {b1(z),ba(z),b3(x),...} be the sequence of bits in its canonical binary
expansion. Define

A = J{Fn : bu(z) #0}

Then, as a counable union of sets in M, A, € M, and clearly the map
T A,

is injective into M. This proves that the cardinality of M is at least as large as that of the continuum.
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REMARK The were a number of mistaken contruction of the infinite disjoint sequence of non-empty
sets. Many attempts went roughly along the following lines:
Ler {E,}nen be a sequence of infinitely many distinct sets in M. Define F; = Ej, and for n > 1
define F,, € M by
F,=E,Nn(FLU---UF,_1)°.

(Note that M is closed under the operations used to form F3,.)

The problem is that for all but finitely many n, F,, = (.For example, let Fy = E{. Then F; = FEy,
Fy = Ef, and F,, = ) for all n > 3. Also, one could have E,,, = X, the whole spaces, for some m. Then
F, =0 for all n > m.

4: An algebra A is a o-algebra if and only if it is closed under countable increasing unions.

SOLUTION: All o-algebras are algebra that are closed under countable union, and hence they are
ertinaly closed under countable increasing unions. For the converse, let A be an algebra that is closed
under countable increasing unions.

Algebras are always closed under complements, so we need only show that A under countable unions.
Using the identity Given any sequence {4, }nen in A, define B,, = U;-lzlAj. Then for all n, B,, C Bp+1,
and B, € A since any algebra is closed under finite unions. But

GAJ' = GBj cA
j=1 j=1

by the closure undert countable increasing unions. Hence A is closed under countalbe unions.

5: If M = o(€), then M is the union of all of the o-algebras generated by countable subsets of .
countable increasing unions.

SOLUTION: Let F be a countable subset of £. Then clearly,
o(F)Co(&)=M.

Therefore, if we define
N = U{U(]:) : F C €& is countable } |

we have N C M.

Note that £ C N. Hence, if we show that N is a o-algebra, it will follow that M C N. Together
with what we have said above, this would prove that N' = M.

If A e N, then A € o(F) for some cuntable subset F of £. But o(F) is closed undercomplementation,
o

Aeo(F)CN.

Thus, NV is closed under complementation.
Next, let {A;},en be a sequence of sets in N'. Then each A, € o(F,) for some cuntable subset F\ of
E. Define

(e.)
F=U7F.
n=1
whihci s a countable subset of £ since countable unions of countable sets are countable. Thus,

A, eo(F)CN
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for all n, and since o(F) is closed under countable unions,
o
U A, €o(F)CN.
n=1
Thus, N is closed under countable unions as well as complements, and hence is a o-algebra.

2 Solutions to Exercises from Chapter 2

3: If {f,} is a sequence of complex valued measurable functions on (X, M), then
E:={z : lim f,(x) exists }
n—oo

is a measurable set.

SOLUTION: Suppose that f is real. Let gi(z) = liminf, ,~ fn(z) and let go(z) = limsup,,_, . fn(x).
These are measurable by proposition 2.7, and then h = g; — g2 is measurable by Proposition 2.6. Then
since

E={z: h(z)=0} = hil({o}) )

and since {0} is a Borel subset of R, E € M.

For f complex, apply the argument separately to the real and imaginary parts of f, and take the
intersection of the two sets on which the separate limits exist.
4: If f=1((r,00)) is measurable for each rational r, then f is measurable.

SOLUTION: It suffices to show that f~1((r,00)) is measurable for each a € R. Let 7, be a sqnece of
rational that decreases to a. Then

FH((a,00)) = |J f M ((ras0))
n=1

and the latter is a countable union of measurable sets.
5: If X = AU B where A and B are measureable, the f is measaureable if and only if the restrictions of
f to A and B are measureable.

SOLUTION: Assume f is real values, or else apply the following to the real and imaginary parts. For
all a € R,

FH(a,00)) N A = (fla)((a,00))

and likewise for B.
Thus is f is measuarable, the left side is measurable and hence f|4 is measurale, and likewise for f|p.
On the other hand, if f|4 is measurale, so is the left side, and likewise f~1((a,00)) N A.

8: Show that if f : R — R is monotone, then f is Borel measurable.

SOLUTION: Suppose, without loss of generality, that f is monotone increasing, Then for all ¢ € R,
either f~!((a,00)) = R or @, or is of the form [b, 00) or (b, c0) for some b € R. In any case, f~((a,0)) €
Br for all a, and since these rays generate Bgr, f is Borel measurable.

11: Show that if f : R™ — C is separately continuous in each if x1, ..., z,, then f is Borel measurable.
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SOLUTION: We proceed by induction on the dimension. The case n = 1 is trivial since for n = 1,
separate continuity is continuity, which implies Borel measurability.

Now suppose the proposition is established for all n < k, and let f : R x R* be a function such that
for each z € R, f(z,-) is Borel measurable on R¥, and such that for each y € R, f(-,y) is continuous on
R. By the inductive hypothesis, if f : R¥Fl — R is separately continuous it satisfies this property, and
so it suffices to show under these more general conditions that f is Borel measurable on RF 1.

For each integer i, define a; = i/n, and define the functions

8i(0) = o Ml (@) and (@) = ) (0)
These are both evidently the products of two Borel functions on R**1, since the coordinate projection
(x,y) — x is continuous and hence Borel, we see that ¢; and v; are Borel on R+ for each i.
Next, by continuity of coordinate projections and by hypothesis,

(z,y) =y~ flai,y)

is Borel on R¥*! for each i.
Now again using the fact that sums and products of Borel functions are Borel,

Fal@,y) = [f(airn,y) i) + flas, y)ibi(x)]
1€EL

is Borel measurable on R*+!1. (Note that the sum converges since each summand is non-zero for exactly
one value of x.)

Notice that for each z and y, f,(z,y) is a convex combination of f(a;,y) and f(a;+1,y) for the unique
value of i such that a; < x < a;4;. Since |a; — x| + |aj+1 — x| = 1/n, and since for each y, f(-,y) is
continuous,

Jim fo(2,y) = f(2,9) -

Since pointwise limits of Borel functions are Borel, f is Borel.

13: Let {f,} be a sequence in LT (X, M, u) such that f, — f pointwise, and such that

/ fdu = lim / fndu < 00
X n—oo X

/ fdp = lim / fndp
E n—oo E
for all E € M. However, this need not be true if fX fdu = oo.

Then

SOLUTION: Let £ € M. By Fatou’s Lemma,
/ fdu = / lpfdu < liminf/ 1gfodu = liminf/ fndp .
E X X n—oo Jp
Since E € M is arbitrary, we also have that

fdp <liminf [ fdu . (2.1)
Jo n—oo [ pe
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But this is the same as

A

fdp—f fdp < liminf fodp — | fodp
X E X E
= /fdu—i—linrgioréf (—/fndu>
X E

= /fd,u—lim sup/fndu.
X n—oo JE

where we used the fact that if {a,} is a convergence sequence in R with lim,_,~ a, = a, and {b,} is any
sequence in R, then liminf,, ,~ (an + b,) = a + liminf,,_, by,.
Now, since by hypothesis [  Jfdu is finite we may cancel it and conclude that

lim sup / fnd,ug/fdu.
n—oo JE E

Combining this with (2.1), we conclude that lim, s [ fudp = [ fdp.
To see that the condition [y fdu < co is necessary, consider (X, M, ) = (R, £, m), and define

1 <0
fa(@)=<1/n 0<z<n .
0 r>n

With f = 1(_q], fn = f pointwise. Let E = (0,00). Then [}, fdm = 0, while [, f,dm =1 for all n.

19: Let {f,} be a sequence in L'(X, M, 1) such that f,, — f uniformly. Then, if u(X) < oo, f € L' and
lim,, — oo||fn, — f|j1 = 0. However, if ;1(X) = oo this need not be the case.

SOLUTION: Since f, — f uniformly, and hence pointwise, f is measurable. Now, suppose first that
pu(X) < oco. Since f,, — f uniformly, for any € > 0, there is an N, so that for all n > N, |fn(2)—f(z)] <e.
But then for n > N,

[t = < [ cdn = entx), (2:2)
X X

Then since |f| < |ful + |fn — fl,
J A< [ i+ eutx) < oo
X X

and so f € L.
Moreover, by (2.2), ||fn — fll1 < eu(X) for all n > N, and since pu(X) < oo, this means that

limy, 00 an - f”l =0.
Now let f, € L'(R, £, m) be given by

1
Jn = —1ion
n

and let f(xz) = 0 for all z. Then for all x € R and all € > 0, |f,(z) — f(z)| < € for all n > 1/e. Thus,
frn — f uniformly. But fR fndm =1 for all n, and fR fdm = 0.

25: Let f(x) = x_1/21(071). Let {gn}nen be an enumeration of the rationals, and define

g(@) =3 2" f(z — qn) .
n=1
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Then ¢g € L', and hence g is finite a.e., but for for all A > 1, every open interval I,
m(INn{z g(z)>A}) >0,
so that g (and every function equal to it a.e.) is unbounded on every interval (and hence discontinuous
at every point). Moreover, g is finite a.e., but is not integrable on any interval.

SOLUTION: By direct computation, fR fdm = 2, and by the translation invariance of the Lebesgue
integral, [ f(- — gn)dm = 2 for all n. It follows that for all N € N

N
/R <Z 27" (- qn)> dm <2,

and then by the Lebesgue Monotone Convergence Theorem,

N
gdm = lim 27 f(-—qn) |dm < 2.
o= e f (3

Hence g € L', and thus is finite a.c.
Next, note that for all A > 1

g@) 227" f(x —q) > A on  (gn,qn +27"/N) .

If I = (a,b) is any open interval, then for some n, ¢, € I, and then m(I N (¢n, qn +27"/A)) > 0. On this
set, ¢ > A. Hence m(I N{z g(x) > A}) > 0 for all open intervals I.

If g were continuous at some x, necessarily g would be bounded on an interval about xg. But we
have shown that this is not the case.

Finally, since f2(- — g,) is not integrable on any open interval containing g,, and since every open
interval in R contains ¢, for infinitely many n, and since g? > 272" f2(. —¢,) for all n, g2 is not integrable

on any open interval.

36: If a Cauchy sequence of indicator fuctions is in L*(X, M, i), it convergs to an indicator function in
LY(X, M, ).

SOLUTION: Let {1g, },en be Cauchy sequence of indicator fuctions is in L'(X, M, u). Then there is
a subsequence {1p, }ken that converges yi-a.e. and in L' to a measureable function f. Since 1 B, (2) €
{0,1} for all k, f(z) € {0,1} on the set of convergence. Without loss of generality, we may redifine f to
be zero on the null set where there is no convergence. Thus, f(x) € {0,1} for all z, so f = 1g where

B = FI({1}).
41: If (X, M, u) is a o-finite measure space, and f, — f a.e. u there exist measurable sets
ElCEQCE;gC...

with (NS, ES) = 0 and such that f,, — f uniformly on each E,.

SOLUTION: Let A, be a partition of X into measurable sets of finite measure. Let FE; be a subset of
Ay with u(A;\E1) < 1 on which f,, — f uniformly. This set exists by Egoroff’s Theorem.
Let By = Ay U (A1\E1). Let Ey be a subset of By with u(Bs2\E2) < 1/2. Notice that

(B2\E2) U (E1 U E) = A1 U Ag (2.3)
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and hence
(Al U AQ)\(El U EQ) C BQ\EQ ,

and hence
1((A1 U A)\(E1 U Ey)) < 1/2.

Continuing, in this way, we inductively define
B,=A,UB,_1

and then define E,, to be a subset of By with u(B,\E,) < 1/2"™ on which f,, — f uniformly. This set
exists by Egoroff’s Theorem. If we suppose that

(Bu1\En1) U(UIZ E)j) = (UjZ] 4;) (2.4)
which is true for n = 3 by (2.3), Then
(Bn\Ey) U (U?:IE]') = ByU (Uglz_llEj)

= A,U (B'n,—l U (U;’:—%Ej))
= A, U(UZAj) =U'ZIA; .

Thus, by induction, our construction yields (2.4) for all n. It follows that

p(UjZL AP\ VIS Bj) < u(Ba\En) <272

In particular, for all m,n
p(Am N (NG E5)) <277

and so by continuity from above, using the fact that A,, has finite measure,
(A O (ML ES)) = 0.

Finally,
NS ES) = Upe_ 1 [Am N (NS2,EX)]

and a countable union oset of measure zero is a set of measure zero. Hence
o) c\
w(N52E5)) =0

as was to be shown.



