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Abstract

These are some notes on the Poisson process.

0.1 The Poisson Process

Let {Tj}j∈N be an independent identically distributed sequence such that for some λ > 0, and all

t ≥ 0.

P (T1 > t) = e−λt .

That is, each Tj is exponentially distributed with parameter λ.

Define random variables Uk, k ∈ N, by

Uk =
k∑
j=1

Tj .

Think of the Tj’s as the times when a random alarm clock goes off: After each ring, the clock

is reset, so Uk is the time at which the kth random ring occurs. We now define a family of random

variables Nt parameterized by t ≥ 0 by defining Nt be the number of rings that have occurred by

time t. That is

{Nt = k} = {Uk ≤ t} ∩ {Uk+1 > t} . (0.1)

0.1 LEMMA. for each k ∈ N, the probability density function of Uk is

gk(u) =
(λu)k−1

(k − 1)!
λe−λu .

Proof. The joint probability density function of (T1, . . . Tk) is

f(t1, . . . , tk) = λk
k∏
j=1

e−λttj = λke−λ(t1+···+tk) .
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Consider the change of variables

uk(t1, . . . , tk) =
k∑
j=1

tj .

The the Jacobian matrix of this linear transformation is the k × k matrix with every entry on or

below the diagonal being 1, and every entry above the diagonal being 0.

It follows that ∣∣∣∣ ∂(t1, . . . , tk)

∂(u1, . . . , uk)

∣∣∣∣ =

∣∣∣∣∂(u1, . . . , uk)

∂(y1, . . . , yk)

∣∣∣∣ = 1 .

Then by the change of variables formula, the joint probability density function of (U1, . . . , Uk) is

g(u1, . . . , uk) =

{
λke−λuk 0 ≤ u1 ≤ u2 ≤ · · · ≤ uk

0 otherwise
.

Finally, computing the marginal distribution,

gk(u) = λke−λu
∫
0≤u1≤u2≤···≤uk−1≤u

1du · · · duk−1 .

Doing the k − 1 successive integrations yields the factor of uk−1/(k − 1)!.

0.2 LEMMA. For each k ∈ N, and each t > 0,

P (Nt = k) =
(λt)k

k!
e−λt .

Proof. By (0.1) and Lemma 0.1,

P (Nt = k) =

∫ t

0

(λu)k−1

(k − 1)!
λe−λudu−

∫ t

0

(λu)k

k!
e−λuλdu .

But, integrating by parts,∫ t

0

(λu)k−1

(k − 1)!
λe−λudu =

∫ t

0

d

du

(
(λu)k

k!

)
e−λudu

=

(
(λu)k

k!

)
e−λu

∣∣∣∣t
0

+

∫ t

0

(λu)k

k!
λe−λudu

=
(λt)k

k!
e−λt +

∫ t

0

(λu)k

k!
λe−λudu .

Now recall the “memoryless” property of the exponential distribution: For each j,

P (Tj ≥ t+ s|Tj ≥ t) = P (Tj ≥ s) .

This means that if we know that Nt = k, the distribution of the alarm-bell rings that occur in the

interval [t, t + s] is exactly the same as the distribution of the alarm-bell rings that occur in the
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interval [0, s], and moreover, provided t > s so that there is no overlap of [0, s] and [t, t+ s], these

two random numbers are independent: The Poisson process “starts afresh” at time t, independent

of what has happened before time t be the memoryless property of the exponential distribution.

This same reasoning yields:

0.3 THEOREM. For all 0 ≤ a < b ≤ c < d, Nb − Na and Nd − Nc are independent random

variables with

P (Nb −Na = k) =
(λ(b− a))k

k!
e−λ(b−a) and P (Nb −Na = `) =

(λ(d− c))`

`!
e−λ(d−c) .

The theorem says that the number of “alarm bell rings” in disjoint intervals are independent,

and that these numbers depend only on the length of the interval and not on its location; the

distribution is Poisson with parameter being the product of the length of the interval and the

underlying exponential rate λ.

Note also that for small h > 0,

P (Nh ≥ 2) =
∞∑
k=2

1− e−λh − λhe−λh ,

and by L’Hospital’s Rule,

lim
h↓0

P (Nh ≥ 2)

h
= 0 .

That is, P (Nh ≥ 2) = o(h).


