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Abstract

These are some notes on the main limit theorems of probability theory.

0.1 The empirical mean

Let Xjj∈N be an infinite sequence of independent identically distributed real valued random vari-

ables on some probability space. The empirical mean at N observations, sometimes called the

sample mean, is the random variable

XN(ω) =
1

N

N∑
j=1

Xj(ω) . (0.1)

The Strong Law of Large Numbers says that provided E|X1| <∞,

lim
N→∞

XN(ω) = EX1 (0.2)

for almost every ω.

Two fundamental theorems give further information given stronger information on X1. If it is

also true that

σ2 := E(X1 − EX1)
2 <∞ (0.3)

the Central Limit Theorem says that for all x ∈ R,

lim
N→∞

Pr

{
1√
N

N∑
j=1

Xj − EXj

σ
> x

}
=

∫ ∞
x

1√
2π
e−y

2/2dy .

That is, if we define ZN =
1√
N

N∑
j=1

Xj − EXj

σ

XN = EX1 +
σ√
N
ZN

1
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where ZN is approximately normally distributed.

That is, the deviations of XN from its mean EX1 are typically of order N−1/2 for large N . The

Central Limit Theorem gives a complete description of the typical deviations, and they depend on

the distribution of X1 only through its mean EX1 and is variances σ2. In this sense the description

is universal.

Cramér’s Theorem (1938) describes large deviations from the mean, and in this case the de-

scription depends on the distribution of X1 through more than only the mean and variance, but

it provides more precise information. In these notes we prove and apply both of these theorems.

0.2 The Strong Law of Large Numbers

0.1 THEOREM (The Strong Law of Large Numbers). Let {Xj}j be sequence of independent

identically distributed random variables on some probability space (Ω, P ). Suppose that E(|X1|) <
∞, and put µ := E(X1). Then there is an even A ⊂ Ω with P (A) = 1 such that

limN→∞XN(ω) = µ

for every ω ∈ A.

0.2 Remark. An event E such that P (E) = 1 is called a sure event: The event E is sure to

happen. The Strong Law of Large Numbers specifies conditions under which the convergence of

the sample mean to the mean is sure to happen.

We will not prove Theorem 0.1 in full strength, to avoid technicalities that are better treated

in a course that makes use of measure theory. However, we shall prove a version that is only

slightly weaker, in that we make the stringer assumption that E(X4
1 ) < ∞, but we will also get

some information on how fast the limit sets in. =

0.3 LEMMA. Let {Xj}j be sequence of independent identically distributed random variables on

some probability space (Ω, P ). Suppose that E(X4
1 ) = K <∞, and that E(X1) = 0. Then

E(X
4

N) ≤ 10K

N2
.

Proof. By the definition,

E(X
4

N) =
1

N4

N∑
i,j,k,`=1

E(XiXjXkX`) .

By the independence, if i is different from each of j, k and `, Xi and XjXkX` are independent

and then

E(XiXjXkX`) = E(Xi)E(XjXkX`) = 0 ,

since E(Xi) = 0. Therefore the only terms that contribute to the sum are those in which the

indices are paired off. There are
(
4
2

)
= 6 ways to do this with two distinct pairs, and

(
4
1

)
= 4 ways

to do this with two identical pairs. Moreover, for i 6= j

E(X2
iX

2
j ) = E(X2

i )E(X2
j ) ≤ (E(X4

i ))1/2(E(X4
j ))1/2 = K ,
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and so

E(X
4

N) ≤ 6KN(N − 1)

N4
+

4KN

N4
≤ 10K

N2
.

Now pick ε > 0. Then |XN | ≥ ε if and only if X
4

N ≥ ε4, and by Markov’s inequality,

P (X
4

N ≥ ε4) ≤ E(X
4

N)

ε4
.

Therefore, using the lemma proved just above, if we define AN,ε := {|XN | ≥ ε}, we have

P (AN,ε) ≤
10K

N2ε4
.

and therefore that
∞∑
N=1

P (AN,ε) <∞ .

Now define 1AN.ε to be the random variable

1AN.ε(ω) =

{
1 ω ∈ AN,ε
0 ω /∈ AN,ε

.

Define

Bε = {ω : ω ∈ AN,ε for infinitely many values of N} .

For all ω ∈ Bε,
∞∑
N=1

1AN.ε(ω) =∞ .

But

E

(
∞∑
N=1

1AN,ε

)
=

∞∑
N=1

E(1AN,ε) =
∞∑
N=1

P (AN,ε) <∞ .

This is impossible unless P (Bε) = 0. Therefore, define Aε = Bc
ε , and we have P (Aε) = 1, and for

all ω ∈ Aε, |XN(ω)| > ε for only finitely many values of N .

Finally, we define A := ∩∞n=1A1/n. Then by the axioms of probability, (or the Dominated

Convergence Theorem in a measure theory based approach),

P (A) = lim
n→∞

P (A1/n) = 1 .

By construction, for each ω ∈ A and each n ∈ N, |XN ≥ 1/n for only finitely many values of

N , and this means that

lim
N→∞

XN(ω) = 0 .

Finally, if instead we have E(X1) = µ 6= 0, define X̃j = Xj − µ, and apply the analysis made

above to {X̃j}j∈N.
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0.3 The Central Limit Theorem

Let {Xj}j∈N be an independent identically distributed sequence of random variables with zero

mean and unit variance so that, for all j, E(Xj) = 0 and E(X2
j ) = 1. Define

XN =
1

N

N∑
j=1

Xj .

Let {Yj}j∈N be an independent distributed sequence of standard norm random variables. Define

Y N =
1

N

N∑
j=1

Yj .

Recall the that sum of independent normal random variables is again normal. There for
∑N

j=1 Yj is

normal. Since means add for sums of random variables, and variances add for sums of independent

random variables.
∑N

j=1 Yj has mean zero and variance N . It follows that

√
NY N

is a standard normal variable.

In other words,
1√
N

N∑
j=1

Yj is a standard normal random variables. The Central Limit Theorem,

to be proved in this section, is often discussed in terms of this formula, normalized with the square

root in the denominator. However, make the relation between the three main limit theorems

discussed in these notes, we prefer to express them all in terms of the sample mean, so we divide

our sums by N to obtain the sample mean, which in this case would have variance 1/N , and then

we multiply by
√
N to bring the variance back up to 1.

Since
√
NY N is standard normal, for any bounded piecewise continuous function g,

E(g(
√
NY N)) =

∫
R
g(y)

1√
2π
e−y

2/2dy .

0.4 THEOREM (Central Limit Theorem). Let {Xj}j∈N be an independent identically distributed

sequence of random variables with zero mean and unit variance so that, for all j, E(Xj) = 0 and

E(X2
j ) = 1. Define

XN =
1

N

N∑
j=1

Xj .

Then for any bounded piecewise continuous function g,

lim
N→∞

E(g(
√
NXN)) =

∫
R
g(x)

1√
2π
e−x

2/2dx . (0.4)
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In particular, for any a ∈ R, define

g(x) =

{
1 x ≤ a

0 x > a ,
(0.5)

Then

E(g(
√
NXN)) = P (

√
NXN ≤ a) and

∫
R
g(x)

1√
2π
e−x

2/2dx = Φ(a) .

Therefore, one special case of Central Limit Theorem is that for each a ∈ R,

lim
N→∞

P (
√
NXN ≤ a) = Φ(a) .

We shall first prove something a bit less: We will assume more about X1 and g. About X1 we

assume that E(|X1|3) <∞. About g, we assume that it is three times continuously differentiable

and g, g′, g′′ and g′′′ are all uniformly bounded function on R. The first assumption is not a serious

restriction, and it could be dropped by making the proof slightly more technical, as is discussed

below. The second assumption rules out functions like the one in (0.5), but we can approximate

the function in (0.5) by nice smooth functions arbitrarily closely, so that as explained below, one

we know the theorem for nice functions, it is easy to prove it in general.

0.5 LEMMA. Let g be a function with three continuous derivatives such that for some finite

constant C,

max{g(x), g′(x), g′′(x), g′′′(x)} ≤ C (0.6)

for all x. Let {Xj}j∈N be any sequence of independent, identically distributed random variables

such that E(Xj) = 0 and Var(Xj) = 1. Suppose further that for some K <∞, E|X̃1|3 = K. Then

lim
n→∞

Eg
(√

NXN)
)

=
1√
2π

∫
R
g(x)e−x

2/2dx .

Proof. With {Xj}j∈N and {Yj}j∈N as above, define S̃n =
∑n

j=1 T̃j, and put Sn =
∑n

j=1 Tj as before.

For each k = 0, . . . , n, define

WN,k :=
1√
N

(
k∑
j=0

Xj +
N∑

j=k+1

Yj

)

Then WN,0 =
√
N Y N and WN,N =

√
N XN . Therefore, we have the telescoping sum

g
(√

N XN

)
− g

(√
N Y N

)
= g (WN,N)− g (WN,0) =

N−1∑
k=0

[g (WN,k+1)− g (WN,k)] .

By linearity of the expectation, and the fact that
√
N Y N is standard normal,

g
(√

N XN

)
= g

(√
N Y N

)
+

N−1∑
k=0

E [g (WN,k+1)− g (WN,k)]

=

∫
R
g(x)

1√
2π
e−x

2/2dx+
N−1∑
k=0

E [g (WN,k+1)− g (WN,k)] . .
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Therefore, it remains to be shown that

lim
N→∞

(
N−1∑
k=0

E [g (WN,k+1)− g (WN,k)]

)
= 0 . (0.7)

We accomplish this with a Taylor expansion. The sums defining WN,k+1 and WN,k differ only

in the (k + 1)st term. Define

UN,k =
1√
N

(
k∑
j=0

Xj +
N∑

j=k+2

Yj

)

Then

WN,k+1 = UN,k +
1√
N
Xk+1 and Wn,k = Un,k +

1√
N
Yk+1 .

Therefore, by Taylor’s Theorem,

g (WN,k+1) = g (Un,k) + g′ (Un,k)
Xk+1√
N

+
1

2
g′′ (Un,k)

(
Xk+1√
N

)2

± C

∣∣∣∣Xk+1√
N

∣∣∣∣3 .

Taking the expectation, since E(Xk+1) = 0, E((Xk+1)
2) = 1 and E(|Xk+1|3) = K, and using the

independence of Tk+1 and Un,k, we have

Eg (WN,k+1) = Eg (UN,k) +
1

2
Eg′′ (UN,k)

1

N
± C

N3/2
.

Since we also have E(Yk+1) = 0, E(Yk+1)
2 = 1 and E|Yk+1|3 = 4√

2π
=: K0, we have by the exact

same reasoning that

Eg (WN,k) = Eg (Un,k) +
1

2
Eg′′ (UN,k)

1

N
± CK0

N3/2
.

In our expressions for Eg (WN,k+1) and Eg (WN,k), it is only the remainder terms that differ,

and this shows shows that

|Eg (WN,k+1)− Eg (Wn,k)| ≤
C(K +K0)

N3/2
,

and hence proves (0.7).

To pass from the lemma that we have proved to the theorem we have stated, we just need to

explain how the additional assumptions in the lemma can be relaxed. This uses simple results

form analysis. The requirement that E|Yj|3 <∞ was used only because we used the simplest form
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of the remainder in Taylor’s Theorem. Working harder with the integral form, one can show that

nothing more is needed than E|Yj|2 <∞, which is already required to have a finite variance.

To relax the assumptions on g, let us fix and a ∈ R, consider the function g defined in (0.5) as

an example. Now fix any ε > 0. By “rounding the corners” one can find functions g0 and g1 such

that

0 ≤ g0(x) ≤ g(x) ≤ g1(x) ≤ 1

for all x, and g1(x)− g0(x) = g(x) for all x with |x− a| > ε, and finally such that g0 and g1 satisfy

(0.6) for some finite C. Note that C will diverge to infinity as ε tends to zero, but we can use the

same C value for all a ∈ R – C depends on how you smooth the jump, but not where it is.

We then have, using ≤ g0(x) ≤ g(x) ≤ g1(x),

E(g0(
√
N XN) ≤ E(g(

√
N XN) ≤ E(g1(

√
N XN) .

Taking N sufficiently large, the lemma assures us that

E(g1(
√
N XN) ≤ 1√

2π

∫
R
g1(x)e−x

2/2dx+ ε

and

E(g0(
√
N XN) ≥ 1√

2π

∫
R
g0(x)e−x

2/2dx− ε

But ∫
R
|g1(x)− g0(x)|e−x2/2dx ≤ 1√

2π
2ε ≤ ε .

Therefore, using ≤ g0(x) ≤ g(x) ≤ g1(x) once more,

E(g1(
√
N XN) ≤ 1√

2π

∫
R
g(x)e−x

2/2dx+ 2ε

and

E(g0(
√
N XN) ≥ 1√

2π

∫
R
g(x)e−x

2/2dx− 2ε .

Since epsilon is arbitrary, this proves (0.4) when g is given by (0.5), and moreover, it shows that

the convergence is uniform in a. That is,

lim
N→∞

P

(
XN ≤

a√
N

)
= Φ(a) , (0.8)

with the convergence uniform in a.

0.6 EXAMPLE. Let {Xj}j∈N be independent an identically distributed with P (X1 = 1) =

P (X1 = −1) = 1
2
. Then X1 has zero mean and unit variance. Take a = 3. The Central Limit

Theorem says that for large N ,

lim
N→∞

P

(
XN >

3√
N

)
≈ 1− Φ(3) ≈ 0.0013 .
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However, for N = 104, 3√
N

= 0.03. Let Z be a random variable with P (Z = 1) = p and

P (Z = −1) = 1− p. Then E(Z) = 2p− 1, so we would have E(Z) = 0.03 for p = 0.515 so there

is a non-negligible chance that a fair coin might appear to have a significant bias even after 104

trials – assuming the the normal approximation is already valid. but for N = 106, 3√
N

= 0.003,

and then it is quite unlikely that the sample mean differs from zero by more than ±0.003.

The Central Limit Theorem may be easily applied to any independent identically distributed

sequence {Zj}j∈N when Z1 has a finite second moment. Then the mean µ and variance σ2 are also

finite, and we define

Xj =
Zj − µ
σ

.

XN =
ZN − µ

σ
,

and Xjj∈N is an independent identically distributed sequence with zero mean and unit variance,

and we may apply the Central Limit Theorem to it to conclude that

lim
N→∞

P

(
ZN − µ

σ
≤ a√

N

)
= Φ(a) ,

or equivalently,

lim
N→∞

P

(
ZN ≤ µ+

σa√
N

)
= Φ(a) ,

0.4 Cramér’s Theorem

Cramér’s Theorem (1938) describes large deviations from the mean, and in this case the description

depends on the distribution of X1 through more than merely its mean and variance.

For a real valued random variable X, define the function pX on R by

pX(λ) = log
(
EeλX

)
(0.9)

and define sX(x) by

sX(x) = sup
λ>0
{λx− pX(λ)} . (0.10)

0.7 THEOREM (Cramér’s Theorem). Let {Xj}j∈N be an infinite sequence of independent iden-

tically distributed real values randoms variables on some probability space. For all x ∈ R, the

sequence
{

1
N

log Pr
{
XN > x

}}
N∈N converges as N →∞, and

lim
N→∞

1

N
log Pr

{
XN > x

}
= −sX1(x) , (0.11)

and for all N ,
1

N
log Pr

{
XN > x

}
≤ −sX1(x) (0.12)
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0.8 Remark. For any non-constant random variable X, the function pX(λ) is strictly convex on

any interval on which is it finite: Differentiating twice, we find

p′X(λ) =
E(XeλX)

E(eλX)
and p′′X(λ) =

E(X2eλX)

E(eλX)
− (E(XeλX))2

(E(eλX))2
. (0.13)

In particular, taking λ = 0, and assuming that pX(λ) is finite on an open interval about λ = 0,

p′X(0) = E(X) and p′′X(0) = Var(X) . (0.14)

To see that p′′X(λ) > 0 for other λ, note that, as a consequence of (0.14),

E(eλX)p′′X(λ) = E

((
X − eλX

E(eλX)

)2

eλX

)
> 0 .

The strict convexity proved in the previous remark is very helpful in computing the function

sX(x) = supλ>0{λx− pX(λ)} that we need to compute to apply Cramér’s Theorem:

0.9 LEMMA. Fix x ∈ R, Suppose that there exists a value λ0 in the interval on which pX(λ) is

finite such that

x = p′X(λ0) . (0.15)

If x > E(X), then λ0 > 0, and

sX(x) = sup
λ>0
{λx− pX(λ)} = λ0x− pX(λ0) . (0.16)

On the other hand, if x < E(X), then λ0 < 0, and

sX(x) = sup
λ>0
{λx− pX(λ)} = 0 . (0.17)

Proof. For fixed x, define the function ϕ(λ) = λx − pX(λ). Then ϕ(λ) is strictly concave, and

hence then φ′ is strictly decreasing: If λ0 is such that ϕ′(λ0) = 0, then φ′(λ) > 0 for λ < λ0, and

φ′(λ) < 0 for λ > λ0. Therefore, if λ0 > 0, then

sup
λ>0
{λx− pX(λ)} = λ0x− pX(λ0) ,

while if λ0 < 0, the supremum is attained by letting λ get as close as possible to λ0; i.e., by taking

λ = 0. Then since pX(0) = 0,

sup
λ>0
{λx− pX(λ)} = 0.

Next, since 0 = ϕ′(λ0) = x − p′X(λ0), we have p′X(λ0) = x, and we have seen above that

p′X(0) = E(X). Since pX(λ) is strictly convex, p′X(λ) is strictly increasing, and so λ0 > 0 if and

only if x > E(X).

Lemma 0.9 tells us the following: For x > E(X), to compute sX(x), we should try to solve the

equation x = pX(λ). If we find a solution λ0, then s(x) = λ0x − pX(λ9). It also tells us that if

x < E(X), then sX(x) = 0.
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0.10 EXAMPLE. The most basic example is already very interesting. Suppose that {Xj}j∈N is

an i.i.d. sequence of fair coin tossing variables. Then for each j, Xj takes values in {−1, 1} and

Pr{X1 = 1} = Pr{X1 = −1} = 1/2 , (0.18)

so that {Xj}j∈N models a sequence of fair coin tosses.

We compute EeλX1 = 1
2
(eλ + e−λ) = cosh(λ) so that

pX1(λ) = log(cosh(λ)) .

Therefore,

p′X1
(λ) =

sinh(λ)

cosh(λ)
=
eλ − e−λ

eλ + e−λ
=

1− e−2λ

1 + e−2λ
.

Now the equation we must solve, (0.15), becomes

x =
1− e−2λ

1 + e−2λ

and the solution is

λ0 =
1

2
log

(
1 + x

1− x

)
.

Therefore, by Lemma 0.9, sX1(x) = xλ0 − pX1(λ0), and calculating

cosh(λ0) =
1

2

((
1 + x

1− x

)1/2

+

(
1− x
1 + x

)1/2
)

=
1√

1− x2
.

Therefore,

sX1(x) =

{
1
2
(1 + x) log(1 + x) + 1

2
(1− x) log(1− x) 0 < x ≤ 1

+∞ x > 1 .

If Z is a {−1, 1} valued random variable with Pr{Z = 1} = p, then EZ = 2p−1 and if {Zj}j∈N
is an i.i.d. sequences of such random variables, and ZN denotes its empirical mean, then by the

Law of Large Numbers,

lim
N→∞

ZN = 2p− 1 .

Thus, one can measure p by evaluating ZN(ω) for large N . What is the probability that we get

this wrong, and how does this probability of error depend on N? Cramér’s Theorem provides the

answer. Suppose that we return to our i.i.d. sequence for fair coin tossing, and that we sample N

times. What is the probability that XN ≥ 2p− 1 for some p > 1/2?

By Cramér’s Theorem,

lim
N→∞

1

N
log(Pr{XN > 2p− 1}) = sX1(2p− 1) = p log (2p) + (1− p) log (2(1− p)) ,

and for all N ,

Pr{XN > 2p− 1} ≤ e−NsX1
(2p−1)
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For example, suppose we are testing a truly fair coin by making a sequence of tosses. What is

the probability that after N tosses, it looks like a coin for which p = Pr{X1 = 1} ≥ 0.51?

We compute

sX1(0.02) = 0.000200013333... .

Cramér’s Theorem gives us the upper bounds

Pr{X104 > 0.02} ≤ 0.136 Pr{X105 > 0.02} ≤ 0.206×10−8 Pr{X106 > 0.02} ≤ 0.137×10−87 .

The probability that a fair coin will appear to have a one percent bias after a million tosses is

negligibly small.

0.11 EXAMPLE. We now consider another example. Let {Xj} be independent and identically

distributed with P (X1 > x) = e−x. These random variables have mean 1, and variance 1. Since

the variance is the same as it is for the coin-tossing variables in the previous example, the Central

Limit Theorem gives the same prediction for the size of the fluctuations about the sample mean.

However, for N = 105, noticeable fluctuations above the mean are much more likely in this example

than in the coin tossing example, as we shall see. This is due to the long “tail” of the exponential

distribution.

We compute

pX1(λ) =

{
− log(1− λ) λ < 1

∞ λ ≥ 1 .
.

To maximize λx− pX1(λ), we solve (0.15), which reduces to

x =
1

1− λ
.

This leads to

sX1(x) =

{
x− 1− log x x > 1

0 x < 1
.

We compute

sX1(1.02) = 0.0001973727... .

This time we get the bound

P (X105 ≥ 1.01) ≤ 0.268× 10−8

which is small, but about 20% larger larger than what we found for the coin-tossing example. This

is because of the long “tail” of the exponential distribution. Other examples will show even greater

differences.
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0.5 Proof of Cramér’s Theorem

To prove Cramér’s Theorem, we make use of the i.i.d. property to write

(EeλX1)N = E

(
N∏
j=1

eλXj

)
= EeNλXN .

Therefore,

pX1(λ) =
1

N
log
(

EeNλXN

)
≥ 1

N
log
(
eNλxPr{eNλXN ≥ eNλx}

)
= λx+

1

N
log
(
Pr{XN ≥ x}

)
.

In this last equality, we have used the positivity of λ: Since λ > 0, eNλy ≥ eNλx if and only if

y ≥ x. If λ we negative, we would have instead that eNλy ≥ eNλx if and only if y ≤ x.

− 1

N
log
(
Pr{XN ≥ x}

)
≥ λx− pX1(λ) .

Since this is true for all λ > 0,

1

N
log
(
Pr{XN ≥ x}

)
≤ −p∗X1

(x) .

It remains to show that lim
N→∞

1

N
log
(
Pr{XN ≥ x}

)
and then that

lim
N→∞

1

N
log
(
Pr{XN ≥ x}

)
≥ −p∗X1

(x) .

However, we have completed the proof of the upper bound that we used above.


