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Abstract

These are some notes on the Inclusion-Exclusion Formula and its applications

0.1 The Inclusion-Exclusion Formula and Counting

Let S be any finite set, and let E1, E2 be any subsets of S. How are the cardinalities of E1, E2,

E1 ∪ E2 and E1 ∩ E2 related? The answer is:

0.1 PROPOSITION. Let S be any finite set, and let E1, E2 be any subsets of S. Then

#(E1 ∪ E2) = #(E1) + #(E2)−#(E1 ∩ E2) . (0.1)

The proof we give is not the shortest, but it has the merit of being readily adaptable to the

more complicated case of arbitrarily many subsets of S, and it is still quite clear. The Inclusion-

Exclusion Formula is the generalization of (0.3) to arbitrarily many sets.

Proof of Proposition 0.1. The union of the two sets E1 and E2 may always be written as the union

of three non-intersecting sets E1∩Ec
2, E1∩E2 and Ec

1∩E2. This is illustrated in the Venn diagram

below: E1 is represented by the circle on the left, and E2 is represented by the circle on the right.

Then E1 ∩ E2 is the overlap, while E1 ∩ Ec
2 and Ec

1 ∩ E2 are the parts in one circle and not the

other.

E1 ∩ E2E1 ∩ Ec
2 E2 ∩ Ec

1

1
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Evidently, E1 ∩ Ec
2, E1 ∩ E2 and Ec

1 ∩ E2 are mutually disjoint. To make the formulas that

follow more easily read, define

F1 := E1 ∩ Ec
2 , F2 := E1 ∩ E2 and F3 = Ec

1 ∩ E2 .

Then,

E1 = F1 ∪ F2, E2 = F2 ∪ F3 and E1 ∪ E2 = F1 ∪ F2 ∪ F3 . (0.2)

Since the sets F1, F2 and F3 are mutually disjoint, this means

#(E1) = #(F1)+#(F2), #(E2) = #(F2)+#(F3) and #(E1∪E2) = #(F1)+#(F2)+#(F3) .

Therefore,

#(E1) + #(E2) = #(F1) + #(F2) + 2#(F3) = #(E1 ∪ E2) + #(F3)

= #(E1 ∪ E2) + #(E1 ∩ E2) .

Rearranging terms we obtain (0.3).

0.2 The Inclusion-Exclusion Formula and Probability

In the proof of Proposition 0.1, the only property of the set function E 7→ #(E) that was used is

is that this function is additive over disjoint unions. That is, if {F1, . . . , Fn} is any collection of

mutually disjoint subsets of some finite set S, then

#
(
∪nj=1Fj

)
=

n∑
j=1

#(Fj) .

If S is any finite set equipped with any probability measure P , and {F1, . . . , Fn} is any collection

of mutually exclusive events in S, then

P
(
∪n

j=1Fj

)
=

n∑
j=1

P (Fj) .

Therefore, the proof of Proposition 0.1 also yields the probabilistic proposition:

0.2 PROPOSITION. Let S be any finite set equipped with a probability measure P , and let let

E1, E2 be any events in S. Then

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2) . (0.3)

0.3 EXAMPLE. Janet goes on vacation and takes two books. The probability that she will like

the first book is 2
3

The probability that she will like the second book is 1
2
. The probability that she

will like both books is 1
3
. What is the probability that she likes neither book?
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Let E1 be the event that she likes the first book. Let E2 be the event that she likes the second

book. Then E1 ∩ E2 is the event that she likes both books, and E1 ∪ E2 is the event that she likes

at least one of the books. The probability we seek is P ((E1 ∪ E2)
c), and since

P ((E1 ∪ E2)
c) = 1− P (E1 ∪ E2) ,

we can answer the question if we can compute P (E1∪E2). By Proposition 0.2 and the information

given above,

P (E1 ∪ E2) = 2
3

+ 1
2
− 1

3
= 5

6
,

and so the probability that Janet likes neither book is 1
6
.

0.3 The Inclusion-Exclusion Formula for Three Subsets

Let S be any finite set, and let E1, E2, E3 be any subsets of S. Associated to the set {E1, E2, E3}
is a set of 7 disjoint sets {F1, F2, F3, F12.F13, F23, F1,2,3} such that

E1 ∪ E2 ∪ E3 = F1 ∪ F2 ∪ F3 ∪ F12.F13 ∪ F23 ∪ F123 , (0.4)

and these sets are displayed in the following Venn diagram:

F3

F1 F2

F12

F123

F13 F23

In this diagram, E1 is represented by the upper-left circle, E2 is represented by the upper-right

circle, and E3 by the lower circle. Then, for j = 1, 2, 3, Fj is the set of elements of S that belong

to Ej, but not to the other two subsets. For 1 ≤ i < j ≤ 3, Fi,j is the set of elements of S that

belong to Ei and Ej, but not to the third subset. Finally, F123 = E1∩E2∩E3, the sets of elements

of S that belong to all three subsets.

Evidently, the sets in {F1, F2, F3, F12.F13, F23, F1,2,3} are mutually disjoint, and E1 ∪E2 ∪E3 is

the union of all 7 of them, as in (0.4). Moreover, by the disjointness, adding up the cardinalities

of the components in each circle, we have that

#(E1) = #(F1) + #(F12) + #(F13) + #(F123)

#(E2) = #(F2) + #(F12) + #(F23) + #(F123)

#(E3) = #(F3) + #(F13) + #(F23) + #(F123)
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and likewise

#(E1 ∩ E2) = #(F12) + #(F123)

#(E1 ∩ E3) = #(F13) + #(F123)

#(E2 ∩ E3) = #(F23) + #(F123) .

Summing, we find

3∑
j=1

#(Ej) =
3∑

j=1

#(Fj) + 2
∑

1≤i<j≤3

#(Fi,j) + 3#(F123) (0.5)

and ∑
1≤i<j≤3

#(Ei ∩ Ej) =
∑

1≤i<j≤3

#(Fi,j) + 3#(F123) . (0.6)

Subtracting each side of (0.6) from the corresponding side of (0.6), and then adding #(F123) =

#(E1 ∩ E2 ∩ E3) to both sides, we obtain

3∑
j=1

#(Ej)−
∑

1≤i<j≤3

#(Ei ∩ Ej) + #(E1 ∩ E2 ∩ E3) =

#(F1) + #(F2) + #(F3) + #(F12) + #(F13) + #(F23) + #(F123) (0.7)

But by (0.4) and the disjointness of the F ’s,

#(E1 ∪ E2 ∪ E3) = #(F1) + #(F2) + #(F3) + #(F12) + #(F13) + #(F23) + #(F123) ,

and this proves:

0.4 PROPOSITION. Let S be any finite set, and let let E1, E2, E3 be any subsets of S. Then

#(E1 ∪ E2 ∪ E3) =
∑

j=1,2,3

#(Ej)−
∑

1≤i<j≤3

#(Ei ∩ Ej) + #(E1 ∩ E2 ∩ E3) . (0.8)

That is, the cardinality of E1 ∪ E2 ∪ E3 is obtained by adding up the cardinalities of the

individual sets, subtracting out the cardinalities of the intersections of distinct pairs, and then

adding back in the cardinality of the triple intersection.

0.5 EXAMPLE. In a sports club, there are 36 members who play tennis, 28 who play squash,

and 18 that play badminton. There are 22 members that play both tennis and squash, 12 that

play both tennis and badminton, and 9 that play both squash and badminton. Finally, there are

4 members that play all three games. How many members play at least one of the games? By

Proposition 0.4, this number is

(36 + 28 + 18)− (22 + 12 + 9) + 4 = 82− 43 + 4 = 43 .
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Again, in proving Proposition 0.4, all we used about the cardinality set function is that it is

additive over disjoint unions. Any probability measure is a set function with this same property,

and thus the same result applies when cardinality is replaced by any probability measure, but

we shall go into this only when we have proved the formula for N subsets, and N is a arbitrary

natural number.

0.4 Inclusion-Exclusion for N subsets

Let S be any finite set, and for any natural number N , let E!, . . . , EN be subsets of S. Let J

denote the index set

J = {1, . . . , N} .

For each subset X ⊂ J , define subsets EX and FX of S as follows,

EX :=
⋂
j∈X

Ej (0.9)

and

FX =

(⋂
j∈X

Ej

)
∩

(⋂
k/∈X

Ec
j

)
. (0.10)

Notice that

FX = EX ∩

(⋂
k/∈X

Ec
j

)
⊂ EX .

Let X and Y be two distinct subsets of J . Then either there is some element j of X that does

not belong to Y , or vice-versa, or both. Suppose that there is some j ∈ X such that j /∈ Y . If

ω ∈ FX , then ω ∈ Ej, and hence ω /∈ FY . On the other hand, if ω ∈ FY , then ω /∈ Ej, and hence

ω /∈ FX . Swapping the roles of Y and X if need be, if follows that

Y 6= X ⇒ FX ∩ FY = ∅ . (0.11)

That is, the F ′s are disjoint.

Also every ω ∈ S that belongs to at least one of the sets Ej, j ∈ J , belongs to FX for some

non-empty subset X ⊂ J : In fact, X is simply the set of all j ∈ J such that ω belongs to Ej. In

symbols, X = {j : ω ∈ Ej}.
Therefore, ⋃

j∈J

Ej =
⋃
X⊂J

FX , (0.12)

where on the right, we need only take the union over the 2N − 1 non-empty subsets of J . Since

the sets on the right in (0.12) are mutually disjoint,

#

(⋃
j∈J

Ej

)
=
∑
X⊂J

#(FX) , (0.13)
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So far, so good, but the problem with trying to apply this as it stands is that the sets FX ,

X ⊂ J are quite complicated compared to the sets EX , X ⊂ J , as one see by comparing (0.9) and

(0.10). Therefore, we get a more useful formula if we can express the right hand side of (0.13) in

terms of the cardinalities of the sets EX , X ⊂ J . This can be done, and the result is the general

Inclusion-Exclusion Formula:

0.6 THEOREM. Let S be any finite set, and for any natural number N , let let E1, . . . , EN be

any N subsets of S. Let J = {1, . . . , N}. For X ⊂ J , let EX ⊂ S be given by (0.9). Then

#

(⋃
j∈J

Ej

)
=

N∑
k=1

(−1)k−1

 ∑
X⊂J,#(X)=k

#(EX)

 . (0.14)

There is a virtually identical version for probabilities:

0.7 THEOREM. Let S be any set equipped with a probability measure P , and for any natural

number N , let let E1, . . . , EN be any N events in S. Let J = {1, . . . , N}. For X ⊂ J , let EX ⊂ S

be given by (0.9). Then

P

(⋃
j∈J

Ej

)
=

N∑
k=1

(−1)k−1

 ∑
X⊂J,#(X)=k

P (EX)

 . (0.15)

Before proving the theorems, we give some examples illustrating its use.

0.8 EXAMPLE. Consider a deck of N distinct cards arranged in some prescribed order. What

is the probability that after a random shuffle of the deck, not a single card is in it original place?

A rearrangement, or permutation, of a set, that does not leave any element in its place is called

a derangement. The question therefore, is: What is the probability that a randomly chosen

permutation is a derangement?. By “random” we mean, as usual, that all permutations are taken

to be equality likely. Since there are N ! permutations, an equivalent question is: How many of the

permutations are derangements? Counting the derangements, and then dividing by N !, we get the

probability that a random shuffle leaves no card in its place.

For each j ∈ J = {1, . . . , N}, define Ej to be the set of shuffles that leave the jth card fixed.

The only requirement for membership in Ej is that the jth card is kept in its place. Other cards

may or may not be. The thing that makes this event “simple” is that it only depends on the position

of a single card. Evidently then, the event that at least one card is kept fixed is
⋃
j∈J

Ej and then

the event that no card is kept fixed is the complementary event

(⋃
j∈J

Ej

)c

. Since the probabilities

of complementary sets sum to 1, the probability we seek is

1− P

(⋃
j∈J

Ej

)
(0.16)
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To apply Theorem 0.15, we need to compute P (EX) for all non-empty X ⊂ J . This is easy:

Suppose #(X) = k. Then the k cards with indices in X must be kept in their places. The general

shuffle that fixes these k cards is obtained by shuffling the N−k remaining cards, and then inserting

the k chosen cards into the correct places. Therefore:

#(X) = k ⇒ P (EX) =
(N − k)!

N !
,

no mater which k cards are to be kept in place. Clearly there are
(
N
k

)
sets X ⊂ J with #(X) = k.

Therefore ∑
X⊂J,#(X)=k

P (EX) =

(
N

k

)
(N − k)!

N !
=

1

k!
.

Now (0.15) yields P

(∑
j∈J

Ej

)
=

N∑
k=1

(−1)k−1
1

k!
, and then by what we have noted above, the prob-

ability that a random shuffle leaves no card fixed is

1−

(
N∑
k=1

(−1)k−1
1

k!

)
=

N∑
k=0

(−1)k
1

k!
.

The sum on the right converges very rapidly to 1/e. Since the series for e−1 is an alternating

decreasing series, the result of truncating at a negative term is less than 1/e, and the result of

truncating at a positive term is greater than 1/e.

Let p denote the probability of a deranged shuffle for a standard deck of 52 cards. Since 52 is

even, the last term in the sum for p is positive, and so p > 1/e, but p− 1/52! < 1/e. That is,

1

e
< p <

1

e
+

1

52!
.

Since 52! ≈ 8.068 × 1067, for all practical purposes, the probability of a deranged shuffle of a

standard deck of cards is 1/e.

0.9 EXAMPLE. Consider a dinner party at which 10 married couples will be present, and

everyone will be seated in a random order at a round table. What is the probability no two spouses

are seated next to each other?

To answer this, we assign an index j ∈ J := {1, . . . , 10} to each couple, and for each j ∈ J ,

define Ej to be the event that the jth couple gets seated next to each other. The event that at least

one couple is seated next to each other is
⋃
j∈J

Ej, and then the event that no couple is seated next to

each other is the complementary event

(⋃
j∈J

Ej

)c

. Since the probabilities of complementary sets

sum to 1, the probability we seek is

1− P

(⋃
j∈J

Ej

)
(0.17)
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First, let’s fix the sample space: If everyone shifts their place at the table by ` seats in a

clockwise order, this simply “rotates” the seating arrangement, and does no affect who sits by

whom. We call two seating arrangements equivalent is they are related by such a rotation. Let

S be the set of equivalence classes of such arrangements. Let’s designate one of the participants

as “Guest of Honor”. Let the Guest of Honor have their choice of any seat. There are 19 people

remaining. Chose one of them, and place them in the next seat clockwise form the Guest of Honor.

keep filling in the seats in the clockwise order. Since it does not matter where the Guest of Honor

chose to sit, there are 19! arrangements in S. Having finished counting the outcomes in S, forget

about the Guest of Honor, which was introduced into the story only to help with this counting task.

Now, suppose X ⊂ J is such that #(X) = k. Leave the k husbands aside for the moment, and

start seating the 20− k remaining guests. There would be (20- k-1)! ways to seat them around a

round table, but as soon as a wife from the k designated couples is chosen, make one of the two

choices for seating husband next or wife next, seat them both, and keep going. Thus, there are

(19 − k)!2k ways to do the seating, no matter which of the
(
10
k

)
sets of k couples X may be. It

follows that ∑
X⊂J,#(X)=k

P (EX) =

(
10

k

)
(19− k)!2k

19!
.

Now (0.15) yields

P

(⋃
j∈J

Ej

)
=

10∑
k=1

(
10

k

)
(19− k)!2k

19!
≈ 0.6605 ,

and hence the probability than nobody is seated next to their spouse is approximately 0.3395.

0.5 Proof of the Inclusion-Exclusion Formula and More

We use the notation of the previous subsection. We have already observed that for each X ⊂ J ,

FX ⊂ EX , and we have that for X, Y ⊂ J , X 6= Y , FX and FY are disjoint. We can say more:

0.10 LEMMA. For X, Y ⊂ J , if X ⊂ Y , then FY ⊂ EX , but if X 6⊂ Y , FY and EX are disjoint.

Proof. Suppose X ⊂ Y . It is clear from the definition EX = ∩j∈XEj that EY ⊂ EX , and we have

already seen that FY ⊂ EY , so FY ⊂ EX .

Next, suppose that X 6⊂ Y . then there is some j ∈ X such that j /∈ Y . By definition, if

ω ∈ EX , ω ∈ Ej. Also by definition, if ω ∈ FY , ω /∈ Ej. Hence EX and FY are mutually

exclusive.

Proof of Theorem 0.6. By the previous lemma, for each X ⊂ J , EX =
⋃

Y : X⊂Y

FY , and since the

union is disjoint, #(EX) =
∑

Y : X⊂Y

#(FY ). Therefore,

∑
X : #(X)=k

#(EX) =
∑

X : #(X)=k

( ∑
Y : X⊂Y

#(FY )

)
.
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For ` = k, . . . , N , if Y ⊂ J has cardinality `, there are
(
`
k

)
subsets X of cardinality k that are

contained in Y . Thus, doing the double sum over X and Y , each set Y with cardinality ` comes

up
(
`
k

)
times. Therefore,

∑
X : #(X)=k

#(EX) =
N∑
`=k

(
`

k

) ∑
Y : #(Y )=`

#(FY )

 =
N∑
`=0

(
`

k

) ∑
Y : #(Y )=`

#(FY )

 ,

where the last equality is valid because
(
`
k

)
= 0 for ` < k.

Multiplying by (−1)k−1 and summing on k, yields

N∑
k=1

(−1)k−1

 ∑
X : #(X)=k

#(EX)

 =
N∑
k=1

(−1)k−1
N∑
`=0

(
`

k

) ∑
Y : #(Y )=`

#(FY )

 (0.18)

=
N∑
`=0

 ∑
Y : #(Y )=`

#(FY )

( N∑
k=1

(
`

k

)
(−1)k−1

)

By the Binomial Theorem,

N∑
k=1

(
`

k

)
(−1)k−1 = 1−

∑̀
k=0

(
`

k

)
(−1)k1`−k = 1− (1 + (−1))` = 1 .

Therefore, we have the further simplification that

N∑
k=1

(−1)k−1

 ∑
X : #(X)=k

#(EX)

 =
N∑
`=0

 ∑
Y : #(Y )=`

#(FY )

 =
∑
Y⊂J

#(FY ) .

By (0.13), the right side is the same as #
(
∪N

j=1Ej

)
.

Proof of Theorem 0.7. The only property of the cardinality set function E 7→ #(E) that was used

in the proof of Theorem 0.6 was that it is additive over disjoint unions. Probability measures are

also additive over disjoint unions, and hence the same proof applies when #(E) is replaced by

P (E).

We easily see something more from the proof of Theorem 0.7, or equivalently of Theorem 0.7.

We shall use the following lemma.

0.11 LEMMA. For M < `,
∑M

k=0

(
`
k

)
(−1)k has the same sign as (−1)M .

Proof. For 1 ≤ j ≤ `, define bj :=

(
`

j

)
−
(

`

j − 1

)
. Since

(
`
j

)
≥
(

`
j−1

)
for j ≤ `+1

2
, bj is non-

negative for j ≤ `+1
2

. For j > `+1
2

, bj is non-positive. Suppose that M is odd and write M = 2n+1.

Then
M∑
k=0

(
`

k

)
(−1)k = −

n∑
k=0

b2k+1 =: −f(M) (0.19)
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Observe that f(M) is increasing in M as long as 2n+ 1 ≤ `+1
2

, because all summands are positive.

As M increases beyond this point, f(M) decreases because negative terms are being added in.

However, since f(`) = (1 + (−1))` = 0, f(M) does not decrease to 0 until M reaches `. Thus, it

stays positive as long as M < `, and then by (0.19),
M∑
k=0

(
`

k

)
(−1)k < 0 for all odd M < `.

The proof for M = 2n is similar. Then

g(M) :=
M∑
k=0

(
`

k

)
(−1)k = 1 +

n∑
k=1

b2k .

As above, g(M) is increasing in M as long as 2n ≤ `+1
2

, and then it starts to decrease. However,

1 + g(`) = 0, so 1 + g(M) is positive for all even M < `

0.12 THEOREM. Let S be any finite set, and for any natural number N , let let E1, . . . , EN be

any N subsets of S. Let J = {1, . . . , N}. For X ⊂ J , let EX ⊂ S be given by (0.9). Then for any

M < N , if M is odd

#

(⋃
j∈J

Ej

)
≤

M∑
k=1

(−1)k−1

 ∑
X⊂J,#(X)=k

#(EX)

 , (0.20)

and if M is even,

#

(⋃
j∈J

Ej

)
≥

M∑
k=1

(−1)k−1

 ∑
X⊂J,#(X)=k

#(EX)

 , (0.21)

Proof. Suppose, for M < N , in (0.18) we only sum from k = 1 to k = M , instead of the k = N .

Then the same reasoning that yields (0.18) yields

M∑
k=1

(−1)k−1

 ∑
X : #(X)=k

#(EX)

 =
N∑
`=0

 ∑
Y : #(Y )=`

#(FY )

( M∑
k=1

(
`

k

)
(−1)k+1

)
.

Note that
M∑
k=1

(
`

k

)
(−1)k+1 = 1−

M∑
k=0

(
`

k

)
(−1)k

By Lemma 0.11, this quantity is at most 1 if M is even, and is at least 1 if M is odd.

Of course, the analogous theorem for probabilities is valid as well. The utility of this theorem,

in the probabilistic setting, is that the finite sequence of numbers

qk :=
∑

X⊂J,#(X)=k

P (EX)
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decrease quite rapidly as k increases. Theorem 0.12 (in its probabilistic version) says that for all

M < N , ∣∣∣∣∣
M−1∑
k=1

qk − P

(⋃
j∈J

Ej

)∣∣∣∣∣ ≤ qM .

Suppose we want to know P

(⋃
j∈J

Ej

)
to within plus or minus 0.01. If we can find some M for

which qM < 0.01, then ∣∣∣∣∣
M−1∑
k=1

qk − P

(⋃
j∈J

Ej

)∣∣∣∣∣ ≤ 0.01 .

When N is large, M may be much smaller than N , and it might be much easier to compute
M−1∑
k=1

qk

than to compute
N∑
k=1

qk.

0.13 EXAMPLE. Consider again the dinner party from Example 0.9. Using the notation intro-

duced just above, we have found that

qk =

(
10

k

)
(19− k)!2k

19!
.

Evaluating the qk, one finds, with 3 significant digits,

q1 ≈ 1.0526 , q2 ≈ 0.5263, q3 ≈ 0.1651, q4 ≈ 0.0361, q5 ≈ 0.0058 .

Hence the probability that at least one couple is seated next to each other is

q1 + q2 + q3 + q4 ± 0.01 = 0.0653± 0.01 .


