Solutions for Homework 9, Math 477, Fall 2018

Eric A. Carlen
Rutgers University

December 14, 2018

From the Problems in Chapter 7:

11 A changeover occurs at step $j \geq 2$ if the result of the j th toss is different from the result of the $j-1$ st toss. For $j=1, \ldots, n$, let $X_{j}=1$ if the j th toss is heads, and $X_{j}=-1$ is the j th toss is tails. For $j=2, \ldots, n$, define $Z_{j}=\frac{1}{2}\left(1-X_{j} X_{j-1}\right)$. Then either $Z_{j}=0$ or $Z_{j}=1$, and a changeover occurs at step j. Hence the expected number of changeovers

$$
\sum_{j=2}^{n} \mathrm{E}\left(Z_{j}\right)
$$

It is easy to compute that

$$
P\left(Z_{j}=1\right)=2 p(1-p)
$$

and hence the expected number of changeovers is $(n-1) 2 p(1-p)$.
Note that we did not need the Bernoulli variables Z_{j} to be independent and in fact they are not.
38 Let $f(x, y)=\frac{2 e^{-2 x}}{x}$ for $0 \leq x \leq \infty$ and $0 \leq y \leq x$. We compute

$$
\begin{gathered}
\mathrm{E}(X Y)=\int_{0}^{\infty} \frac{2 e^{-2 x}}{x} x\left(\int_{0}^{x} y \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{\infty} x^{2} e^{-2 x} \mathrm{~d} x=\frac{1}{4} . \\
\mathrm{E}(Y)=\int_{0}^{\infty} \frac{2 e^{-2 x}}{x}\left(\int_{0}^{x} y \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{\infty} x e^{-2 x} \mathrm{~d} x=\frac{1}{4} . \\
\mathrm{E}(X)=\int_{0}^{\infty} \frac{2 e^{-2 x}}{x} x\left(\int_{0}^{x} \mathrm{~d} y\right) \mathrm{d} x=\int_{0}^{\infty} 2 x e^{-2 x} \mathrm{~d} x=\frac{1}{2} .
\end{gathered}
$$

Hence

$$
\operatorname{Cov}(X, Y)=\frac{1}{8}
$$

From the theoretical exercises in Chapter 7:

38 Let $U=\sum_{j=1}^{n} X_{j}$. By symmetry

$$
\mathrm{E}\left(X_{j} \mid U=x\right)
$$

is independent of j. Hence

$$
\mathrm{E}\left(X_{1} \mid U=x\right)=\frac{1}{n} \sum_{j=1}^{n} \mathrm{E}\left(X_{j} \mid U=x\right)=\frac{1}{n} \mathrm{E}(U \mid U=x)=\frac{x}{n} .
$$

41 a No, X and Y are not independent: Suppose we know that $|X| \leq 1$. Then we know that $|Y| \leq 1$. b Yes, Y and I are independent: $P(Y>x \mid I=1)=P(X>x)$ and $P(Y>x)=P(X>$ $\left.\left.x, I=1)+P(X<-x, I=0)=\frac{1}{2}(P(X>x)+P) X<-x\right)\right)=P(X>x)$. So knowing that $I=1$ does not change the distribution of Y. c We compute

$$
P(Y>x)=\frac{1}{2} P(X>x)+\frac{1}{2} P(X<-x)=P(X>x),
$$

so Y has the same distribution as X. d Given part \mathbf{c}, it is clear that $\operatorname{Cov}(X, Y)=0$.

