Solutions for Homework 9, Math 477, Fall 2018

Eric A. Carlen

Rutgers University

December 14, 2018

From the Problems in Chapter 7:

11 A changeover occurs at step $j \ge 2$ if the result of the *j*th toss is different from the result of the j - 1st toss. For j = 1, ..., n, let $X_j = 1$ if the *j*th toss is heads, and $X_j = -1$ is the *j*th toss is tails. For j = 2, ..., n, define $Z_j = \frac{1}{2}(1 - X_j X_{j-1})$. Then either $Z_j = 0$ or $Z_j = 1$, and a changeover occurs at step j. Hence the expected number of changeovers

$$\sum_{j=2}^{n} \mathrm{E}(Z_j)$$

It is easy to compute that

$$P(Z_j = 1) = 2p(1-p)$$

and hence the expected number of changeovers is (n-1)2p(1-p).

Note that we did not need the Bernoulli variables Z_j to be independent and in fact they are not.

38 Let $f(x, y) = \frac{2e^{-2x}}{x}$ for $0 \le x \le \infty$ and $0 \le y \le x$. We compute

$$E(XY) = \int_0^\infty \frac{2e^{-2x}}{x} x \left(\int_0^x y dy \right) dx = \int_0^\infty x^2 e^{-2x} dx = \frac{1}{4}$$
$$E(Y) = \int_0^\infty \frac{2e^{-2x}}{x} \left(\int_0^x y dy \right) dx = \int_0^\infty x e^{-2x} dx = \frac{1}{4}.$$
$$E(X) = \int_0^\infty \frac{2e^{-2x}}{x} x \left(\int_0^x dy \right) dx = \int_0^\infty 2x e^{-2x} dx = \frac{1}{2}.$$

Hence

$$\operatorname{Cov}(X,Y) = \frac{1}{8}$$

From the theoretical exercises in Chapter 7:

38 Let $U = \sum_{j=1}^{n} X_j$. By symmetry

$$\mathbf{E}(X_j|U=x)$$

is independent of j. Hence

$$E(X_1|U=x) = \frac{1}{n} \sum_{j=1}^n E(X_j|U=x) = \frac{1}{n} E(U|U=x) = \frac{x}{n}.$$

41 a No, X and Y are not independent: Suppose we know that $|X| \leq 1$. Then we know that $|Y| \leq 1$. **b** Yes, Y and I are independent: P(Y > x|I = 1) = P(X > x) and $P(Y > x) = P(X > x, I = 1) + P(X < -x, I = 0) = \frac{1}{2}(P(X > x) + P)X < -x)) = P(X > x)$. So knowing that I = 1 does not change the distribution of Y. **c** We compute

$$P(Y > x) = \frac{1}{2}P(X > x) + \frac{1}{2}P(X < -x) = P(X > x) ,$$

so Y has the same distribution as X. d Given part c , it is clear that Cov(X, Y) = 0.