Solutions for Homework 7, Math 477, Fall 2018

Eric A. Carlen
Rutgers University

November 18, 2018

From the Problems in Chapter 6:

14 Let X denote the position of the ambulance at the time of the accident; X is uniformly distributed on $[0, L]$. Let Y denote the position of the accident; it is also uniformly distributed on $[0, L]$. We are asked for the distribution of the distance between the accident and the ambulance; i.e., $|X-Y|$.

Define $U=Y-X$ and $V=X$. We seek the distribution of $|U|$, but let's first find the distribution of U. We consider the change of variables

$$
\mathbf{U}(x, y)=(y-x, x)
$$

which has the inverse

$$
\mathbf{X}(u, v)=(v, u+v) .
$$

The joint density of (U, V) is 0 unless $0 \leq x(u, v), y(u, v) \leq L$ which is the same as

$$
0 \leq v \leq L \quad \text { and } \quad-v \leq u \leq L-v
$$

and this region is the parallelepiped Ω bounded by $v=0, v=L, u=-v$ and $u=L-v$.
In the interior of this region, the joint density of $(U . V)$ is given by

$$
\frac{1}{L^{2}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{L^{2}},
$$

The probability density function of U is then the u marginal of the joint probability density function

$$
g(u, v)=\left\{\begin{array}{ll}
L^{-2} & (u, v) \in \Omega \\
0 & (u, v) \notin \Omega
\end{array} .\right.
$$

The probability density of U is $g_{U}(u)$, the marginal $g(u, v)$, which is $\int_{\mathbb{R}} g(u, v) \mathrm{d} v$. This is simply L^{-2} times the length of the segment that is the intersection of the vertical line though $(0, u)$ and Ω. That is,

$$
g_{U}(u)=\left\{\begin{array}{cl}
L^{-2}(L+u) & u \in[-L, 0] \\
L^{-2}(L-u) & u \in[0, L] \\
0 & u \notin[-L, L]
\end{array} .\right.
$$

Finally, $|U| \leq a$ if and only if $-a \leq U \leq a$, and so, for $a \in[0, L]$

$$
P(|U| \leq a)=\int_{-a}^{a} g_{U}(u) \mathrm{d} u=2 \int_{0}^{a}(1-u) \mathrm{d} u=L^{-2}\left(2 L a-a^{2}\right) .
$$

Evidently, for $a \geq 2, P(U \mid \leq a)=1$.
Alternatively, one could use convolutions: $X-Y=X+(-Y)$, and since X and $-Y$ are independent, and $-Y$ is uniformly distributed on $[-L, 0]$, the convolution formula gives another way to arrive at the formula for g_{U}.

20 Since

$$
f(x, y)= \begin{cases}\left.x e^{-(x+y}\right) & x, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
f_{X}(x)=\left\{\begin{array}{ll}
x e^{-x} & x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad f_{Y}(y)= \begin{cases}e^{-y} & y \geq 0 \\
0 & \text { otherwise }\end{cases}\right.
$$

X and Y are independent.
In the second case,

$$
f(x, y)= \begin{cases}2 & 0 \leq x \leq y, 0 \leq y, 0 \leq 1 \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

X and Y are not independent since the joint density function os not a product function: Indeed, since $f(x, y)=0$ unless $0<x<y$, once you know, say $Y \leq 1 / 2$, you know $X \leq 1 / 2$., while without being given this information about Y, one knows only that $X \leq 1$.
32 Let X_{j} denote the sales in month j. We are given that X_{j} has mean $\mu=100$ and variance $\sigma^{2}=25$, and that these normal variables are independent. For each $j, P\left(X_{j}>100\right)=\frac{1}{2}$. Hence the probability that in exactly 3 of the next 6 months sales exceed 100 is the same as the probability that in tossing a fair coin 6 times, we get exactly three heads, and this probability is

$$
\binom{6}{3} 2^{-6}=\frac{5}{16}
$$

For the second part, let $Z=X_{1}+X_{2}+X_{3}+X_{4}$. Then X is normal with mean 100 and variance 100. Hence $(Z-400) / 10$ is standard normal, and

$$
P(Z>420)=P\left(\frac{Z-400}{10}>2\right)=\Phi(2) .
$$

From the theoretical exercises in Chapter 6:

8 Recall that the hazard rate function of a continuous random variable X is given by

$$
\lambda(t)=-\frac{\mathrm{d}}{\mathrm{~d} t} \ln (P(X>t))
$$

Let X and Y be independent and let $W:=\min \{X, Y\}$. Then

$$
P(W>t)=P(\{X<t\} \cap\{Y>t\})=P(X>t) P(Y>t) .
$$

Thus

$$
\bar{F}_{W}(t)=\bar{F}_{X}(t) \bar{F}_{Y}(t) .
$$

Next, taking the logarithmic derivative,

$$
\lambda_{W}(t)=-\frac{\mathrm{d}}{\mathrm{~d} t} \ln (P(W>t))=-\frac{\mathrm{d}}{\mathrm{~d} t}(\ln P(X>t)+\ln P(Y>y))=\lambda_{X}(t)+\lambda_{Y}(t) .
$$

