Homework 6 Solutions, Math 477, Fall 2018

Eric A. Carlen
Rutgers University

November 3, 2018

From the Problems in Chapter 5:

10: (a) Since the probability that the passenger arrives exactly at 7:00 is zero, we are concerned with arrivals after 7:00. Since a train (for A) arrives exactly at $8: 00$, this is the last train that concerns us. If the passenger arrives in any of the intervals $(7: 00,7: 05),(7: 15,7: 20)$, ($7: 30,7: 355$) 0r ($7: 45,7: 50$), they will take the train for B, and otherwise they take a train for A. The total length of the intervals of arrival in which the passenger will travel to B is 20 minutes, $1 / 3$ of the total. Hence the probability that the passenger travels fo B is $1 / 3$, and the probability that the passenger travels fo A is $2 / 3$.
(b) Once again, there are exactly 4 intervals of length 5 minutes such that if the passengers arrives in one of these intervals, they travel to B. Hence the answer is the same as in part a.

23: For the first part, we define independent Bernoulli variables as follows: $T_{j}=1$ if the result of the j th toss is 6 , and $T_{j}=0$ otherwise. Evidently $P\left(T_{j}=1\right)=p=\frac{1}{6}$, and $P\left(T_{j}=0\right)=q=\frac{5}{6}$. Let $S_{n}=\sum_{j=1}^{n} T_{j}$. We want to estimate

$$
P\left(150 \leq S_{1000} \leq 200\right)
$$

For $n=1000, n p=166 \frac{2}{3} \approx 166.7$, and $\sqrt{n p q}=\frac{25}{3} \sqrt{2} \approx 11.78$. Then

$$
\begin{aligned}
P\left(150 \leq S_{1000} \leq 200\right) & =P\left(-16.7 \leq S_{1000}-166.7 \leq 33.3\right) \\
& =P\left(-\frac{16.7}{11.78} \leq \frac{S_{1000}-166.7}{11.78} \leq \frac{11.78}{3} 3.3\right) \\
& \approx P\left(-1.418 \leq \frac{S_{1000}-166.7}{11.78} \leq 2.827\right)
\end{aligned}
$$

By the DeMoivre-Laplace Theorem, the random variable $\frac{S_{1000}-166.7}{11.78}$ is approximately standard norm - to an excellent degree of approximation since there are 1000 trials. Hence

$$
P\left(-1.418 \leq \frac{S_{1000}-166.7}{11.78} \leq 2.28\right) \approx \frac{1}{\sqrt{2 \pi}} \int_{-1.418}^{2.827} e^{-x^{2} / 2} \mathrm{dx}=\Phi(2.817)-\Phi(-1.418)
$$

Using the table, or otherwise numerically evaluating the integral, one finds

$$
P\left(150 \leq S_{1000} \leq 200\right) \approx 0.9198 .
$$

For the second part, the conditional probability of tossing a 5 given that one does not toss a 6 is $\frac{1}{5}$. So now we have $n=800$ independent tosses, each with a probability $p=\frac{1}{5}$ of resulting in a 5. As above we compute

$$
n p=\frac{800}{5}=160 \quad \text { and } \quad \sqrt{n p q}=8 \sqrt{2} \approx 11.31
$$

By the DeMoivre-Laplace Theorem, $X:=\frac{S_{800}-160}{11.31}$ is approximately standard normal, so that

$$
P\left(S_{800}<150\right) \approx P\left(X \leq-\frac{10}{11.31}\right) \approx P(X<-0.8841)=\Phi(-0.8841)=0.8117
$$

From the theoretical exercises in Chapter 5:

5: Using the fact that

$$
\mathrm{E}\left(X^{n}\right)=\int_{0}^{\infty} P\left(X^{n}>t\right) \mathrm{d} t
$$

which is proved in exercise 5.2, but see below, we make the change of variables $t=x^{n}$, so that $\mathrm{d} t=n x^{n-1} \mathrm{~d} x$. Then

$$
\int_{0}^{\infty} P\left(X^{n}>t\right) \mathrm{d} t=n \int_{0}^{\infty} P\left(X^{n}>x^{n}\right) x^{n-1} \mathrm{~d} x=n \int_{0}^{\infty} P(X>x) x^{n-1} \mathrm{~d} x
$$

since the event $\left\{X^{n}>x^{n}\right\}$ is the same as the event $\{X>x\}$.
This was all you needed to do. But to show that for all non-negative random variables Y, $\mathrm{E}(Y)=\int_{0}^{\infty} P(Y>t) \mathrm{d} t$, suppose that Y has a density f_{Y} so that

$$
P(Y>t)=\int_{t}^{\infty} f_{Y}(s) \mathrm{d} s \quad \text { and hence } \quad \frac{\mathrm{d}}{\mathrm{~d} t} P(Y>t)=-f_{Y}(y) .
$$

Then integrate by parts:

$$
\begin{aligned}
\int_{0}^{\infty} P(Y>t) \mathrm{d} t & =\int_{0}^{\infty} P(Y>t)\left(\frac{\mathrm{d}}{\mathrm{~d} t} t\right) \mathrm{d} t \\
& =\left.t P(Y>t)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(\frac{\mathrm{d}}{\mathrm{~d} t} P(Y>t)\right) t \mathrm{~d} t \\
& =\int_{0}^{\infty} t f_{Y}(t) \mathrm{d} t=\mathrm{E}(Y) .
\end{aligned}
$$

There is no loss of generality in assuming Y has a density since we may approximate Y by $Y+\epsilon Z$ where Z is an independent standard normal variable. Then $Y+\epsilon Z$ does have a density, and the above argument is valid. Taking ϵ to zero yields the general case, though a bit of thought is required to dot the i 's and cross the t 's.
12. If X is exponential with parameter λ, then $P(X>t)=e^{-\lambda t}$ and hence, integrating by parts,

$$
\mathrm{E}\left(X^{2}\right)=2 \int_{0}^{\infty} t e^{-\lambda t} \mathrm{~d} t=2 \int_{0}^{\infty} t\left(-\frac{1}{\lambda} e^{-\lambda t}\right)^{\prime} \mathrm{d} t=\frac{2}{\lambda} \int_{0}^{\infty} e^{-\lambda t} \mathrm{~d} t=\frac{2}{\lambda^{2}} .
$$

