Homework 5 Solutions, Math 477, Fall 2018

Eric A. Carlen
Rutgers University

October 13, 2018

From the Problems in Chapter 4:

25: The sample space S is given by $S=\{(H H),(H T),(T H),(T T)\}$. By independence and the given information,

$$
P(H H)=0.42, \quad P(H T)=0.18, \quad P(T H)=0.28, \quad P(T T)=0.12
$$

If X is the number of heads, the event $\{X=1\}$ is given by $\{(H T),(T H)\}$ and so

$$
P(\{X=1\})=0.18+0.28=0.46
$$

Also,

$$
\mathrm{E}(X)=2 \cdot P(H H)+1(P(H T)+P(T H))+0 P(T T)=1.28
$$

38: Since $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}, 5=\mathrm{E}\left(X^{2}\right)-1$, and so $\mathrm{E}\left(X^{2}\right)=6$.
Now, $(2+X)^{2}=2+4 X+X^{2}$, and then by the linearity of expectation,

$$
\mathrm{E}\left((2+X)^{2}\right)=2+4+6=12
$$

Next, since the constant random variable 4 is independent of X - it is independent of everything - , and has zero variance - it is not really random, we have

$$
\operatorname{Var}(4+3 X)=\operatorname{Var}(4)+9 \operatorname{Var}(X)=45 .
$$

From the theoretical exercises in Chapter 4:

14: The proportion of families that have at least one child is $\sum_{n=1}^{\infty} \alpha p^{n}=\alpha \frac{p}{1-p}$, which is less than 1 by the information given on α. That is a randomly selected family with have no children with probability

$$
1-\alpha \frac{p}{1-p}
$$

Let E_{n} be the event that a family has n children. Let F be the event that a family has exactly k boys (and any number of girls). Then

$$
P(F)=\sum_{n=k}^{\infty} P\left(F \cap E_{n}\right)=\sum_{n=k}^{\infty} P\left(E_{n}\right) P\left(F \mid E_{n}\right)=\alpha \sum_{n=k}^{\infty} p^{n} 2^{-n}\binom{n}{k} .
$$

