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From the Self Test in Chapter 2:

11. We work with the usual probability space consisting of the 52! possible shuffles of the deck,

each with equal probability. Number the suits 1 to 4. Let Ej be the event that the hand contains

no card from suit j. The event that at least one suit is missing is ∪4j=1Ej . The event that no suit

is missing is therefore (∪4j=1Ej)
c. Then answer than is

1− P (∪4j=1Ej) .

We now proceed to compute P (∪4j=1Ej) using the inclusion-exclusion formula.

First, we compute P (Ej). The number of 5 card hands that can be dealt avoiding suit j is
(
39
5

)
,

and the total number of 5 card hands that can be dealt is
(
52
5

)
. Therefore,

P (Ej) =

(
39

5

)(
52

5

)−1
,

independent of j.

Now consider any set X = {i, j} of two of the suits. Let EX = E1 ∩ Ej , as usual. The number

of 5 card hand that can be dealt avoiding both suits i and j is
(
26
5

)
, and the total number of 5 card

hands that can be dealt is
(
52
5

)
. Therefore, for such X

P (EX) =

(
26

5

)(
52

5

)−1
.

Now consider any set X = {i, j, k} of three of the suits. Let EX = E1 ∩Ej ∩Ek, as usual. The

number of 5 card hand that can be dealt avoiding all three of suits i, j and k is
(
13
5

)
, and the total

number of 5 card hands that can be dealt is
(
52
5

)
. Therefore, for such X

P (EX) =

(
13

5

)(
52

5

)−1
,

Finally, at least one suit must be present, so E1 ∩ E2 ∩ E3 ∩ E4 = ∅, and this event has zero

probability.

Since there are
(
4
1

)
= 4 way of choosing one suit or three of the suits, and

(
4
2

)
= 6 ways of

choosing two of suits, the inclusion-exclusion formula gives us

P (∪4j=1Ej) =

[
4

(
39

5

)
− 6

(
26

5

)
+ 4

(
13

5

)](
52

5

)−1
= 4

2109

9520
− 6

253

9996
+ 4

33

66640
=

6133

8330
≈ 0.736 .
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Finally, the probability we seek is

1− 6133

8330
=

2197

8330
≈ 0.264 .

From the Problems in Chapter 3:

10. We work with the usual probability space consisting of the 52! possible shuffles of the deck,

each with equal probability.

Let E be the event that the first card is a spade. Let F be the event that the second and third

cards are spades.

To determine the cardinality of E ∩ F , we must choose 3 of the 13 spades to put in the first 3

places, and there are 3! ways to arrange these 3 spades in the first three places. Then the remaining

49 cards can be arranged in any of the 49! possible ways. Hence

P (E ∩ F ) = 3!

(
13

3

)
49!

52!
.

To determine the cardinality of F , we must choose 2 of the 13 spades to put in the places 2 and

3, and there are 2! = 2 ways to order them in the second and third places. Then the remaining 50

cards can be arranged in the remaining 50 places in any of the 50! possible ways. Hence

P (F ) = 2

(
13

2

)
50!

52!
.

Therefore,

P (E|F ) =
P (E ∩ F )

P (F )
=

33

150
.

22. The sample space consists of all triples (x1, x2, x3) where each xj ∈ {1, . . . , 6}. Here, x1 is the

result for the red die, x2 is the result for the blue die, and x3 is the result for the yellow die. Each

of the 63 = 216 outcomes has equal probability. Let E be the event that that outcome (x1, x2, x3)

satisfies x2 < x3 < x1. Let F be the event that x1, x2 and x3 are all different.

The number of outcomes in which no two dice show the same number is 6× 5× 4 = 120. Hence

the probability that no two dice show the same number is 120
216 = 5

9 . Hence P (F ) = 5
9 .

Given that no two dice show the same number, the 3! = 6 orderings of the 3 distinct numbers

are equally likely, so P (E|F ) = 1
6 .

Finally, P (E) = P (E|F )P (F ) = 5
9
1
6 = 5

54 .

43. Let Ej be the event that the jth coin is selected, j = 1, 2, 3. Let H be the event that the toss

is heads. We are asked to compute P (E1|H). By Bayes’ formula,

P (E1|H) =
P (E1)

P (H)
P (H|E1) .

It is evident that P (E1) = 1
3 and that P (H|E1) = 1. It remains to compute P (H). But

P (H) =

3∑
j=1

P (Ej)P (H|Ej) =
1

3

(
1 +

1

2
+

3

4

)
=

3

4
.
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Therefore,

P (E1|H) =
4

9
.

From the theoretical exercises in Chapter 3: 7∗, 14, 19∗

7. The sample space S consists of all vectors (x1, . . . , xm+n) where each xj is 0 or 1, and xj = 1

for exactly n of the entries. Here, xj = 1 indicates the jth ball drawn is white. Each outcome is

equally likely. Notice we set up the probability space (S, P ) to describe the extraction of all of the

balls from the urn.

Let E denote the event that when only balls of one color remain, those balls are white. Evidently,

ω = (x1, . . . , xm+n) belongs to E if and only if for some k < m + n, xj = 1 for all j > k, and

this is the case if and only if xm+n = 1. The probability that the last ball is white is the same

as the probability that the first ball is white since ω = (x1, . . . , xm+n) and the reversed outcome

ω′ = (xm+n, . . . , x1) are equally likely. And since any of the m + n balls are equally likely to be

chosen first, and n of them are white,

P (E) = P ({x1 = 1}) =
n

m + n
.

Alternatively, the cardinality of E is the number of ways we can arrange the m black balls in

the first m + n− 1 places, while the cardinality of S is the number of ways we can arrange the m

black balls in the full m + n places. Hence

P (E) =

(
m + n− 1

m

)(
m + n

m

)−1
=

n

m + n
.

19. In the notation of the notes, if the total fortune is N , and the game is played until one player

wins or else n trials have happened, whichever comes first, Pi,N,n is the probability that player A

wins if their initial fortune is i. (The order of the subscripts is a bit different in the way the problem

is posed in the text.)

Let p be the probability that A wins in each trial. As we saw in class, and as explained in the

notes, for 0 < i < N ,

Pi,N,n = pPi+1,N,n−1 + (1− p)pPi−1,N,n−1 ,

and P0,N,n = 0 and PN,N,n = 1. Also, Player A cannot win in fewer than N − i trials, so

Pi,N,n = 0 for n < N − i . (∗)

also, if n = N − i, A wins the game if and only if A wins the remaining n trials, and the probability

of this is pn. Hence

Pn,N,n = pn . (∗∗)

Hence, repeatedly applying the recursion relation, and PN,N,n = 1,

P3,5,7 = pP4,5,6 + (1− p)P2,5,6

= p[p + (1− p)P3,5,5] + (1− p)[pP3,5,5 + (1− p)P1,5,5]

= p2 + 2p(1− p)P3,5,5 + (1− p)2P1,5,5



4

Now, by the recursion relation and P0,N,n = 0 and (∗)

P1,5,5 = pP2,5,4 = p2P3,5,3 = p3P4,5,2 = p4 .

Indeed, if A looses any of the first four trials, A needs 5 trial to come out with a net gain of 4, but

one of the 5 trials has been used for B’s win, and this is impossible.

Next, P3,5,5:

P3,5,5 = pP4,5,4 + (1− p)P2,5,4 = p2 + 2p(1− p)P3,5,3 = p2 + 2p3(1− p)

where we used (∗) and (∗∗).
Altogether,

P3,5,7 = p2 + 2(1− p)p2 + 4(1− p)2p4 .

This is readily checked: With H denoting a win by A and T denoting a win by B, there is

exactly one outcome in which A wins in 2 trials, namely

HH ,

which has probability p2.

There are 2 outcomes in which A wins in exactly 4 trials, namely

THHH and HTHH .

If B does not win in one of the first two trials, then A wins in 3 trials. But in this case, A must

win trials 3 and 4 to win in 4 trials. Each of these outcomes has probability (1− p)p3.

Finally, there 4 outcomes in which A wins in exactly 6 trials, namely

TTHHHH , THTHHH , HTHTHH and HTTHHH ,

and each of these has probability (1 − p)2p4. There are no outcomes in which A wins in an odd

number of trials.


