Homework 1 Solutions, Math 477, Fall 2018

Eric A. Carlen
Rutgers University

October 2, 2018

Chapter 1 Problems:

5. If the first digit is 4 , there are 2 choices for the second digit (it must be 0 or 1) and then 9 choices for the first digit, which must be chosen from $\{1, \ldots, 9\}$. Thus there are 18 such allowed area codes.
$\mathbf{8 b}$. The word "propose" has 2 p's, 2 o's and 1 each of r, s and e. There a 7 letters in total, and so there are

$$
\frac{7!}{(2!)^{2}(1!)^{3}}=1260
$$

21. We must count the ways of taking 7 steps, exactly 4 of which are to the right, and exactly 3 of which are up. Once the 4 steps to the right are determined, everything is determined, so the number is the number of ways we can select 4 places out of 7 for the steps to the right (or equivalently, 3 places out of seven for the steps up). The answer is therefore

$$
\binom{7}{4}=\binom{7}{3}=\frac{7!}{4!3!}=35
$$

32. This is just like a blotting problem where there are 8 voters and 6 candidate. The number of final vote tallies is

$$
\binom{8+6-1}{6-1}=\binom{13}{5}=1287,
$$

and this is therefore the number of exit patterns the operator could see.
For the second part, we effectively have two independent elections for 6 candidates, one with 5 voters and one with 3 voters, These have

$$
\binom{5+6-1}{6-1}=252 \quad \text { and } \quad\binom{3+6-1}{6-1}=56
$$

possible outcomes respectively. The total is their product, namely 14112, which is, of course, more than before.

Chapter 1 Theoretical Exercises:

20. Let $k:=n-\sum_{j=1}^{r} m_{j}$. This is how many ball are left when the required minimum numbers have been placed in each urn. At this point, assuming $k>0$, we have choices. We seek r non-negative integer $\left\{n+1, \ldots, n_{r}\right\}$ such that $\sum_{j=1}^{r} n_{j}=k$. There are

$$
\binom{k+r-1}{r-1}
$$

$\left(n_{1}, \ldots, n_{r}\right)$ such vectors.
22. By Clairault's Theorem, provided the partial derivatives are continuous, it does not matter in which order they are taken; all that matters is that there are n_{j} partial derivatives with respect to $x_{j}, n_{j} \geq 0$, for each $j=1, \ldots, n$ and $\sum_{j=1}^{n} n_{j}=r$. Let's be reasonable and assume Clairault's Theorem applies (though nothing is said about the regularity of f). Then the answer is

$$
\binom{k+r-1}{n-1}
$$

23. By one of our basic counting results, we know that there are exactly $\binom{n+\ell-1}{n-1}$ vectors $\left(x_{1}, \ldots, x_{n}\right)$ of non-negative integers such that $\sum_{i=1}^{n} x_{i}=\ell$. Therefore, the number of vectors $\left(x_{1}, \ldots, x_{n}\right)$ of non-negative integers such that $\sum_{i=1}^{n} x_{i} \leq k$. is

$$
\sum_{\ell=0}^{k}\binom{n+\ell-1}{n-1}
$$

