Solutions for Homework 10, Math 477, Fall 2018

Eric A. Carlen
Rutgers University

December 14, 2018

Instructions Do all of these problems - at least - but neatly write up and turn in only those that are marked with a $*$, including the first one below:
$\mathbf{1}^{*}$ Let $\left\{X_{j}\right\}_{j \in \mathbb{N}}$ be an independent, identically distributed sequence of random variables that are Poisson with parameter 1 .
(a) Compute $p(\lambda)=\ln \left(\mathrm{E}\left(e^{\lambda X_{1}}\right)\right)$, and then compute

$$
s(x):=\sup _{\lambda>0}\{\lambda x-p(\lambda)\} .
$$

(b) Let \bar{X}_{N} denote the sample mean. Use Cramér's Theorem to estimate $P\left(\bar{X}_{N} \geq 1.02\right)$ for $N=10^{4}, N=10^{5}$ and $N=10^{6}$.
SOLUTION (a) We compute

$$
\mathrm{E} e^{\lambda X_{1}}=\sum_{n=0}^{\infty} e^{\lambda n} \frac{1}{n!} e^{-1}=e^{e^{\lambda}-1}
$$

Hence

$$
p(\lambda)=e^{\lambda}-1
$$

We then compute $s(x)=\sup \lambda>0\{\lambda x-p(\lambda)\}$ by fixing x and defining $\varphi(\lambda)=\lambda x-p(\lambda)$. Then $0=\varphi^{\prime}(\lambda)$ is the equation

$$
0=x-c^{\lambda}
$$

so $\lambda=\ln (x)$ is the solution, and this is positive for $x>1$. Hence for all $x>1$, we plug $\lambda=\ln (x)$ into $\varphi(\lambda)$ to find

$$
s(x)=x \ln x-x+1 .
$$

If $x<!$, the best we can do is take $\lambda=0$ and then $s(x)=0$.
(b) By Carmer's Theorem, for $x>\mathrm{E}\left(X_{1}\right)=1$,

$$
P\left(\bar{X}_{N}>x\right) \leq e^{-N s(x)} .
$$

Then

$$
s(1.02)=0.00019867985 \ldots
$$

It then follows that $P\left(\bar{X}_{10^{4}} \geq 1.02\right) \leq .1371337571 \ldots, P\left(\bar{X}_{10^{5}} \geq 1.02\right) \leq 2.352034826 \ldots \times 10^{-9}$, $P\left(\bar{X}_{10^{6}} \geq 1.02\right) \leq 5.181284977 \ldots \times 10^{-87}$.

From the Problems in Chapter 8:

6 Let X_{1} be the number on one toss of a fair die. Then simple computations give

$$
\mu:=\mathrm{E}\left(X_{1}\right)=\frac{21}{6}, \quad \mathrm{E}\left(X_{1}^{2}\right)=\frac{91}{6} \quad \sigma^{2}:=\operatorname{Var}\left(X_{1}\right)=\frac{35}{12} .
$$

By the Central Limit Theorem, the distribution for the sum of the results for 80 tosses is approximately that of

$$
80 \mu+\sqrt{80} \sigma Z
$$

where Z is standard normal. This simplifies to

$$
280+(15.275) Z
$$

So we need to compute

$$
P(280+(15.275) Z<300)=P(Z<20 /(15.275))=P(Z<1.309) \approx 0.9049 .
$$

11 The total change in the price of the stock is

$$
W=\sum_{j=1}^{10} X_{j},
$$

and this is normal with zero mean and variance 10 . Hence $W=\sqrt{10} Z$ where Z is standard normal. Then

$$
P(W>5)=P(Z>5 / \sqrt{10}) \approx P(Z>1.581)=1-P(Z \leq 1.581)=1-0.9429 .
$$

From the Problems in Chapter 9: 4 If there are zero while balls in the first urn, we will surely select a black ball from the first urn and a while ball from the second, After swapping, there will be one white ball in the first urn. So

$$
P\left(X_{n+1}=1 \mid X_{n}=0\right)=1
$$

and all of other probabilities are zero. Hence the first row of the transition matrix is $(0,1,0,0$,$) .$
If there is one while ball in the left urn, the probability that we select $W W$ or $B B$ is $\frac{4}{9}$. This is the probability of no change. If we select $B W$, the number increases by 1 . The probability of this is $\frac{4}{9}$. Otherwise, with probability $\frac{1}{9}$, the number decreases by 1 . Hence the second row is

$$
\frac{1}{9}(1,4,4,0) .
$$

Likewise, we find the third row is

$$
\frac{1}{9}(0,4,4,1),
$$

and the fourth row is $(0,0,1,0)$. Hence the transition matrix is

$$
P:=\frac{1}{9}\left[\begin{array}{l}
0,9,0,0 \\
1,4,4,0 \\
0,4,4,1 \\
0,0,9,0
\end{array}\right] .
$$

10 See the notes on Markov chains where this is worked out. The final answer is $1 / 6$.

