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Abstract

These are some notes on applications of the change of variables formula from Calculus

0.1 One variable

Let f be a continuous function on some interval (a, b). Let u be continuously differentiable, strictly

monotone function from (a, b) to (c, d). It is allowed that either a or c could be −∞, and the

either b or d could be ∞.

Then since u is strictly monotone, it is invertible, and with inverse function x(u), which is

continuously differentiable as a function of u. The change of variables formula then says that for

any u0, u1 with c < u0 < u1 < d,∫ x(u1)

x(u0)

f(x)dx =

∫ u1

u0

f(x(u))x′(u)du . (0.1)

This has the following probabilistic interpretation. Suppose that f is the density function of a

continuous random variable X. Define a new random variable U by U = u(X). Then, assuming

x(u0) < x(u1), which is the case if u is monotone increasing, the integral on the left in (0.1) equals

P (x(u0) < X < x(u1)) .

But, again since u is monotone increasing,

x(u0) < X < x(u1) ⇐⇒ u(x(u0)) < u(X) < u(x(u1)) ⇐⇒ u0 < U < u1 .

Hence the integral on the right in (0.1) equals P (u0 < U < u1). It follows immediately that

g(u) := f(x(u))x′(u) (0.2)

is the probability density function of U ,
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Things are similar if u is monotone decreasing: Then so is x as a function of u, so that

x(u1) < x(u2), and then the integral on the left equals,

−
∫ x(u0)

x(u1)

f(x)dx = −P (x(u1) < X < x(u2)) .

Since u is monotone decreasing,

x(u1) < X < x(u0) ⇐⇒ u(x(u1)) > u(X) > u(x(u0)) ⇐⇒ u1 > U > u0 .

Hence the integral on the right in (0.1) equals −P (u0 < U < u1). It follows immediately that

g(u) := −f(x(u))x′(u) (0.3)

is the probability density function of U ,

We can combine both (0.2) and (0.3) into a single formula: g(u) = f(x(u)|x′(u)|. We have

proved:

0.1 THEOREM. Let X be a continuous random variable with values in (a, b), and let f be the

probability density function of X. Let u be a continuously differentiable strictly monotone function

from (a, b) to (c, d). Define a new random variable U = u(X). Then U has the probability density

function g where

g(u) := f(x(u))|x′(u)| (0.4)

0.2 EXAMPLE. Let X be uniform on (0, 1) so that f(x) = 1 for x ∈ (0, 1). Let u(x) = − log(x).

As x ranges over (0, 1), u ranges over (0,∞), and note that u is strictly monotone decreasing.

The inverse function is x(u) = e−u, and so |x′(u)| = e−u. Defining U = u(X) = − log(X), we

then have that the density of U is the function e−u on (0,∞). That is, if X is uniform on (0, 1),

U = − log(X) is exponential with unit rate on (0,∞).

0.2 Several variables

Let Ω̂ be an open subset of the x, y plane with piecewise smooth boundary. Let x = (x, y)

denote a generic point in the x, y plane. Suppose that U(x) = (u(x, y), v(x, y)) is a continuously

differentiable function defined on Ω̂ with values in the u, v plane. Suppose further that U is one-

to one on Ω̂, and let Ω denote the image of Ω̂ under U. Then U is an invertible, continuously

differentiable transformation from Ω̂ onto Ω. Let X(u, v) denote the inverse function.

For A ⊂ Ω, define Â = U−1(A). Then for any continuous function f on Ω̂, the change of

variables formula for two variables gives us∫
Â

f(x, y)dxdy =

∫
A

f(X(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv , (0.5)
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where

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ is the absolute value of the Jacobian determinant of the transformation:

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =

∣∣∣∣∣∣det

 ∂x
∂u

(u, v) ∂y
∂u

(u, v)

∂x
∂v

(u, v) ∂y
∂v

(u, v)

∣∣∣∣∣∣ . (0.6)

This formula has a probabilisitic interpretation. Suppose that f is the joint probability density

function of a pair of random variables (X, Y ), where (X, y) takes values in ω̂. Then left side of (0.5)

equals P ((X, Y ) ∈ Â). Define new random variables U and V by U = u(X, Y ) and V = v(X, Y ).

Then by the definition of A,

(X, Y ) ∈ Â ⇐⇒ (U, V ) ∈ A .

and hence the integral on the right in (0.5) equals P ((U, V ) ∈ A). It follows that

g(u, v) = f(x(u, v), y(u, v)

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ (0.7)

is the joint probability density function of U and V . We have proved:

0.3 THEOREM. Let f be the joint probability density of a pair (X, Y ) of random variables taking

values in Ω̂ ⊂ R2. Let U(x) = (u(x, y), v(x, y)) be a continuously differentiable function defined

on Ω̂. Suppose further that U is one-to one on Ω̂, and let Ω denote the image of Ω̂ under U, so

that U(x, y) has a continuously differentiable inverse X(u, v) defined on Ω. Define a new pair of

random variables (U, V ) by U = u(X, Y ) and V = v(X, Y ). Then the function g(u, v) given in

(0.7) is the joint probability density of (U, V ).

The generalization to more variables is straightforward.

0.4 EXAMPLE. Let X and Y be independent and uniform on (0, 1). Define new random vari-

ables U := X + Y and V := X/Y . Find the joint probability density of (U, V )? Are U and V

independent?

To apply the theorem, we note that f(x, y) = 1 for (x, y) ∈ (0, 1) × (0, 1) and f(x, y) = 0

elsewhere. Next define u(x, y) = x + y and V (x, y) = x/y. Then U(x, y) = (x + y, x/y) which is

defined and continuously differentiable on Ω̂ = (0, 1)× (0, 1).

To see that it is invertible, we seek to compute the inverse. Combining u = x + y and x = vy

yields u = y(v + 1) so that

y =
u

1 + v
and then x =

uv

1 + v
.

Hence the inverse transformation is

X(u, v) = (x(u, v), y(u, v)) =

(
uv

1 + v
,

u

1 + v

)
.
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To find Ω, the domain of X, we note first the by definition u(x, y) and v(x, y) are positive on

Ω̂ = (0, 1)× (0, 1). By definition, (u, v) ∈ Ω if and only if (x(u, v), y(u, v)) ∈ Ω̂, which is the same

as

0 ≤ uv

1 + v
≤ 1 and 0 ≤ u

1 + v
≤ 1 .

The region Ω is therefore bounded by

u = 0 , v = 0 , v =
1

u− 1
and v = u− 1 .

That is, Ω is the union of the rectangle (0, 1)× (0,∞), and the region above (1, 2) with u− 1 <

v < 1
1−u .

Finally we compute  ∂x
∂u

(u, v) ∂y
∂u

(u, v)

∂x
∂v

(u, v) ∂y
∂v

(u, v)

 =


v

1+v
u

(1+v)2

1
1+v

−u
(1+v)2


and therefore ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ = u(1 + v)−2 .

Therefore, the joint density function of (U, V ) is g(u, v) given by

g(u, v) :=

{
u(1 + v)−2 (u, v) ∈ Ω

0 (u, v) /∈ Ω
.

Although the function u(1 + v)−2 is a product function, g(u, v) is not because Ω is not a rectangle.

Therefore, U and V are not independent. This can be seen without calculation: It is possible for

V to be very large, but then Y must be very small, and then U cannot be much greater that 1,

while in general U can be as large as 2. Hence U is not independent of V , and then neither is V

independent of U .

We have answered the questions posed at the beginning of the example, but let’s check our work.

It must be the case that ∫
Ω

g(u, v)dudv = 1

since otherwise g would not be a probability density.

We compute:∫
Ω

g(u, v)dudv =

∫ 1

0

u

(∫ ∞
0

(1 + v)−2dv

)
du +

∫ 2

1

u

(∫ (u−1)−1

u−1

(1 + v)−2dv

)
du

=
1

2
+

∫ 2

1

u

(
2− u

u

)
du = 1 .

It is also instructive to compute the left marginal density of g; i.e.,

gU(u) =

∫
R
g(u, v)dv .
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There are two cases to consider: For 0 < u < 1,∫
R
g(u, v)dv = u

∫ ∞
0

(1 + v)−2dv = u .

for 1 < u < 2, ∫
R
g(u, v)dv = u

∫ (u−1)−1

u−1

(1 + v)−2dv = 2− u .

Altogether,

gU(u) =


u u ∈ [0, 1]

2− u u ∈ [1, 2]

0 u /∈ [0, 2]

,

which is what we computed for the convolution of two uniform densities on [0, 1].

We close by computing the right marginal density of g, I.e.,

gV (v) =

∫
R
g(u, v)du .

There are two cases to consider: For 0 < v < 1,∫
R
g(u, v)du = (1 + v)−2

∫ 1+v

0

udu =
1

2
.

for 1 < v <∞, ∫
R
g(u, v)du = (1 + v)−2

∫ 1+v−1

0

udu =
1

2v2
.

Altogether,

gV (v) =


1
2

v ∈ [0, 1]
1

2v2
v ∈ [1,∞)

0 v < 0

.

Let’s check this last computation: log(X/Y ) = log(X) − log(Y ). Define W := log(X) and

Z := − log(Y ), By Theorem 0.3,

fW (w) =

{
ew w < 0

0 w ≥ 0
and fZ(z) =

{
e−z z > 0

0 z ≤ 0
.

Since W and Z are independent, the density o Z + W is given by the convolution:

fZ+W (t) =

∫
R
fW (t− z)fZ(z)dz

and the integrand is non-zero if and only if both z > 0 and t− z < 0. Hence if t > 0, we have∫
R
fW (t− z)fZ(z)dz =

∫ ∞
t

et−ze−zdz =
1

2
e−t ,
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while for t < 0, ∫
R
fW (t− z)fZ(z)dz =

∫ ∞
0

et−ze−zdz =
1

2
et .

Altogether,

fW+Z(t) =
1

2
e−|t| .

Then since X/Y = exp(W + Z), we can apply Theorem 0.3 once more to obtain the density

for X/Y : If v(t) = exp(t), t(v) = log(v) and then t′(v) = 1/v for v > 0. Theorem 0.3 then gives

fX/Y (v) = fW+Z(t(v))t′(v) =
1

2
e−| log v| 1

v
.

For v < 1, −| log v| = log(v) and so for such v, fX/Y (v) = 1
2
. For v > 1, −| log v| = − log(v) and

so for such v, fX/Y (v) = 1
2
v−2. Altogether,

fX/Y (v) =


1
2

0 ≤ v ≤ 1
1

2v2
v ≥ 1

0 v < 0 .

This is exactly what we found above by computing the right margin of the joint probability density

of (X + Y,X/Y ).


