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1: (a) Find the general solution of

x′(t) = − 1

t2
− x(t)

t
+ x2(t) (0.1) p1

for t > 0.

(b) Find the solution with x(1) = x0 for arbitrary x) ∈ R. For which values of x0 does
this solution exist for all t > 0?

SOLUTION Looking for a solution of the form x1 = Ctα, we find

αCtα−1 + t−2 +
C

t

α−1
− C2t2α = 0 .

We must have α − 1 = 2α, so α = −1. We then have −C + 1 + C − C2 = 0, or C2 = 1.
We have two solutions C = ±1.

If we choose x1 = −t−1, i.e., C = −1, and let x = u+ x1, then

u′ = −3

t
u+ u2 .

Defining z = 1/u, we find

z′ − 3

t
z = −1 ,

which leads to

t−3z =
1

2
t−2 + C

so finally,

x(t) =

(
1

2
t+ Ct3

)−1
− 1

t
.

Alternately, if we use x1 = t−1; i.e., C = 1, and again x = x1 + u, we find

u′ =
1

t
u+ u2 ,
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and then with z = 1/u,

z′ +
1

t
z = −1 ,

which leads to

tz = −1

2
t2 + C

so finally,

x(t) =

(
−1

2
t+ Ct−1

)−1
+

1

t
.

A bit of algebra shows the two solutions agree, as they must.
For (b) , we have

x0 =

(
−1

2
+ C

)−1
+ 1 ,

so that

C =
1

2

x0 + 1

x0 − 1
.

The solution then is

x(t) =

(
−1

2
t+

1

2

x0 + 1

x0 − 1
t−1
)−1

+
1

t
.

The solution exists for all t > 0 if and only if

1

2

x0 + 1

x0 − 1
< 0

since only in this case is there no division by zero. Therefore, the solution exists for all
t > 0 if and only if

−1 ≤ x(1) ≤ 1 .

Notice that the endpoints of this interval correspond to our two particular solutions.

2: Consider the differential equation x′(t) = v(x(t) where

v(x) = x− x3 .

Note that (0, 1) is a maximal interval.

(a) Is v(x) Lipschitz on (0, 1)? Is it Lipschitz on all of R? Justify your answers.

(b) Find the general solution x(t) for x(0) = x0 ∈ (0, 1), and find the corresponding flow
transformation.

(c) Let x(0) = 1/2. Find T such that x(T ) = 3/4.

SOLUTION: (a) Differentiating, we find v′(x) = 1 − 3x2. This is continuous on all of
R, and therefore bounded on any bounded interval, and so v is Lipschitz on (0, 1). More
specifically,

|v′(x)| ≤ 2
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for all x ∈ (0, 1), and so |v(y)− v(x)| ≤ 2|y − x| for all x, y ∈ (0, 1). However, v(x) is not
Lipschitz on all of R since v′(x) is not bounded on all of R.

For (b), by Barrow’s formula

t(x)− t(x0) =

∫ x

x0

1

z − z3
dz =

∫ x

x0

[
1

z
+

1

2

1

1− z
− 1

2

1

1 + z

]
dz

=
z√

1− z2

∣∣∣∣x
x0

.

Solving for x(t) we find

x(t) =
et−t0x0√

1 + x20(e
2(t−t0) − 1)

.

For (c), by Barrow’s formula,

t(3/4)− t(1/2) =

∫ 3/4

1/2

1

z − z3
dz =

1

2
ln(27/7) ≈ 0.67496 .

3: Consider the vector field

v(x, y) = ((y − 1)(x− y) , (x+ y)(x+ 1)) .

Alternatively, this equation is a Bernoulli equation, and can be solved by the standard
Bernouli substitution. But Barrow’s formula is still the easiest way to answer the final
part.

(a) Find all equilibrium points, and for each one, determine whether it is asymptotically
stable, Lyapunov stable or unstable, or if this cannot be decided by linearization. Explain
your reasoning and justify your answer with appropriate calculations.

(b) Sketch the solution curves in the vicinity of each equilibrium point for which the
linearization determines the stability.

SOLUTION: At an equilibrium point, we must have either y = 1 or y = x, and we must
also have (x+y)(x+ 1) = 0. If y = 1, the latter condition is (x+ 1)2 = 0, so x = −1. Thus
(−1, 1) is the only equilibrium point with y = 1. If y = x, the second condition becomes
2x(x+1) = 0 which has the solutions x = 0 and x = −1. Hence the only other equilibrium
points we get are (0, 0) and (−1,−1). Thus,

x1 = (−1,−1) and x2 = (0, 0) and x3 = (−1, 1) .

are the only equilibrium points.
Computing the Jacobian matrix of v at x1, we find

[Dv(x, y)] =

[
y − 1 x− 2y + 1

2x+ y − 1 x+ 1

]
.
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Therefore,

[Dv(x1)] =

[
−2 2
−2 0

]
.

The characteristic polynomial is t2 + 2t+ 4 = (t+ 1)2 + 3, so that eigenvalues are

µ± = −1± i
√

3 .

The imaginary parts are both strictly negative so x1 is an asymptotically stable equilibrium
point. Here is the phase portrait in the region −1/2 ≤ x, y ≤ 1/2:

Next,

[Dv(x2)] =

[
−1 1

1 1

]
.

The characteristic polynomial is t2 − 2, so that eigenvalues are

µ± = ±
√

2 .

One eigenvalue is strictly positive, so x2 is unstable. Here is the phase portrait in −3/2 ≤
x, y ≤ 1/2:
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Finally,

[Dv(x2)] =

[
0 −2
0 0

]
.

The only eigenvalue is 0. The stability (or not) of this equilibrium point cannot be decided
by linearization.

The following was not part of the problem, but here is a more global picture showing
the vicinity of both equilibrium points. Both figures show the region −5 ≤ x, y ≤ 3.
The figure on the left shows phase curves passing through points that get ‘swept into’ the
stable equilibrium point. This is its basin of attraction. The figure on the right shows
phase curves passing through points that get swept away.

Looking at the plots, one can see that the equilibrium point x3 is unstable.

4: Consider the system

x′ = 2x− 5y (0.2)

y′ = x− 2y

(a) Find a matrix A so that this system can be written as x′ = Ax, and compute etA.

(b) Use Duhamel’s formula to find the solution of

x′(t) = Ax(t) + (cos t, sin t)

with x(0) = (1, 1) where A is the matrix form part (a).

Extra Credit: Show that the solution curves of the system in part (a) are ellipses, and
find the equations of these ellipses.

SOLUTION: The Matrix is

A =

[
2 −5
1 −2

]
.

The characteristic polynomial is t2 + 1 = (t + i)(t − i), so the eigenvalues are µ± = ±i.
The eigenvectors are

v± = (2± i, 1) .
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Hence one complex solution is

z(t) = etµ+v+ = eit(2 + i, 1) = (cos t+ i sin t)(2 + i, 1)

= (2 cos t− sin t, cos t) + i( cos t+ 2 sin t, sin t) = x(t) + iy(t) .

This gives us two real solution, x(t) and y(t), and

etA = [x(t),y(t)][x(0),y(0)]−1

=

[
2 cos t− sin t cos t+ 2 sin t

cos t sin t

] [
2 1
1 0

]−1
=

[
2 cos t− sin t cos t+ 2 sin t

cos t sin t

] [
0 1
1 −2

]
=

[
cos t+ 2 sin t −5 sin t

sin t cos t− 2 sin t

]
.

(b). The solution is

x(t) = etAx0 +

∫ t

0

e(t−s)A( cos s, sin s)ds

= etA
(
x0 +

∫ t

0

e−sA( cos s, sin s)ds

)
.

Next,[
cos s+ 2 sin s −5 sin s

sin s cos s− 2 sin s

]
(cos s, sin s) = (5− 4 cos2 s− 2 sin s cos s , 2 sin2 s) ,

and then we compute∫ t

0

(5−4 cos2 s−2 sin s cos s , 2 sin2 s)ds = ( cos2 t−2 cos t sin t+3t−1 , − sin t cos t+ t) ,

so that

x0 +

∫ t

0

e−sA( cos s, sin s)ds = ( cos2 t− 2 cos t sin t+ 3t , − sin t cos t+ t+ 1) ,

Finally then,

x(t) =

[
cos t+ 2 sin t −5 sin t

sin t cos t− 2 sin t

]
( cos2 t− 2 cos t sin t+ 3t , − sin t cos t+ t+ 1) ,

and you can leave the answer in this form. However, just to complete the analysis, here is
the result of multiplying it all out, and simplifying:

x(t) = (t(3 cos t− 2 sin t)− 2 sin t , t(cos t+ sin t)− sin t) .
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For the extra credit, let f(x, y) = Ax2 + Bxy + Cy2. Let x(t) be a solution of the
system. Then

d

dt
f(x(t)), y(t)) = 2A(2x− 5y) +Bx(2− 2y) +By(2x− 5y) + 2Cy(x− 2y) .

Setting this equal to zero, we get

(4A+B)x2 + (2C − 10A)xy + (−4C − 5B)y2 = 0

So the ellipses are given by

x2 − 4xy + 5y2 = constant .


