# Practice Test for Test 2, Math 292, April 25, 2013 

Eric A. Carlen ${ }^{1}$<br>Rutgers University

April 24, 2014

1. The differential equation

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=0
$$

has polynomial coefficients.
(a) Find one polynomial solution to this equation.
(b) Find the general solution of this equation.
(c) Find the general solution of

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=t^{2} \ln t
$$

2. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(x)-x y^{\prime}(x)+\frac{x^{2}}{2} y(x)=0 . \tag{0.1}
\end{equation*}
$$

(a) Find a function $q(x)$ so that whenever $y(x)$ is a solution of $(0.2)$, there is a solution $z(x)$ of

$$
\begin{equation*}
z^{\prime \prime}(x)+q(x) z(x)=0 \tag{0.2}
\end{equation*}
$$

that has the same set of zeros as $y(x)$.
(b) Find a number $L>0$ so that if $y(x)$ solves ( 0.1 ) and satisfies $y(0)=0$ and $y^{\prime}(0)=1$, then for some $x_{1}$ with $0<x_{1}<L, y\left(x_{1}\right)=0$. Justify your answer.
3. Find the continuously differentiable curve $y(x)$ such that $y(0)=1$ and $y(1)=0$ that minimizes the functional

$$
I[y]=\int_{0}^{1}\left[\left|y^{\prime}(x)\right|^{2}+|y(x)|^{2}\right] \mathrm{d} x .
$$

Justify your answer.
4. Let

$$
\mathcal{L} u=\left(x u^{\prime}\right)^{\prime}-\frac{1}{x} u .
$$

(a) Show that for all $0<a<b<\infty$, there is no solution of

$$
\mathcal{L} u=0 \quad \text { with } \quad u(a)=u(b)=0 .
$$

[^0](b) Let $a=1$ and $b=2$. Find the Green's function $G(x, y)$ such that the solution of $\mathcal{L} u=f$ with $u(1)=u(2)=0$ is given by
$$
u(x)=\int_{a}^{b} G(x, y) f(y) \mathrm{d} y
$$
for all continuous $f$ on $[a, b]$.
(c) Find the function $u(x)$ on $[1,2]$ such that
$$
\mathcal{L} u=x^{2}
$$
with $u(1)=1$ and $u(2)=2$.


[^0]:    ${ }^{1}$ 2014 by the author.

