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1: (a) Find the general solution of

x′(t) = −x(t) + sin t (0.1)

and find the unique value of x(0) for which the solution is periodic.

(b) Let x1(t) and x2(t) be any two solutions of (0.1). Show that for all λ < 1,

lim
t→∞

etλ|x1(t)− x2(t)| = 0 .

2: Consider the two differential equations

(i) x′(t) =
√

1− x2(t) , x(0) = 0

and

(ii) y′(t) = 1− y2(y) , y(0) = 0

One of the two solutions reaches zero in a finite time T . That is there is a T such that x(T ) = 1

or there is a T such that y(T ) = 1, Which one is it, and what is T?

3: Consider the Ricatti equation

x′(t) + x2(t) =
2

t2
(0.2)

for t > 0.

(a) Find a particular solution x1(t) of the form x1(t) = Ctα.

(b) Find the general solution.

(c) Find the solution that satisfies x(1) = 1 and the interval on which this soluiton is defined.

4: Consider the vector field

v(x, y) = ((y − x)(1− x− y) , x(2 + y)) .

(a) Find all equlibrium points, and for each one, determine whether it is assymptoically stable,

Lyapunov stabe or unstable. Explain your reasining and justify your answer with appropriate

calculuations.

(b) Sketch the solution curves in the vicinity of each equilibrium point.
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5: Consider the system

x′ = −4x− 9y (0.3)

y′ = x+ 2y

(a) Find a matrix A so that this system can be written as x′ = Ax, and compute etA.

(b) Let bx(t) = (x(t), y(t)) be the solution with (x(0), y(0)) = (x0, y0). Find all values of x0 and

y0 such that

lim
t→∞

x(t) = 0 .

(c) Use Duhamel’s formula to find the solution of

x′(t) = Ax(t) + (0, t)

with x(0) = (1, 1).


