Practice Final Exam, Math 292, 2014

Eric A. Carlen ${ }^{1}$
Rutgers University

May 6, 2014

1. Find the general solution of

$$
t^{3} x^{\prime}(t)+t^{2} x(t)-x^{2}(t)=2 t^{4} .
$$

2. Cinside the two equations

$$
\text { I }\left(y^{\prime}\right)^{2}+y^{2}=1 \quad \text { and } \quad \text { II } \quad\left(y^{\prime}\right)^{2}-y^{2}=1
$$

One has a unique solution with $y(t)=y_{0}$, and the other has infinitely many such solutions. Which one is which? Justify your answer.
3. Let $\mathbf{v}(x, y)=\left(x y+12, x^{2}+y^{2}-25\right)$. Find all equilibrium points of \mathbf{v}, and determine which, if any, are Lyapunov stable, assymptoticaly stable, or unstable whenver this can be deremined by linearization. Justify your answer.
4. Let $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ Let $\mathbf{f}(t)=(1, t)$. Find the solutions of

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{f}(t)
$$

with $\mathbf{x}(0)=(1,1)$.
5. The differential equation

$$
t 2 x^{\prime \prime}(t)+(2+2 t) x^{\prime}(t)+2 x(t)=0
$$

has polynomial coefficients.
(a) Find one polynomial solution to this equation.
(b) Find the general solution of this equation.
(c) Find the general solution of

$$
t 2 x^{\prime \prime}(t)+(2+2 t) x^{\prime}(t)+2 x(t)=8 e^{2 t}
$$

6. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(x)+3 x y^{\prime}(x)+x^{2} y(x)=0 . \tag{0.1}
\end{equation*}
$$

[^0](a) Find a function $V(x)$ so that whenever $y(x)$ is a solution of (0.2), there is a solution $z(x)$ of
\[

$$
\begin{equation*}
z^{\prime \prime}(x)+V(x) z(x)=0 \tag{0.2}
\end{equation*}
$$

\]

that has the same set of zeros as $y(x)$.
(b) Are there any non-trivial solutions of $y^{\prime \prime}(x)+3 x y^{\prime}(x)+x^{2} y(x)=0$ that have more than one zero? Justify your answer.
7. Find the continuously differentiable curve $y(x)$ such that $y(0)=1$ and $y(1)=0$ that minimizes the functional

$$
I[y]=\int_{0}^{1}\left(y^{\prime}\right)^{2} \mathrm{~d} x
$$

subject to the constraint $\int_{0}^{1} y^{2}=1$. Justify your answer.
8. Let

$$
\mathcal{L} u=\left(x^{-3} u^{\prime}\right)^{\prime}+4 x^{-5} u .
$$

(a) Show that for all $0<a<b<\infty$, there is no solution of

$$
\mathcal{L} u=0 \quad \text { with } \quad u(a)=u(b)=0 .
$$

(b) Let $a=1$ and $b=2$. Find the Green's function $G(x, y)$ such that the solution of $\mathcal{L} u=f$ with $u(1)=u(2)=0$ is given by

$$
u(x)=\int_{a}^{b} G(x, y) f(y) \mathrm{d} y
$$

for all continuous f on $[a, b]$.
(c) Find the function $u(x)$ on $[1,2]$ such that

$$
\mathcal{L} u=x^{2}
$$

with $u(1)=1$ and $u(2)=2$.

[^0]: ${ }^{1}$ © 2014 by the author.

