Homework Assignment 7, Math 292, Spring 2014

Eric A. Carlen ${ }^{1}$
Rutgers University

April 21, 2014

1. Let

$$
I[y]=\int_{1}^{2} \frac{\sqrt{1+y^{2}}}{y} \mathrm{~d} x
$$

Consider the problem of minimizing $I[y]$ subject to $y(1)=a$ and $y(2)=b$. Find the corresponding solution, or solutions, of the Euler-Lagrange equation.
2. Let

$$
I[y]=\int_{0}^{4}\left[x y^{\prime}-\left(y^{\prime}\right)^{2}\right] \mathrm{d} x
$$

Consider the problem of maximizing $I[y]$ subject to $y(0)=0$ and $y(4)=3$. Find the corresponding solution, or solutions, of the Euler-Lagrange equation. Also, explain why no minimum exists.
3. Consider the problem of finding a curve $y(x)$ with $y(0)=1, y(1)=0$, and such that

$$
\int_{0}^{1} \sqrt{1+\left(y^{\prime}\right)^{2}} \mathrm{~d} x=L
$$

with L given, and such that the area under the curve and above the x-axis is minimal. For which values of L does such a curve exist, and what is it?
5. Find the Green's function for

$$
\mathcal{L} u=\left((1+x)^{2} u^{\prime}\right)^{\prime}-u
$$

subject to $u(0)=u(1)=0$, and solve

$$
\left((1+x)^{2} u^{\prime}\right)^{\prime}-u=e^{x}
$$

5. Let $L>0$ and let

$$
I[y]=\int_{0}^{L}\left[\left(y^{\prime}\right)^{2}-y^{2}-(\sin x) y\right] \mathrm{d} x .
$$

Consider the problem of minimizing $I[y]$ subject to $y(0)=y(L)=0$. Find the corresponding Euler-Lagrange equation. For which values of L does it have a solution subject to the boundary conditions? What is the greatest lower bound as a function of L, and for which values of L is it a minimum?

[^0]
[^0]: ${ }^{1}$ 2014 by the author.

