Homework Assignment 6, Math 292, Spring 2014

Eric A. Carlen ${ }^{1}$
Rutgers University

April 8, 2014

1. This problem concerns d'Alembert's formula.
(a) Let $L>0$. Let $g(x)=x(L-x)$ for $0 \leq x \leq L$. Let g be doubly antisymmetric about $x=0$ abd $x=L$. Show that on $n L \leq x \leq(n+1) L$,

$$
g(x)=(-1)^{n}(x-n L)((n+1) L-x) .
$$

(b) Let $h(x, t)$ be the solution of

$$
\frac{\partial^{2}}{\partial t^{2}} h(x, t)=\frac{\partial^{2}}{\partial x^{2}} h(x, t)
$$

for all $0<x<1$ and all $t>0$ with $h(0, t)=h(1, t)=0$ and

$$
h(x, 0)=g(x) \quad \text { and } \quad \frac{\partial}{\partial t} h(x, 0)=0
$$

for all $0<x<1$, with g as in part (a). Compute $h(1 / 4,3 / 2)$ and $h(1 / 2,3 / 2)$.
(c) Graph the function $h(x, 3 / 2)$ on $0<x<1$.
2. This problem concerns solution of the wave equation by Fourier exansion.
(a).Let $g(x)=\sin ^{3}(x)$ and $v(x)=\sin ^{2}(x)$. Find numbers a_{1}, a_{2}, a_{3} and b_{1}, b_{2} so that

$$
g(x)=a_{1} \sin (x)+a_{2} \sin (2 x)+a_{2} \sin (3 x) \quad \text { and } \quad v(x)=\sum_{k=1}^{\infty} b_{k} \sin (k x) .
$$

Hint: To expand $g(x)$, you can simply use andle additiona formulas to express $g(x)$ as a linear combinfation of the specified functions. In fact, one of the coefficients will even be zero. To expand $v(x)$, you need to compute the Fourrier series by wring

$$
v(x)=\sum_{k=1}^{\infty}\left\langle v, u_{k}\right\rangle u_{k}(x)
$$

where $u_{k}(x)-\sqrt{2 / \pi} \sin (k x)$ is orthonormal. Using the angle addition formula

$$
\sin ^{2} \theta=\frac{1-\cos (2 \theta)}{2} \quad \text { and } \quad \sin \theta \cos \phi=\frac{\sin (\theta+\phi)-\sin (\theta-\phi)}{2}
$$

[^0]you can explicitly compute all of the intergals defining the inner products $\left\langle v, u_{k}\right\rangle$.
(b) Let $h(x, t)$ be the solution of
$$
\frac{\partial^{2}}{\partial t^{2}} h(x, t)=\frac{\partial^{2}}{\partial x^{2}} h(x, t)
$$
for all $0<x<\pi$ and all $t>0$ with $h(0, t)=h(\pi, t)=0$ and
$$
h(x, 0)=g(x) \quad \text { and } \quad \frac{\partial}{\partial t} h(x, 0)=v(x)
$$
for all $0<x<\pi$, with g and v as in part (a).
3. Let $k>0$, and consider the equation
$$
u^{\prime \prime}(x)+\frac{k}{x^{2}} u(x)=0
$$

Show that for $k>1 / 4$, every non-trivial (i.e., not identically zero) solution has infinitely many zeros, but that for $k \leq 1 / 4$, any such soluiton has only finitely many zeros.
4. Define $\mathcal{L} u(x)$ by

$$
\mathcal{L} u(x)=(1+x)^{3}\left(\frac{u^{\prime}(x)}{1+x}\right)^{\prime}
$$

(a) Write the equation

$$
\mathcal{L} u(x)=\lambda u(x)
$$

in the form

$$
u^{\prime \prime}(x)+P(x) u^{\prime}(x)+Q(x) u(x)=0 .
$$

The function $Q(x)$ will depend on λ. Find the gneral solution of this equation for al λ.
(b) Compute the eigenvalues of $\mathcal{L} u(x)$ for Dircihlet boundary conditions on $[0, L]$. That is find all number λ so that there exists a solutions of $\mathcal{L} u(x)=\lambda u(x)$ such that $u(0)=u(L)=0$.
5. Find upper and lower bounds on the k th eigenvalue of the problem

$$
\frac{1}{\left(1+x^{2}\right)}\left[\left[\left(1+x^{2}\right) u^{\prime}(x)\right]^{\prime}-x u(x)\right]=\lambda u(x)
$$

subject to $u(0)=u(1)=0$ by comparing with two problems with constant coefficients.

[^0]: ${ }^{1}$ © 2014 by the author.

