Homework Assignment 5, Math 292, Spring 2014

Eric A. Carlen ${ }^{1}$
Rutgers University

March 14, 2014

1. Find the exact solution of $x^{\prime}(t)=v(x(t), t)$ and $x(0)=0$ for

$$
v(x, t)=2 t(1+x) .
$$

Stating from $X_{0}=0$, compute the next 4 terms in the Picard iteration, namely X_{1}, X_{2}, X_{3} and X_{4}, and compare with the exact solution.
2. Consider the non-autonomous first order system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$ with

$$
A(t)=\left[\begin{array}{cc}
0 & 1 \\
t^{-2} & -t^{-1}
\end{array}\right] .
$$

We have found that the flow transforation has the matrix $\left[\Phi_{t, s}\right]$ where

$$
\left[\Phi_{t, s}\right]=M(t) M^{-1}(s)=\frac{1}{2}\left[\begin{array}{cc}
\frac{t^{2}+s^{2}}{s t} \frac{t^{2}-s^{2}}{t} \\
\frac{t^{2}-s^{2}}{s t^{2}} & \frac{t^{2}+s^{2}}{t^{2}}
\end{array}\right] .
$$

Starting from $\mathbf{X}_{0}=\mathbf{x}_{0}$ for general $\mathbf{x}_{0} \in \mathbb{R}^{2}$, compute the next 3 terms in the Picard iteration, namely $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$ for the solution of $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$ and $\mathbf{x}(s)=\mathbf{x}_{0}$. Compare the first three Picard iterates for the flow with the exact flow.
3. Find the general solution of

$$
t^{2} x^{\prime \prime}(t)+t x^{\prime}(t)-4 x(t)=t
$$

Also, compute the flow transformation of the first order linear system corresponding to

$$
t^{2} x^{\prime \prime}(t)+t x^{\prime}(t)-4 x(t)=0 .
$$

4. Find the general solution of

$$
x^{\prime \prime}(t)-x^{\prime}(t)-6 x(t)=e^{t} .
$$

5. Find the general solution of

$$
\left(t^{2}+t\right) x^{\prime \prime}+\left(2-t^{2}\right) x^{\prime}-(2+t) x=t(t+1)^{2} .
$$

[^0]
[^0]: ${ }^{1}$ 2014 by the author.

