Homework Assignment 5, Math 292, Spring 2014

Eric A. Carlen¹ Rutgers University

March 14, 2014

1. Find the exact solution of x'(t) = v(x(t), t) and x(0) = 0 for

$$v(x,t) = 2t(1+x)$$

Stating from $X_0 = 0$, compute the next 4 terms in the Picard iteration, namely X_1 , X_2 , X_3 and X_4 , and compare with the exact solution.

2. Consider the non-autonomous first order system $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ with

$$A(t) = \begin{bmatrix} 0 & 1\\ t^{-2} & -t^{-1} \end{bmatrix}$$

We have found that the flow transformation has the matrix $[\Phi_{t,s}]$ where

$$[\Phi_{t,s}] = M(t)M^{-1}(s) = \frac{1}{2} \begin{bmatrix} \frac{t^2+s^2}{st} & \frac{t^2-s^2}{t} \\ \frac{t^2-s^2}{st^2} & \frac{t^2+s^2}{t^2} \end{bmatrix}.$$

Starting from $\mathbf{X}_0 = \mathbf{x}_0$ for general $\mathbf{x}_0 \in \mathbb{R}^2$, compute the next 3 terms in the Picard iteration, namely \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{X}_3 for the solution of $\mathbf{x}'(t) = A(t)\mathbf{x}(t)$ and $\mathbf{x}(s) = \mathbf{x}_0$. Compare the first three Picard iterates for the flow with the exact flow.

3. Find the general solution of

$$t^2 x''(t) + tx'(t) - 4x(t) = t$$
.

Also, compute the flow transformation of the first order linear system corresponding to

$$t^2 x''(t) + t x'(t) - 4x(t) = 0$$
.

4. Find the general solution of

$$x''(t) - x'(t) - 6x(t) = e^t$$
.

5. Find the general solution of

$$(t^{2}+t)x''+(2-t^{2})x'-(2+t)x=t(t+1)^{2}$$
.

 $^{^{1}}$ © 2014 by the author.