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1. (10 points) Let A be the matrix A =

[
0 1

−κ 0

]
.

(a) Compute A2, A3 and A4 Observe the patterns, and deduce a formula for Ak for all positive

integers k. (You will probably want to consider even and odd k separately.)

(b) Use the results of part (a) to compute etA.

SOLUTION We compute A2 = −κI. Therefore, A3 = −κA and A4 = κ2I. From this it follows

that for all integrs m ≥ 0,

A2m+1 = (−κ)mA = (−1)m(
√
κ)2mA and A2m = (−κ)mI = (−1)m(

√
κ)2mI .

Then from etA =
∑∞

j=0(t
j/j!)Aj , we have

etA =

[
cos(
√
κt)

√
κ
−1

sin(
√
κt)

−
√
κ sin(

√
κt) cos(

√
κt)

]
.

2. (30 points) In this problem we consider driven oscillations with friction taken into account.

We will consider a fricative force of the form −ax′(t) where a > 0. That is the force is a negative

multiple of the velocity. Combining this with the spring force, again assumed to be given by Hooke’s

Law, we have the Newton equation

mx′′(t) = −kx(t)− ax′(t) + f(t) (0.1)

where m is the mass, k is the spring constant, and f(t) is the driving force.

(a) Introduce y(t) = x′(t), and x(t) = (x(t), y(y)) and g(t) = (0, 1
mf(t)). Find a 2 × 2 matrix B

so that (0.1) is equivalent to

x′(t) = Bx(t) + g(t) .

(b) Compute etB. There will be three cases, according to whether (a/m)2 > 4(k/m), (a/m)2 =

4(k/m) and (a/m)2 < 4(k/m).

(c) Using Duhamel’s formula, find integral formulas for the solution of (0.1). You will need 3

formulas, depending on whether (a/m)2 > 4(k/m), (a/m)2 = 4(k/m) or (a/m)2 < 4(k/m).
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(d) Solve (0.1) with x(0) = 0,x’(0) =0, f(t) = cos(t), m = 1, a = 1 and k = 5/4.

(e) Solve (0.1) with x(0) = 0,x’(0) =0, f(t) = cos(t), m = 1, a = 1 and k = 1/4.

SOLUTION Let κ = k/m and α = a/m. Then the matrix B is Let A be the matrix B =[
0 1

−κ −α

]
.

The characteristic polynomial of B is t2 + tα+ κ, and so the eigenvalues are

µ± = −α
2
±
√
α2 − 4κ

2
.

To simplify what follows, introduce

µ = −α
2

and ν =

√
α2 − 4κ

2
,

so that the eigenvalues are

µ± ν.

One then finds the corresponding eigenvectors to be

v+ = (1, µ+ ν) and v+ = (1, µ− ν) .

Therefore,

etB = etµ

[
etν e−tν

etν(µ+ ν) e−tν(µ− ν)

][
1 1

µ+ ν µ− ν

]−1

=
1

2ν
etµ

[
etν e−tν

etν(µ+ ν) e−tν(µ− ν)

][
ν − µ 1

ν + µ −1

]

= etµ

[
cosh(tν)− µ sinh(tν)

ν
sinh(tν)

ν

(ν2 − µ2) sinh(tν)ν cosh(tν) + µ sinh(tν)
ν

]
. (0.2)

For (a/m)2 > 4(k/m), the formula is in final form, since then ν is real. For (a/m)2 = 4(k/m),

ν = 0, and the formula reduces to

etB = etµ

[
cosh(tν)− µt t

(ν2 − µ2)t ν cosh(tν) + µt

]
(0.3)

where we have used

lim
ν→0

sinh(tν)

ν
= t .

For (a/m)2 < 4(k/m), ν is imaginary so we have ν = i|ν| in this case, and then since

cosh(i|ν|t) = cos(t|ν|) and sinh(i|ν|t) = i sinh(t|ν|) ,

we have

etB = etµ

[
cos(tν)− µ sin(t|ν|)

|ν|
sin(t|ν|)
|ν|

−(ν2 + µ2) sin(t|ν|)|ν| cos(t|ν|) + µ sin(t|ν|)
|ν|

]
. (0.4)
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For part (c), we use

x(t) = etB((x(0), x′(0) +

∫ t

0
e(t−s)Bg(t) ,

and so, using (0.2),

x(t) = etµ
[(

cosh(tν)− µsinh(tν)

ν

)
x(0) +

sinh(tν)

ν
x′(0)

]
=

1

m

∫ t

0
eµ(t−s)

sinh(ν(t− s))
ν

f(s)ds .

This formula is also valid for ν = 0 and for imaginary ν by taking the limits and using the

substitutions described above.

For part (c), when m = 1, a = 1 and k = 5/4, we have µ = −1/2 and ν = i, and then we have

x(t) =

∫ t

0
e(s−t)/2 sin(t− s) cos(s)ds

=
1

17

(
[4− 4e−t/2] cos t+ [16− 18e−t/2] sin t

)
.

For part (c), when m = 1, a = 1 and k = 1/4, we have µ = −1/2 and ν = 0, and then we have

x(t) =

∫ t

0
e(s−t)/2(t− s) cos(s)ds

=
1

25

(
[12− 10t]e−t/2 + 16 sin t− 12 cos t

)
.

3. (20 points) Consider the vector field

v(x, y) = ((x+ y)(x− y − 1), (x+ y − 2)(x− y + 1)) .

(a) Find all equilibrium points of v, and determine which, if any, are asymptotically stable, and

which if any are unstable.

(b) Do the same for

v(x, y) = ((x+ y − 2)(x− y + 1) , (x+ y)(x− y − 1), ) .

SOLUTION For (a), we solve to find two equilibrium points

x1 = (− 1
2 ,

1
2) and x2 = (32 ,

1
2) .

The Jacobian matrix is

[Dv(x, y)] =

[
2x− 1 −2y − 1

2x− 1 −2y + 3

]
.

At x1 we have

[Dv(x1)] =

[
−2 −2

−2 2

]
.



4

The characteristic polynomial is t2 − 8, so the eigenvalues ±2
√

2. There is a positive eigenvalue;

this equilibrium point is unstable.

At x2 we have

[Dv(x2)] =

[
2 −2

2 2

]
.

The characteristic polynomial is t2 − −4t + 8, so the eigenvalues 2 ± 2i. Both have positive real

parts so this equilibrium point is unstable.

For (b), the entries of the vector field have simply been swapped, so the equilibrium points are

the same, and the Jacobian matrix is the same as above except the rows are swapped. Thus:

[Dv(x, y)] =

[
2x− 1 −2y − 1

2x− 3 −2t+ 1

]
.

Proceeding in the same way:

At x1 we have

[Dv(x1)] =

[
−2 2

−2 −2

]
.

The characteristic polynomial is t2 + 4t+ 8 = (t+ 2)(t+ 4), so the eigenvalues −2± 2i. Both real

parts are negative. This equilibrium point is therefore asymptotically stable.

At x2 we have

[Dv(x1)] =

[
2 2

2 −2

]
.

The characteristic polynomial is t2 − 8, so the eigenvalues ±2
√

2. There is a positive eigenvalue;

this equilibrium point is unstable.


