Homework Assignment 4, Math 292, Spring 2014

Eric A. Carlen ${ }^{1}$
Rutgers University

February 22, 2014

1. (10 points) Let A be the matrix $A=\left[\begin{array}{rr}0 & 1 \\ -\kappa & 0\end{array}\right]$.
(a) Compute A^{2}, A^{3} and A^{4} Observe the patterns, and deduce a formula for A^{k} for all positive integers k. (You will probably want to consider even and odd k separately.)
(b) Use the results of part (a) to compute $e^{t A}$.
2. (30 points) In this problem we consider driven oscillations with friction taken into account. We will consider a fricative force of the form $-a x^{\prime}(t)$ where $a>0$. That is the force is a negative multiple of the velocity. Combining this with the spring force, again assumed to be given by Hooke's Law, we have the Newton equation

$$
\begin{equation*}
m x^{\prime \prime}(t)=-k x(t)-a x^{\prime}(t)+f(t) \tag{0.1}
\end{equation*}
$$

where m is the mass, k is the spring constant, and $f(t)$ is the driving force.
(a) Introduce $y(t)=x^{\prime}(t)$, and $\mathbf{x}(t)=(x(t), y(y))$ and $\mathbf{g}(t)=\left(0, \frac{1}{m} f(t)\right)$. Find a 2×2 matrix B so that (0.1) is equivalent to

$$
\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)+\mathbf{g}(t)
$$

(b) Compute $e^{t B}$. There will be three cases, according to whether $(a / m)^{2}>4(k / m),(a / m)^{2}=$ $4(k / m)$ and $(a / m)^{2}<4(k / m)$.
(c) Using Duhamel's formula, find integral formulas for the solution of (0.1). You will need 3 formulas, depending on whether $(a / m)^{2}>4(k / m),(a / m)^{2}=4(k / m)$ or $(a / m)^{2}<4(k / m)$.
(d) Solve (0.1) with $x(0)=0, \mathrm{x}^{\prime}(0)=0, f(t)=\cos (t), m=1, a=1$ and $k=5 / 4$.
(e) Solve (0.1) with $x(0)=0, \mathrm{x}^{\prime}(0)=0, f(t)=\cos (t), m=1, a=1$ and $k=1 / 4$.
3. (20 points) Consider the vector field

$$
\mathbf{v}(x, y)=((x+y)(x-y-1),(x+y-2)(x-y+1))
$$

(a) Find all equilibrium points of \mathbf{v}, and determine which, if any, are asymptotically stable, and which if any are unstable.
(b) Do the same for

$$
\mathbf{v}(x, y)=((x+y-2)(x-y+1),(x+y)(x-y-1),)
$$

[^0]
[^0]: ${ }^{1}$ © 2014 by the author.

