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1. Let v(x, y) be the vector field defined on the right half-plane U = {(x, y) : x > 0} by

v(x, y) =

(
x , − 1

x2
− 2y + x2y2

)
.

The system corresponding to this vector field is recursively coupled since the rate of change of

x depends on x alone. This can be used to solve the system, but the system can also be completely

decoupled by change of variables. There is a method for finding such a change of variables, but

at this point in the course our goal is only to become familiar with how systems of differential

equations transform under changes of variables. So we will start with the change of variables as a

given.

(a) Define

u(x, y) = − lnx and v(x, y) = x2y .

The transformation (x, y)→ (u, v) invertible transforms the right half-plane onto all of R2. Com-

pute the inverse transformation.

(b) Suppose that x(t) solves x′(t) = v(x(t). Define u(t) = (u(x(t)), v(x(t)). Using the chain rule,

d

dt
u(x(t)) =

∂

∂x
u(x(t))x′(t) +

∂

∂y
u(x(t))y′(t)

and
d

dt
v(x(t)) =

∂

∂x
v(x(t))x′(t) +

∂

∂y
v(x(t))y′(t) ,

find the vector field w(u, v) on the u, v plane such that

u′(t) = w(u(t)) .

You should find that this vector field describes a completely decoupled system.

(c) Solve the system u′(t) = w(u(t)) by separately solving the decoupled one dimensional equations.

Show that the solution of this equation with u(0) = (uo, v0) exists for all t and is unique if and

only if |v0| ≤ 1.
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(d) Use the inverse transformation you found in part (a) to express the solution of u′(t) = w(u(t))

with u(0) = u0 = (u(x0, y0), v(x0, y0)) in terms of x and y. Show that the resulting curve x(t)

satisfies x′(t) = v(x(t)) with x(0) = x0.

(e) Show that the solution of x′(t) = v(x(t)) with x(0) = x0 exists for all time and is unique if

and only if |x20y0| ≤ 1, and give the solution for all such (x0, y0).

(f) Now go back to the original equation and use the fact that x′ = x is solved by x(t) = x0e
t to

convert the equation for y into a Ricatti equation, and solve this. Compare your two solutions.

SOLUTION: For (a), we have x = e−u, so that v = e−2uy, and hence y = e2uv. Thus,

x(u, v) = e−u and y(u, v) = e2uv .

For (b), Since ∇u(x, y) = (− 1/x, 0),

d

dt
u(x(t)) =

∂

∂x
u(x(t))x′(t) +

∂

∂y
u(x(t))y′(t)

= −1 .

Since ∇v(x, y) = (2xy, x2),

d

dt
v(x(t)) =

∂

∂x
u(x(t))x′(t) +

∂

∂y
u(x(t))y′(t)

= 2xxy − 1− 2x2y + x4y2

= v2 − 1 .

Therefore, defining

w(u, v) = (− 1, v2 − 1) ,

we have that u′(t) = w(u(t)).

(c) The system is completely decoupled, and is easily solved: u′ = 1 is solved by u(t) = u0 − 1,

while to solve v′ = v2 − 1, we decompose

1

v2 − 1
= −1

2

(
1

1 + v
+

1

1− v

)
,

Then by Barrow’s formula, taking |v0| < 1, so that 1 + v0 and 1− v0 are both positive,

t(v) = −1

2

∫ v

v0

(
1

1 + z
+

1

1− z

)
dz = ln

√
1− z
1 + z

∣∣∣∣v
v0

.

Solving for v(t) we find

v(t) =
(1 + v0)− (1− v0)e2t

(1 + v0) + (1− v0)e2t
.

Clearly, with such initial data, the solution stays in (−1, 1) for all t, as one can also see from the

fact that v is Lipschitz on (−1, 1).

On the other hand, for v0 > 1, ∫ ∞
v0

1

z2 − 1
dz <∞
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so the solution reaches∞ in a finite time. The same reasoning shows that for v0 < −1, the solution

reaches −∞ in a finite negative time. So a global solution exists only for |v0| < 1, and is then given

by the above formula.

(d) Now using

x(t) = (x(u(t), v(t)), y(t), v(t)) = (e−u(t), e2u(t)v(t))

and the above computation of u(t) and v(t), we get that

x(t) =

(
e−u0et , e2u0

(1 + v0)e
−2t − (1− v0)

(1 + v0) + (1− v0)e2t

)
Then since e−u0 = x0 and v0 = x20y0, we have, for |x20y0| = |v0| < 1,

x(t) =

(
x0e

t , x−20

(1 + x20y0)e
−2t − (1− x20y0)

(1 + x20y0) + (1− x20y0)e2t

)
. (0.1)

(e) Direct differentiation verifies that x′(t) = v(x(t)) with x(0) = x0, but we also know this by the

equivalence we established above. Since the system in the x, y variables is equivalent to the system

in u, v variables, and since the latter has a global solution if and only if |v0| < 1, the former has a

global solution, given above, if and only if |x20y0| < 1.

(f) Using x(t) = x0e
t, we find

y′ = − 1

x20
e−2t − 2y + x20e

2ty2 .

This is a Ricatti equation. Since the coefficients are multiples of powers of et, we try for a solution

of the form

y1(t) = Ceαt .

Plugging this in, the powers of et match for α = −2, and then we are left with

−2C = − 1

x20
− 2C + x20C

2 .

From here we see that C = x−20 . Hence

y1(t) = x−20 e−2t

is a solution. Notice that this what one gets from (0.1) with y0 = x−20 : Our solution must match

one of the solutions found above, and it does.

Defining u = y − y1, we see by the standard Ricatti change of variables that

u′ = x20e
2tu2 .

This is a Bernoulli equation, but since there is no linear term in u, it is even simpler than that; it

is separable:

(u−1)′ = −x20e2t

So with z = u−1,

z(t) = z0 +
1

2
x20(1− e2t) .
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Thus,

y(t) =

(
z0 +

1

2
x20(1− e2t)

)−1
+ x−20 e−2t .

Evaluating at t = 0, we find

z0 =
x20

x20y0 − 1

so that finally,

y(t) =

(
x20

x20y0 − 1
+

1

2
x20(1− e2t)

)−1
+ x−20 e−2t .

A bit of algebra shows that this is the same as what we found before, by the other method.

2. Consider the differential equation x′ = Ax where

A =

 −1 0 1

0 −2 4

0 0 −2

 .

Find the general solution x(t) = etAx0 in closed form. That is, compute etA. (Note that this system

is recursively coupled.)

SOLUTION Taking advantage of the recursive structure, we find the solutions of x′(t) = Ax(t)

with x(0) = (x0, y0, z0) has

z(t) = e−2tz0 ,

and then

y(t) = e−2ty0 + 4te−2tz0 ,

and finally

x(t) = e−tx0 + (e−t − e−2t)z0 .

Altogether,

x(t) =

 e−t 0 e−t − e−2t

0 e−2t 4te−2t

0 0 e−2t

 (x0, y0, z0) ,

which gives us the matrix exponential.

3. Consider the differential equation x′ = Ax where

A =

[
−4 2

5 −1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

SOLUTION The characteristic polynomial is t2 + 5t − 6 = (t − 1)(t + 6) so the eigenvalues are

µ1 = −6 and µ2 = 1. The corresponding eigenvectors are v1 = (−1, 1) and v2 = (2, 5). Therefore

eAt = [e−6tv1, e
tv2][v1,v2]

−1 =
1

7

[
2et + 5e6−6t 2et − 2e−6t

5et − 5e−6t 5et + 2e−6t

]
.
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For (b) the initial data cannot include any component of the eigenvector with the positive

eigenvalue. Thus, x0 must be a multiple of v1.

4. Consider the differential equation x′ = Ax where

A =

[
5 −1

4 1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

SOLUTION The characteristic polynomial is t2−6t+9 = (t−3)2 so the only eigenvalue is µ1 = 3

and the only eigenvectors eigenvectors are the non-zero multiples of v1 = (1, 2). Therefore

eAt = e3t(I + t(A− 3I)) = e3t

[
1 + 2t −t

4t 1− 2t

]
.

For (b) since all of the eigenvalues are positive, the only such initial data is x0 = 0.


