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1. Let v(x, y) be the vector field defined on the right half-plane U = {(x, y) : x > 0} by

v(x, y) =

(
x , − 1

x2
− 2y + x2y2

)
.

The system corresponding to this vector field is recursively coupled since the rate of change of

x depends on x alone. This can be used to solve the system, but the system can also be completely

decoupled by change of variables. There is a method for finding such a change of variables, but

at this point in the course our goal is only to become familiar with how systems of differential

equations transform under changes of variables. So we will start with the change of variables as a

given.

(a) Define

u(x, y) = − lnx and v(x, y) = x2y .

The transformation (x, y)→ (u, v) invertible transforms the right half-plane onto all of R2. Com-

pute the inverse transformation.

(b) Suppose that x(t) solves x′(t) = v(x(t). Define u(t) = (u(x(t)), v(x(t)). Using the chain rule,

d

dt
u(x(t)) =

∂

∂x
u(x(t))x′(t) +

∂

∂y
u(x(t))y′(t)

and
d

dt
v(x(t)) =

∂

∂x
v(x(t))x′(t) +

∂

∂y
v(x(t))y′(t) ,

find the vector field w(u, v) on the u, v plane such that

u′(t) = w(u(t)) .

You should find that this vector field describes a completely decoupled system.

(c) Solve the system u′(t) = w(u(t)) by separately solving the decoupled one dimensional equations.

Show that the solution of this equation with u(0) = (uo, v0) exists for all t and is unique if and

only if |v0| ≤ 1.
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(d) Use the inverse transformation you found in part (a) to express the solution of u′(t) = w(u(t))

with u(0) = u0 = (u(x0, y0), v(x0, y0)) in terms of x and y. Show that the resulting curve x(t)

satisfies x′(t) = v(x(t)) with x(0) = x0.

(e) Show that the solution of x′(t) = v(x(t)) with x(0) = x0 exists for all time and is unique if

and only if |x20y0| ≤ 1, and give the solution for all such (x0, y0).

(f) Now go back to the original equation and use the fact that x′ = x is solved by x(t) = x0e
t to

convert the equation for y into a Ricatti equation, and solve this. Compare your two solutions.

2. Consider the differential equation x′ = Ax where

A =

 −1 0 1

0 −2 4

0 0 −2

 .

Find the general solution x(t) = etAx0 in closed form. That is, compute etA. (Note that this system

is recursively coupled.)

3. Consider the differential equation x′ = Ax where

A =

[
−4 2

5 −1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.

4. Consider the differential equation x′ = Ax where

A =

[
5 −1

4 1

]
.

(a) Find the general solution x(t) = etAx0 in closed form. That is, compute etA.

(b) Find all x0 such that limt→∞ x(t) = 0.


