Homework Assignment 2, Math 292, Spring 2014

Eric A. Carlen ${ }^{1}$
Rutgers University

January 30, 2014

1. Let $v(x)=\sin (x)$. For all $0 \leq x \leq \pi$, Fnd all solutions of

$$
x^{\prime}(t)=v(x(t)), \quad x(0)=x_{0} .
$$

For which values of t is each solution defined?
Hint: It will probably help to recall the identity

$$
\frac{1-\cos x}{\sin x}=\tan (x / 2)
$$

2. Let $v(x)=\tan (x)$, which is contnuous on $-\pi / 2<x<\pi / 2$. For all x_{0} in this interval, find all solutions of

$$
x^{\prime}(t)=v(x(t)), \quad x(0)=x_{0} .
$$

For which values of t is each solution defined?
3. For $\alpha>0$, let

$$
v(x)=x|\ln | x| |^{\alpha}
$$

for $x \neq 0$, and $v(0)=0$, so that v is continuous on \mathbb{R}. The interval $(0,1)$ is a maximal interval for v since $v(0)=v(1)=0$ and $v(x)>0$ on $(0,1)$.
(a) For all $\alpha>0$, and all $x_{0} \in(0,1)$, and $t_{0} \in \mathbb{R}$, find the solution of $x^{\prime}(t)=v(t)$ for $x\left(t_{0}\right)=x_{0}$ for all t for which the soltution stays in the interval $(0,1)$. For which values of α does the solution remain in $(0,1)$ for all $t>t_{0}$? For which values of α does the solution remain in $(0,1)$ for all $t<t_{0}$?
(b) Note that $x=0$ and $x=1$ are both equilibrium points for v (as is $x=-1$). For which values of α is the stady state soltution $x(t)=0$ for all t the only solution of $x^{\prime}(t)=v(x(t))$ with $x(0)=0$? For which values of α is the stady state soltution $x(t)=1$ for all t the only solution of $x^{\prime}(t)=v(x(t))$ with $x(0)=1$?
(c) For which values of α is v Lipschitz on $(0,1)$?
4. Consider the equation

$$
\begin{equation*}
x^{\prime \prime}(t)=F(x(t)) \quad \text { where } \quad F(x)=-\frac{\mathrm{d}}{\mathrm{~d} x} V(x) \tag{0.1}
\end{equation*}
$$

[^0]for some continously differentiable function V.
(a) Define the function $H(x, y)$ by
\[

$$
\begin{equation*}
H(x, y)=\frac{1}{2} y^{2}+V(x) . \tag{0.2}
\end{equation*}
$$

\]

Show that if $x(t)$ is any solution of (0.1) defined on some open interval containing t_{0}, then

$$
H\left(x^{\prime}(t), x(t)\right)=H\left(x^{\prime}\left(t_{0}\right), x\left(t_{0}\right)\right)
$$

for all t in the interval. Therefore, to solve (0.1) with $x\left(t_{0}\right)=x_{0}$ and $x^{\prime}\left(t_{0}\right)=v_{0}$, we need only solve

$$
\begin{equation*}
x^{\prime}= \pm \sqrt{\left.H\left(v_{0}, x_{0}\right)\right)-V(x)} . \tag{0.3}
\end{equation*}
$$

(b) Let $V(x)=\frac{1}{2} x^{2}$, and take $x_{0}=1$ and $v_{0}=0$. There will be infinitely many solutions of (0.3 . Describe all of them (The description will involve arbitrary "rest periods" at equilibrium points.). Of these solutions, how many are twice continuously differentiable?
(c) How many solutions of

$$
\left(x^{\prime}(t)\right)^{2}+(x(t))^{4}=1
$$

are there with $x(0)=1$? How many of these are twice continuously differentiable?

[^0]: ${ }^{1}$ © 2014 by the author.

