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1.1 Find the general solution of the differential equation

tx′ = 3x+ t4

for t > 0. Find the corresponding flow transformation, and the particular solution with x(1) = 2.

SOLUTION: We can put this in the form x′(t) = p(t)x(t) + q(t) with p(t) = 3/t, which is the

derivative of P (t) = 3 ln t. Therefore, we regroup and multiply through by e−3 ln t = t−3 to obtain

(t−3x′ − 3t−4x) = 1

which is the same as (t−3x)′ = 1, and so

t−3x = t+ C ,

and thus the general solution is

x(t) = t4 + Ct3 .

(You can easily check that this is a solution for each C.)

To find the solution that passes through x0 at time t0 we solve x0 = x(t0) = t40 + Ct30 for C,

finding

C = x0t
−3
0 − t0 .

Inserting this value of C into our general solution, we find that the solution that passes through

x0 at time t0 is

x(t) = t4 + [x0t
−3
0 − t0]t

3 .

Since by definition, Φt1,t0(x0) = x(t1) for this solution,

Φt1,t0(x0) = t41 + [x0t
−3
0 − t0]t

3
1 .

Since this is true for every value of x0, we can drop the subscript and write

Φt1,t0(x) = t41 + [xt−30 − t0]t
3
1 ,

though this last step is merely cosmetic.

1 c© 2014 by the author.
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Finally, to get the solution with x(1) = 2, we only need to substitute x0 = 2 and t0 = 1 into

x(t). We find

x(t) = t4 + t3 .

1.2 Find the general solution of the differential equation

(1 + t2)x′ + 2tx = cot t

for 0 < t < π. Find the corresponding flow transformation, and the particular solution with

x(π/2) = 2.

SOLUTION: The equation can be rewritten as

((1 + t2)x)′ = cot t = (ln(sin t))′ .

Integrating both sides,

x(t) =
1

1 + t2
(ln(sin t) + C) .

This is the general solution. If x(t0) = x0, then

x0 =
1

1 + t20
(ln(sin t0) + C) .

Solving for C we find

C = (1 + t20)x0 − ln(sin t0 .

Therefore, the flow transformation Φt1,t0(x) is

Φt1,t0(x) =
1

1 + t21
(ln(sin t1) + (1 + t20)x0 − ln(sin t0))

=
1

1 + t21

[
(1 + t20)x0 + ln

(
sin t1
sin t0

)]
.

The solutions with x(π/2) = 2 is

x(t) = Φt,π/2(2) =
1

1 + t2

[
2 +

π2

2
+ ln(sin t)

]
.

1.3 The equation (ex − 2tx)x′ = x2 is not linear, but think of t as a function of x, and recall that

d

dx
t(x) =

1

x′(t(x))
.

Use this to rewrite the equation as a linear first order equation for t(x), and solve this.

SOLUTION: Substituting x′ = 1/t′, our equation becomes

(ex − 2tx)
1

t′
= x2 .

Multiplying both sides by t′/x2 we obtain

t′ +
2

x
t =

1

x2
ex .
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Multiplying both sides through by x2, we obtain

(x2t)′ = ex ,

and so

x2t(x) = ex + C .

The general solution is

t(x) =
ex + C

x2
.

This function cannot be inverted globally to find x(t) since it is not one to one, as we explain:

Perhaps the best description of the solution curves is the implicit form

x2t− ex = C .

Here is a contour plot showing the curves defined by this equation for various values of C in the

region (1, 3)× (0, 2) in the t, x plane. You can see that the curves have vertical tangent at various

points – those with ex = 2tx – and then the curve “double back” so that in the vicinity of such

a point one cannot write x as a function of t. At all other points there is a function x(t) passing

through the point that solves the equation on some interval.

1.4 Use the method of the previous exercise to solve x− tx′ = x′x2ex.

SOLUTION Using x′ = 1/t′, we have

x− t 1

t′
=

1

t′
x2ex .

multiplying through by t′/x, we have

t′(x)− 1

x
t(x) = xex .

Multiplying through by 1/x, we obtain,

(t(x)/x))′ = ex .
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Integrating,

t(x) = x(ex + C) .

1.5 Find the general solution of tx′ + x = t3x3.

SOLUTION This is a Bernoulli equation with n = 3. Therefore, the change of variable z = x−2

will render it linear. Then with x = z−1/2,

x′ = −1

2
z−3/2z′

so our equation becomes −1
2 tz
−3/2z′ + z−1/2 = t3z3/2, so that

z′ − 2z = 2t3 .

Multiplying through by e−2t, we find

(e−2tz)′ = 2e−2tt3 .

Integrating both sides,

e−2tz(t) = −1

4
(3 + 6t+ 6t2 + 4t3)e−2t + C .

Hence,

z(t) = −1

4
(3 + 6t+ 6t2 + 4t3) + Ce2t .

(This is easily checked, and should be checked now.) Finally,

x(t) =

(
Ce2t − 1

4
(3 + 6t+ 6t2 + 4t3)

)−1/2
.

1.6 Find the general solution of x′ = 1
3x+e−2tx−2. Also find the corresponding flow transformation,

and the particular solution with x(0) = 2.

SOLUTION This is a Bernoulli equation with n = −2. Hence we introduce z = x3 so that

x = z1/3. Then x′ = 1
3z
−2/3z′ and our equation becomes

1
3z
−2/3z′ =

1

3
z1/3 + e−2tz−2/3 .

Multiplying through by 3z2/3. we obtain

z′ − z = 3e−2t .

Multiplying through by e−t we obtain

(e−tz)′ = 3e−3t = −(e−3t)′ .

Integrating, we find

e−tz = C − e−3t

so that

z(t) = et(C − e−3t) = Cet − e−2t .
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Finally, x(t) = z3(t), so the general solution is

x(t) =
(
Cet − e−2t

)1/3
.

If x(t0) = x0, then

C = e−t0x30 + e−3t0 .

Thus, the solution with x(t0) = x0 is

x(t) =
(
[e−t0x30 + e−3t0 ]et − e−2t

)1/3
.

Therefore,

Φt1,t0(x) =
(
[e−t0x3 + e−3t0 ]et1 − e−2t1

)1/3
,

and the solution with x(0) = 2 is

Φt,0(2) =
(
9et − e−2t

)1/3
.

1.7 Find the general solution of x′ + 4
tx = t3x2, t > 0. Also find the corresponding flow transfor-

mation Φt1,t0(x) for those pairs of t0 and t1 for which it is defined, and the particular solution with

x(1) = 2.

SOLUTION This is a Bernoulli equation with n = 2. Hence we introduce z = x−1 so that

x = z−1. Then x′ = −z−2z′ and our equation becomes

z′ − 4

t
z = −t3 .

Multiplying both sides by t−4,

(t−4z)′ = −t−1 .

Thus, t−4z = − ln t+ C, so that

z(t) = Ct4 − t4 ln t .

Finally, the general solution is

x(t) =
(
Ct4 − t4 ln t

)−1
.

To find the solution passing through x = x0 at t = t0, we solve

x0 =
(
Ct40 − t40 ln t0

)−1
,

to find

C =
1

x0t40
+ ln(t0) .

Of course this only makes sense if x0 6= 0. But if x0 = 0, we have the steady state solution

x(t) = 0 for all t. Otherwise, the solution is given by this formula. In what follows bellow, we

suppose that x0 6= 0 Therefore, the solution passing through x = x0 at t = t0 is

x(t) =

(
t4

x0t40
+ t4(ln(t0)− ln t)

)−1
.
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The particular solution with x(1) = 2 is obtained by setting t0 = 1 and x0 = 2, which gives

x(t) =

(
t4

2
− t4 ln t

)−1
.

The flow transformation Φt1,t0(x) is the value at t = t1 of the solution that passes through x at

time t0. By the above, this is

Φt1,t0(x) =

(
t41
xt40

+ t41(ln(t0)− ln t1)

)−1
.

The solutions “blows up” (there is division by zero) at

t = t0e
1/(xt40) .

Since we are considering t > 0, t0 > 0, and so for x0 > 0, the solution is defined for

t ∈ (−∞, t0e1/(xt
4
0)) while for x0 < 0, the solution is defined for t ∈ (t0e

1/(xt40),∞). Then Φt1,t0(x0)

is defined exactly when t1 lies in one of these intervals (depending on the sign of x0).

1.8 For 0 < c < 1/4, and x0 > 0, find the solution to

x′ = x(1− x)− c , x(0) = x0 .

Show that for all x0 ≥
1

2
−
√

1

4
− c, the solution exists for all t, and compute limt→∞ x(t) for such

x0. What happens for smaller (positive) values of x0?

SOLUTION Let v(x) = x(1− x)− c. Then v(x) = 0 if and only if

x2 − x = c ,

and the roots of this equation are

r± =
1

2
±
√

1

4
− c .

Since 0 < c < 1/4, both roots are real, and both lie in the interval (0, 1). Then

v(x) = −(r+ − x)(r− − x)

and so

1

v(x)
= − 1

(r+ − x)(r− − x)

=
1

r+ − r−

(
1

r+ − x
− 1

r− − x

)
=

1√
1− 4c

(
1

r+ − x
− 1

r− − x

)
.

For x0, x < r−, both denominators are positive, so we may take their logarithms, and Barrow’s

formula give us

t(x)− t(x0) =
1√

1− 4c

[
ln

(
r− − x
r+ − x

)
− ln

(
r− − x0
r+ − x0

)]
.
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Therefore,
r− − x
r+ − x

= e
√
1−4c(t−t0)

(
r− − x0
r+ − x0

)
.

This may be solved for x < x0 (since x(t) is decreasing for x0 < r−) only if the right hand side is

less than t; i.e., if

e
√
1−4c(t−t0) <

(
r+ − x0
r− − x0

)
.

Solving for t under this condition, we find

x(t) =
e
√
1−4c(t−t0)(r− − x0)r+ − (r+ − x0)r−
e
√
1−4c(t−t0)(r− − x0)− (r+ − x0)

.

As t approaches the time defined above, at which time the denominator becomes 0, x(t) approaches

−∞.

Next suppose r− < x0 < r+. Then we write

1

v(x)
=

1√
1− 4c

(
1

r+ − x
+

1

x− r−

)
.

This time Barrow’s formula yields

t(x)− t(x0) =
1√

1− 4c

[
ln

(
x− r−
r+ − x

)
− ln

(
x0 − r−
r+ − x0

)]
.

Solving for x we find

x(t) =
e
√
1−4c(t−t0)(x0 − r−)r+ + (r+ − x0)r−
e
√
1−4c(t−t0)(x0 − r−) + (r+ − x0)

.

In this case, the solution is defined for all t, and limt→∞ x(t) = r+ and limt→∞ x(t) = r−.

Finally, we consider x > r+. Then we write

1

v(x)
=

1√
1− 4c

(
− 1

x− r+
+

1

x− r−

)
.

This time Barrow’s formula yields

t(x)− t(x0) =
1√

1− 4c

[
ln

(
x− r−
x− r+

)
− ln

(
x0 − r−
x0 − r+

)]
.

Solving for x we find

x(t) =
e
√
1−4c(t−t0)(x0 − r−)r+ − (x0 − r+)r−

e
√
1−4c(t−t0)(x0 − r−)− (x0 − r+)

.

In this case, there is a t < t0 for which the denominator is zero, and x(t) approaches +∞ as t

approaches this time, but the solution exists for all t > t0, and limt→∞ x(t) = r+.

1.9 Find the solution of

x′(t) = tx
4− x
1 + t

x(0) = x0 > 0 .

Also compute limt→∞ x(t) for each x0.
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SOLUTION Note first the if x0 = 4, then x(t) = 4 for all t is a solution, and limt→∞ x(t) = 4. In

what follows, we assume that x0 6= 4.

The equation is separable; it can be written as

1

x(4− x)
x′ =

t

1 + t
.

Integrating both sides,
1

4

(
x

|4− x|

)
= t− ln(1 + t) + C .

Exponentiating,
x

|4− x|
= e4(t+C)(1 + t)4 .

Setting t = 0, we conclude
x0

|4− x0|
= e4C .

Thus,
x

|4− x|
=

x0
|4− x0|

e4t(1 + t)4 .

We can already compute limt→∞ x(t) without first solving for x(t): Since the right side diverges as

t→∞, so does the left. But this means that x(t)→ 4. Hence limt→∞ x(t) = 4 for all t.

Finally, some algebra leads to

x(t) =
4x0e

4t(1 + t)4

4− x0 + x0e4t(1 + t)4
.

1.10 Find the general solution of the Ricatti equation

x′ = −2

t
x+ t3x2 + t−5 .

SOLUTION We try for y = Ctα since the coefficients are multiples of powers of t. Inserting this

into the equation, we see that the powers of t are all equal in case

α− 1 = 2α+ 3 = −5 ,

and this requires α = −4. With this choice of α, the equation reduces to −4C = −2C +C2 + 1, or

(C + 1)2 = 0. Hence we must take C = −1. Thus we have one solution

x1 = −t−4 .

1.11 Find the general solution of the Ricatti equation

x′ =
2 cos2 t− sin2 t+ x2

2 cos t
.

Then y = x− x1 satisfies the Bernoulli equation

y′ = −4

t
y + t3y2 .
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Introducing z = y/y, we find

z′ − 4

t
z = t3 ,

which reduces to ( z
t4

)′
= −1

t
.

Integrating,

z = t4(C − ln t) .

Finally,

x(t) = −t−4 + t−4(C − ln t)−1 .

Notice that the solution x1(t) is obtained from the general solution in the limit C →∞.

SOLUTION By inspection, trying powers of sin t and cos t, we find that x1 = sin t is a solution.

Then the general solution is

x = sin t+ u

where u solves the Bernoulli equation

u′ − tan tu =
1

2
sec tu2 .

This gets us to a Bernoulli equation with n = 2. Making the change of variables z = 1/u, we

convert to the linear equation

z′ + tan tz =
1

2
sec t .

We multiply through by e− ln cos(t) = sec t, and obtain

(sec tz)′ =
1

2
sec2 t .

Integrating both sides,

sec tz = −1

2
tan t+ C ,

so that

z =
1

2
(− sin t+ C cos t) .

Then

u = z−1 =
2

C cos t− sin t
.

Therefore, the general solution of our Ricatti equation is

x(t) = sin t+
2

C cos t− sin t
.

1.12 Find the general solution of the equation xx′′ + (x′)2 = 0.

SOLUTION The independent variable t is not present, so we introduce y = x, and regard y as a

function of x so that

x′′(t) =
dy

dx
x′ = y

dy

dx
.
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Our equation becomes

xy
dy

dx
+ y2 = 0

so that

x
dy

dx
+ y = 0 .

But this means that
dy

dx
(xy(x)) = 0 ,

and so

xy(x) = c1 .

Therefore, x(t)x′(t) = c1 which is
1

2
(x2(t))′ = c1 .

Therefore

x2(t) = 2(c1t+ c2) .

We may absorb the factor of 2 into the arbitrary constants, an find the general solution is

x(t) = ±
√
c1t+ c2 .

1.13 Find the general solution of the equation x′′ = 1 + (x′)2.

SOLUTION We introduce y = x′, and then our equation becomes

1

1 + y2
y′ = 1 .

Integrating both sides, we have

arctan(y) = t+ C1 .

Hence,

x′(t) = y(t) = tan(t+ C1) .

Integrating once more,

x(t) =
1

2
ln(1 + n tan((t+ C1)

2) + C2 .

1.14 Find the general solution of the equation tx′′ = x′ + (x′)3.

SOLUTION In this case the dependent variable x is not present. We introduce y = x′, still

considered as a function of t, and then our equation becomes

ty′ = y + y3 .

This is a Bernoulli equation, but is simple enough to solve more directly: Dividing by t2 and

regrouping, we have (y
t

)′
=
y3

t2
= t
(y
t

)3
.

Introducing z = y/t, we have

z−3z′ = t ,
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and so

−1

2
z−2 =

1

2
t2 + c1 .

Therefore, with a new c1,

z =
(
c1 − t2

)−1/2
,

and so

x′ = y = t
(
c1 − t2

)−1/2
.

Integrating

x(t) = −
(
c1 − t2

)1/2
+ c2 .

1.15 Find the general solution of the equation t2x′′ = 2tx′ + (x′)2.

SOLUTION We introduce y = x′, and then our equation becomes

t2y′ = 2ty + y2 .

This is a Bernoulli equation with n = 2. We introduce z = 1/y so y = 1/z and y′ = −z−2z′. Our

equation becomes

−t2z−2z′ = 2tz−1 + z−2 ,

and hence

z′ = −2

t
− 1

t2
,

which is (t2z) = −1. Therefore,

z =
C1 − t
t2

and hence x′(t) = y(t) =
t2

C1 − t
.

Integrating once more,

x(t) = −C1t−
1

2
t2 − C2

1 ln(C1 − t) + C2 .


