Solutions for the Exercises from Chapter 1

Eric A. Carlen ${ }^{1}$
Rutgers University

February 10, 2014
1.1 Find the general solution of the differential equation

$$
t x^{\prime}=3 x+t^{4}
$$

for $t>0$. Find the corresponding flow transformation, and the particular solution with $x(1)=2$. SOLUTION: We can put this in the form $x^{\prime}(t)=p(t) x(t)+q(t)$ with $p(t)=3 / t$, which is the derivative of $P(t)=3 \ln t$. Therefore, we regroup and multiply through by $e^{-3 \ln t}=t^{-3}$ to obtain

$$
\left(t^{-3} x^{\prime}-3 t^{-4} x\right)=1
$$

which is the same as $\left(t^{-3} x\right)^{\prime}=1$, and so

$$
t^{-3} x=t+C
$$

and thus the general solution is

$$
x(t)=t^{4}+C t^{3} .
$$

(You can easily check that this is a solution for each C.)
To find the solution that passes through x_{0} at time t_{0} we solve $x_{0}=x\left(t_{0}\right)=t_{0}^{4}+C t_{0}^{3}$ for C, finding

$$
C=x_{0} t_{0}^{-3}-t_{0} .
$$

Inserting this value of C into our general solution, we find that the solution that passes through x_{0} at time t_{0} is

$$
x(t)=t^{4}+\left[x_{0} t_{0}^{-3}-t_{0}\right] t^{3} .
$$

Since by definition, $\Phi_{t_{1}, t_{0}}\left(x_{0}\right)=x\left(t_{1}\right)$ for this solution,

$$
\Phi_{t_{1}, t_{0}}\left(x_{0}\right)=t_{1}^{4}+\left[x_{0} t_{0}^{-3}-t_{0}\right] t_{1}^{3} .
$$

Since this is true for every value of x_{0}, we can drop the subscript and write

$$
\Phi_{t_{1}, t_{0}}(x)=t_{1}^{4}+\left[x t_{0}^{-3}-t_{0}\right] t_{1}^{3},
$$

though this last step is merely cosmetic.

[^0]Finally, to get the solution with $x(1)=2$, we only need to substitute $x_{0}=2$ and $t_{0}=1$ into $x(t)$. We find

$$
x(t)=t^{4}+t^{3} .
$$

1.2 Find the general solution of the differential equation

$$
\left(1+t^{2}\right) x^{\prime}+2 t x=\cot t
$$

for $0<t<\pi$. Find the corresponding flow transformation, and the particular solution with $x(\pi / 2)=2$.
SOLUTION: The equation can be rewritten as

$$
\left(\left(1+t^{2}\right) x\right)^{\prime}=\cot t=(\ln (\sin t))^{\prime} .
$$

Integrating both sides,

$$
x(t)=\frac{1}{1+t^{2}}(\ln (\sin t)+C) .
$$

This is the general solution. If $x\left(t_{0}\right)=x_{0}$, then

$$
x_{0}=\frac{1}{1+t_{0}^{2}}\left(\ln \left(\sin t_{0}\right)+C\right) .
$$

Solving for C we find

$$
C=\left(1+t_{0}^{2}\right) x_{0}-\ln \left(\sin t_{0} .\right.
$$

Therefore, the flow transformation $\Phi_{t_{1}, t_{0}}(x)$ is

$$
\begin{aligned}
\Phi_{t_{1}, t_{0}}(x) & =\frac{1}{1+t_{1}^{2}}\left(\ln \left(\sin t_{1}\right)+\left(1+t_{0}^{2}\right) x_{0}-\ln \left(\sin t_{0}\right)\right) \\
& =\frac{1}{1+t_{1}^{2}}\left[\left(1+t_{0}^{2}\right) x_{0}+\ln \left(\frac{\sin t_{1}}{\sin t_{0}}\right)\right]
\end{aligned}
$$

The solutions with $x(\pi / 2)=2$ is

$$
x(t)=\Phi_{t, \pi / 2}(2)=\frac{1}{1+t^{2}}\left[2+\frac{\pi^{2}}{2}+\ln (\sin t)\right] .
$$

1.3 The equation $\left(e^{x}-2 t x\right) x^{\prime}=x^{2}$ is not linear, but think of t as a function of x, and recall that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} t(x)=\frac{1}{x^{\prime}(t(x))} .
$$

Use this to rewrite the equation as a linear first order equation for $t(x)$, and solve this.
SOLUTION: Substituting $x^{\prime}=1 / t^{\prime}$, our equation becomes

$$
\left(e^{x}-2 t x\right) \frac{1}{t^{\prime}}=x^{2}
$$

Multiplying both sides by t^{\prime} / x^{2} we obtain

$$
t^{\prime}+\frac{2}{x} t=\frac{1}{x^{2}} e^{x} .
$$

Multiplying both sides through by x^{2}, we obtain

$$
\left(x^{2} t\right)^{\prime}=e^{x},
$$

and so

$$
x^{2} t(x)=e^{x}+C .
$$

The general solution is

$$
t(x)=\frac{e^{x}+C}{x^{2}}
$$

This function cannot be inverted globally to find $x(t)$ since it is not one to one, as we explain: Perhaps the best description of the solution curves is the implicit form

$$
x^{2} t-e^{x}=C .
$$

Here is a contour plot showing the curves defined by this equation for various values of C in the region $(1,3) \times(0,2)$ in the t, x plane. You can see that the curves have vertical tangent at various points - those with $e^{x}=2 t x$ - and then the curve "double back" so that in the vicinity of such a point one cannot write x as a function of t. At all other points there is a function $x(t)$ passing through the point that solves the equation on some interval.

1.4 Use the method of the previous exercise to solve $x-t x^{\prime}=x^{\prime} x^{2} e^{x}$.

SOLUTION Using $x^{\prime}=1 / t^{\prime}$, we have

$$
x-t \frac{1}{t^{\prime}}=\frac{1}{t^{\prime}} x^{2} e^{x} .
$$

multiplying through by t^{\prime} / x, we have

$$
t^{\prime}(x)-\frac{1}{x} t(x)=x e^{x} .
$$

Multiplying through by $1 / x$, we obtain,

$$
(t(x) / x))^{\prime}=e^{x} .
$$

Integrating,

$$
t(x)=x\left(e^{x}+C\right)
$$

1.5 Find the general solution of $t x^{\prime}+x=t^{3} x^{3}$.

SOLUTION This is a Bernoulli equation with $n=3$. Therefore, the change of variable $z=x^{-2}$ will render it linear. Then with $x=z^{-1 / 2}$,

$$
x^{\prime}=-\frac{1}{2} z^{-3 / 2} z^{\prime}
$$

so our equation becomes $-\frac{1}{2} t z^{-3 / 2} z^{\prime}+z^{-1 / 2}=t^{3} z^{3 / 2}$, so that

$$
z^{\prime}-2 z=2 t^{3}
$$

Multiplying through by $e^{-2 t}$, we find

$$
\left(e^{-2 t} z\right)^{\prime}=2 e^{-2 t} t^{3}
$$

Integrating both sides,

$$
e^{-2 t} z(t)=-\frac{1}{4}\left(3+6 t+6 t^{2}+4 t^{3}\right) e^{-2 t}+C
$$

Hence,

$$
z(t)=-\frac{1}{4}\left(3+6 t+6 t^{2}+4 t^{3}\right)+C e^{2 t}
$$

(This is easily checked, and should be checked now.) Finally,

$$
x(t)=\left(C e^{2 t}-\frac{1}{4}\left(3+6 t+6 t^{2}+4 t^{3}\right)\right)^{-1 / 2}
$$

1.6 Find the general solution of $x^{\prime}=\frac{1}{3} x+e^{-2 t} x^{-2}$. Also find the corresponding flow transformation, and the particular solution with $x(0)=2$.

SOLUTION This is a Bernoulli equation with $n=-2$. Hence we introduce $z=x^{3}$ so that $x=z^{1 / 3}$. Then $x^{\prime}=\frac{1}{3} z^{-2 / 3} z^{\prime}$ and our equation becomes

$$
\frac{1}{3} z^{-2 / 3} z^{\prime}=\frac{1}{3} z^{1 / 3}+e^{-2 t} z^{-2 / 3}
$$

Multiplying through by $3 z^{2 / 3}$. we obtain

$$
z^{\prime}-z=3 e^{-2 t}
$$

Multiplying through by e^{-t} we obtain

$$
\left(e^{-t} z\right)^{\prime}=3 e^{-3 t}=-\left(e^{-3 t}\right)^{\prime}
$$

Integrating, we find

$$
e^{-t} z=C-e^{-3 t}
$$

so that

$$
z(t)=e^{t}\left(C-e^{-3 t}\right)=C e^{t}-e^{-2 t}
$$

Finally, $x(t)=z^{3}(t)$, so the general solution is

$$
x(t)=\left(C e^{t}-e^{-2 t}\right)^{1 / 3} .
$$

If $x\left(t_{0}\right)=x_{0}$, then

$$
C=e^{-t_{0}} x_{0}^{3}+e^{-3 t_{0}} .
$$

Thus, the solution with $x\left(t_{0}\right)=x_{0}$ is

$$
x(t)=\left(\left[e^{-t_{0}} x_{0}^{3}+e^{-3 t_{0}}\right] e^{t}-e^{-2 t}\right)^{1 / 3} .
$$

Therefore,

$$
\Phi_{t_{1}, t_{0}}(x)=\left(\left[e^{-t_{0}} x^{3}+e^{-3 t_{0}}\right] e^{t_{1}}-e^{-2 t_{1}}\right)^{1 / 3}
$$

and the solution with $x(0)=2$ is

$$
\Phi_{t, 0}(2)=\left(9 e^{t}-e^{-2 t}\right)^{1 / 3} .
$$

1.7 Find the general solution of $x^{\prime}+\frac{4}{t} x=t^{3} x^{2}, t>0$. Also find the corresponding flow transformation $\Phi_{t_{1}, t_{0}}(x)$ for those pairs of t_{0} and t_{1} for which it is defined, and the particular solution with $x(1)=2$.
SOLUTION This is a Bernoulli equation with $n=2$. Hence we introduce $z=x^{-1}$ so that $x=z^{-1}$. Then $x^{\prime}=-z^{-2} z^{\prime}$ and our equation becomes

$$
z^{\prime}-\frac{4}{t} z=-t^{3} .
$$

Multiplying both sides by t^{-4},

$$
\left(t^{-4} z\right)^{\prime}=-t^{-1}
$$

Thus, $t^{-4} z=-\ln t+C$, so that

$$
z(t)=C t^{4}-t^{4} \ln t .
$$

Finally, the general solution is

$$
x(t)=\left(C t^{4}-t^{4} \ln t\right)^{-1} .
$$

To find the solution passing through $x=x_{0}$ at $t=t_{0}$, we solve

$$
x_{0}=\left(C t_{0}^{4}-t_{0}^{4} \ln t_{0}\right)^{-1},
$$

to find

$$
C=\frac{1}{x_{0} t_{0}^{4}}+\ln \left(t_{0}\right) .
$$

Of course this only makes sense if $x_{0} \neq 0$. But if $x_{0}=0$, we have the steady state solution $x(t)=0$ for all t. Otherwise, the solution is given by this formula. In what follows bellow, we suppose that $x_{0} \neq 0$ Therefore, the solution passing through $x=x_{0}$ at $t=t_{0}$ is

$$
x(t)=\left(\frac{t^{4}}{x_{0} t_{0}^{4}}+t^{4}\left(\ln \left(t_{0}\right)-\ln t\right)\right)^{-1} .
$$

The particular solution with $x(1)=2$ is obtained by setting $t_{0}=1$ and $x_{0}=2$, which gives

$$
x(t)=\left(\frac{t^{4}}{2}-t^{4} \ln t\right)^{-1}
$$

The flow transformation $\Phi_{t_{1}, t_{0}}(x)$ is the value at $t=t_{1}$ of the solution that passes through x at time t_{0}. By the above, this is

$$
\Phi_{t_{1}, t_{0}}(x)=\left(\frac{t_{1}^{4}}{x t_{0}^{4}}+t_{1}^{4}\left(\ln \left(t_{0}\right)-\ln t_{1}\right)\right)^{-1}
$$

The solutions "blows up" (there is division by zero) at

$$
t=t_{0} e^{1 /\left(x t_{0}^{4}\right)} .
$$

Since we are considering $t>0, t_{0}>0$, and so for $x_{0}>0$, the solution is defined for $t \in\left(-\infty, t_{0} e^{1 /\left(x t_{0}^{4}\right)}\right)$ while for $x_{0}<0$, the solution is defined for $t \in\left(t_{0} e^{1 /\left(x t_{0}^{4}\right)}, \infty\right)$. Then $\Phi_{t_{1}, t_{0}}\left(x_{0}\right)$ is defined exactly when t_{1} lies in one of these intervals (depending on the sign of x_{0}).
1.8 For $0<c<1 / 4$, and $x_{0}>0$, find the solution to

$$
x^{\prime}=x(1-x)-c, \quad x(0)=x_{0} .
$$

Show that for all $x_{0} \geq \frac{1}{2}-\sqrt{\frac{1}{4}-c}$, the solution exists for all t, and compute $\lim _{t \rightarrow \infty} x(t)$ for such x_{0}. What happens for smaller (positive) values of x_{0} ?
SOLUTION Let $v(x)=x(1-x)-c$. Then $v(x)=0$ if and only if

$$
x^{2}-x=c,
$$

and the roots of this equation are

$$
r_{ \pm}=\frac{1}{2} \pm \sqrt{\frac{1}{4}-c} .
$$

Since $0<c<1 / 4$, both roots are real, and both lie in the interval $(0,1)$. Then

$$
v(x)=-\left(r_{+}-x\right)\left(r_{-}-x\right)
$$

and so

$$
\begin{aligned}
\frac{1}{v(x)} & =-\frac{1}{\left(r_{+}-x\right)\left(r_{-}-x\right)} \\
& =\frac{1}{r_{+}-r_{-}}\left(\frac{1}{r_{+}-x}-\frac{1}{r_{-}-x}\right) \\
& =\frac{1}{\sqrt{1-4 c}}\left(\frac{1}{r_{+}-x}-\frac{1}{r_{-}-x}\right) .
\end{aligned}
$$

For $x_{0}, x<r_{-}$, both denominators are positive, so we may take their logarithms, and Barrow's formula give us

$$
t(x)-t\left(x_{0}\right)=\frac{1}{\sqrt{1-4 c}}\left[\ln \left(\frac{r_{-}-x}{r_{+}-x}\right)-\ln \left(\frac{r_{-}-x_{0}}{r_{+}-x_{0}}\right)\right] .
$$

Therefore,

$$
\frac{r_{-}-x}{r_{+}-x}=e^{\sqrt{1-4 c}\left(t-t_{0}\right)}\left(\frac{r_{-}-x_{0}}{r_{+}-x_{0}}\right) .
$$

This may be solved for $x<x_{0}$ (since $x(t)$ is decreasing for $x_{0}<r_{-}$) only if the right hand side is less than t; i.e., if

$$
e^{\sqrt{1-4 c}\left(t-t_{0}\right)}<\left(\frac{r_{+}-x_{0}}{r_{-}-x_{0}}\right) .
$$

Solving for t under this condition, we find

$$
x(t)=\frac{e^{\sqrt{1-4 c}\left(t-t_{0}\right)}\left(r_{-}-x_{0}\right) r_{+}-\left(r_{+}-x_{0}\right) r_{-}}{e^{\sqrt{1-4 c}\left(t-t_{0}\right)}\left(r_{-}-x_{0}\right)-\left(r_{+}-x_{0}\right)} .
$$

As t approaches the time defined above, at which time the denominator becomes $0, x(t)$ approaches $-\infty$.

Next suppose $r_{-}<x_{0}<r_{+}$. Then we write

$$
\frac{1}{v(x)}=\frac{1}{\sqrt{1-4 c}}\left(\frac{1}{r_{+}-x}+\frac{1}{x-r_{-}}\right) .
$$

This time Barrow's formula yields

$$
t(x)-t\left(x_{0}\right)=\frac{1}{\sqrt{1-4 c}}\left[\ln \left(\frac{x-r_{-}}{r_{+}-x}\right)-\ln \left(\frac{x_{0}-r_{-}}{r_{+}-x_{0}}\right)\right] .
$$

Solving for x we find

$$
x(t)=\frac{e^{\sqrt{1-4 c}\left(t-t_{0}\right)}\left(x_{0}-r_{-}\right) r_{+}+\left(r_{+}-x_{0}\right) r_{-}}{e^{\sqrt{1-4 c}\left(t-t_{0}\right)}\left(x_{0}-r_{-}\right)+\left(r_{+}-x_{0}\right)} .
$$

In this case, the solution is defined for all t, and $\lim _{t \rightarrow \infty} x(t)=r_{+}$and $\lim _{t \rightarrow \infty} x(t)=r_{-}$.
Finally, we consider $x>r_{+}$. Then we write

$$
\frac{1}{v(x)}=\frac{1}{\sqrt{1-4 c}}\left(-\frac{1}{x-r_{+}}+\frac{1}{x-r_{-}}\right) .
$$

This time Barrow's formula yields

$$
t(x)-t\left(x_{0}\right)=\frac{1}{\sqrt{1-4 c}}\left[\ln \left(\frac{x-r_{-}}{x-r_{+}}\right)-\ln \left(\frac{x_{0}-r_{-}}{x_{0}-r_{+}}\right)\right] .
$$

Solving for x we find

$$
x(t)=\frac{e^{\sqrt{1-4 c}\left(t-t_{0}\right)}\left(x_{0}-r_{-}\right) r_{+}-\left(x_{0}-r_{+}\right) r_{-}}{e^{\sqrt{1-4 c}\left(t-t_{0}\right)}\left(x_{0}-r_{-}\right)-\left(x_{0}-r_{+}\right)} .
$$

In this case, there is a $t<t_{0}$ for which the denominator is zero, and $x(t)$ approaches $+\infty$ as t approaches this time, but the solution exists for all $t>t_{0}$, and $\lim _{t \rightarrow \infty} x(t)=r_{+}$.
1.9 Find the solution of

$$
x^{\prime}(t)=t x \frac{4-x}{1+t} \quad x(0)=x_{0}>0 .
$$

Also compute $\lim _{t \rightarrow \infty} x(t)$ for each x_{0}.

SOLUTION Note first the if $x_{0}=4$, then $x(t)=4$ for all t is a solution, and $\lim _{t \rightarrow \infty} x(t)=4$. In what follows, we assume that $x_{0} \neq 4$.

The equation is separable; it can be written as

$$
\frac{1}{x(4-x)} x^{\prime}=\frac{t}{1+t} .
$$

Integrating both sides,

$$
\frac{1}{4}\left(\frac{x}{|4-x|}\right)=t-\ln (1+t)+C .
$$

Exponentiating,

$$
\frac{x}{|4-x|}=e^{4(t+C)}(1+t)^{4} .
$$

Setting $t=0$, we conclude

$$
\frac{x_{0}}{\left|4-x_{0}\right|}=e^{4 C} .
$$

Thus,

$$
\frac{x}{|4-x|}=\frac{x_{0}}{\left|4-x_{0}\right|} e^{4 t}(1+t)^{4} .
$$

We can already compute $\lim _{t \rightarrow \infty} x(t)$ without first solving for $x(t)$: Since the right side diverges as $t \rightarrow \infty$, so does the left. But this means that $x(t) \rightarrow 4$. Hence $\lim _{t \rightarrow \infty} x(t)=4$ for all t.

Finally, some algebra leads to

$$
x(t)=\frac{4 x_{0} e^{4 t}(1+t)^{4}}{4-x_{0}+x_{0} e^{4 t}(1+t)^{4}} .
$$

1.10 Find the general solution of the Ricatti equation

$$
x^{\prime}=-\frac{2}{t} x+t^{3} x^{2}+t^{-5} .
$$

SOLUTION We try for $y=C t^{\alpha}$ since the coefficients are multiples of powers of t. Inserting this into the equation, we see that the powers of t are all equal in case

$$
\alpha-1=2 \alpha+3=-5,
$$

and this requires $\alpha=-4$. With this choice of α, the equation reduces to $-4 C=-2 C+C^{2}+1$, or $(C+1)^{2}=0$. Hence we must take $C=-1$. Thus we have one solution

$$
x_{1}=-t^{-4} .
$$

1.11 Find the general solution of the Ricatti equation

$$
x^{\prime}=\frac{2 \cos ^{2} t-\sin ^{2} t+x^{2}}{2 \cos t} .
$$

Then $y=x-x_{1}$ satisfies the Bernoulli equation

$$
y^{\prime}=-\frac{4}{t} y+t^{3} y^{2}
$$

Introducing $z=y / y$, we find

$$
z^{\prime}-\frac{4}{t} z=t^{3}
$$

which reduces to

$$
\left(\frac{z}{t^{4}}\right)^{\prime}=-\frac{1}{t} .
$$

Integrating,

$$
z=t^{4}(C-\ln t) .
$$

Finally,

$$
x(t)=-t^{-4}+t^{-4}(C-\ln t)^{-1} .
$$

Notice that the solution $x_{1}(t)$ is obtained from the general solution in the limit $C \rightarrow \infty$.
SOLUTION By inspection, trying powers of $\sin t$ and $\cos t$, we find that $x_{1}=\sin t$ is a solution. Then the general solution is

$$
x=\sin t+u
$$

where u solves the Bernoulli equation

$$
u^{\prime}-\tan t u=\frac{1}{2} \sec t u^{2}
$$

This gets us to a Bernoulli equation with $n=2$. Making the change of variables $z=1 / u$, we convert to the linear equation

$$
z^{\prime}+\tan t z=\frac{1}{2} \sec t
$$

We multiply through by $e^{-\ln \cos (t)}=\sec t$, and obtain

$$
(\sec t z)^{\prime}=\frac{1}{2} \sec ^{2} t .
$$

Integrating both sides,

$$
\sec t z=-\frac{1}{2} \tan t+C,
$$

so that

$$
z=\frac{1}{2}(-\sin t+C \cos t) .
$$

Then

$$
u=z^{-1}=\frac{2}{C \cos t-\sin t} .
$$

Therefore, the general solution of our Ricatti equation is

$$
x(t)=\sin t+\frac{2}{C \cos t-\sin t} .
$$

1.12 Find the general solution of the equation $x x^{\prime \prime}+\left(x^{\prime}\right)^{2}=0$.

SOLUTION The independent variable t is not present, so we introduce $y=x$, and regard y as a function of x so that

$$
x^{\prime \prime}(t)=\frac{\mathrm{d} y}{\mathrm{~d} x} x^{\prime}=y \frac{\mathrm{~d} y}{\mathrm{~d} x} .
$$

Our equation becomes

$$
x y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2}=0
$$

so that

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0
$$

But this means that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}(x y(x))=0
$$

and so

$$
x y(x)=c_{1} .
$$

Therefore, $x(t) x^{\prime}(t)=c_{1}$ which is

$$
\frac{1}{2}\left(x^{2}(t)\right)^{\prime}=c_{1}
$$

Therefore

$$
x^{2}(t)=2\left(c_{1} t+c_{2}\right) .
$$

We may absorb the factor of 2 into the arbitrary constants, an find the general solution is

$$
x(t)= \pm \sqrt{c_{1} t+c_{2}} .
$$

1.13 Find the general solution of the equation $x^{\prime \prime}=1+\left(x^{\prime}\right)^{2}$.

SOLUTION We introduce $y=x^{\prime}$, and then our equation becomes

$$
\frac{1}{1+y^{2}} y^{\prime}=1
$$

Integrating both sides, we have

$$
\arctan (y)=t+C_{1} .
$$

Hence,

$$
x^{\prime}(t)=y(t)=\tan \left(t+C_{1}\right) .
$$

Integrating once more,

$$
x(t)=\frac{1}{2} \ln \left(1+n \tan \left(\left(t+C_{1}\right)^{2}\right)+C_{2} .\right.
$$

1.14 Find the general solution of the equation $t x^{\prime \prime}=x^{\prime}+\left(x^{\prime}\right)^{3}$.

SOLUTION In this case the dependent variable x is not present. We introduce $y=x^{\prime}$, still considered as a function of t, and then our equation becomes

$$
t y^{\prime}=y+y^{3} .
$$

This is a Bernoulli equation, but is simple enough to solve more directly: Dividing by t^{2} and regrouping, we have

$$
\left(\frac{y}{t}\right)^{\prime}=\frac{y^{3}}{t^{2}}=t\left(\frac{y}{t}\right)^{3} .
$$

Introducing $z=y / t$, we have

$$
z^{-3} z^{\prime}=t
$$

and so

$$
-\frac{1}{2} z^{-2}=\frac{1}{2} t^{2}+c_{1} .
$$

Therefore, with a new c_{1},

$$
z=\left(c_{1}-t^{2}\right)^{-1 / 2},
$$

and so

$$
x^{\prime}=y=t\left(c_{1}-t^{2}\right)^{-1 / 2} .
$$

Integrating

$$
x(t)=-\left(c_{1}-t^{2}\right)^{1 / 2}+c_{2} .
$$

1.15 Find the general solution of the equation $t^{2} x^{\prime \prime}=2 t x^{\prime}+\left(x^{\prime}\right)^{2}$.

SOLUTION We introduce $y=x^{\prime}$, and then our equation becomes

$$
t^{2} y^{\prime}=2 t y+y^{2} .
$$

This is a Bernoulli equation with $n=2$. We introduce $z=1 / y$ so $y=1 / z$ and $y^{\prime}=-z^{-2} z^{\prime}$. Our equation becomes

$$
-t^{2} z^{-2} z^{\prime}=2 t z^{-1}+z^{-2},
$$

and hence

$$
z^{\prime}=-\frac{2}{t}-\frac{1}{t^{2}}
$$

which is $\left(t^{2} z\right)=-1$. Therefore,

$$
z=\frac{C_{1}-t}{t^{2}} \quad \text { and hence } \quad x^{\prime}(t)=y(t)=\frac{t^{2}}{C_{1}-t} .
$$

Integrating once more,

$$
x(t)=-C_{1} t-\frac{1}{2} t^{2}-C_{1}^{2} \ln \left(C_{1}-t\right)+C_{2} .
$$

[^0]: ${ }^{1}$ (c) 2014 by the author.

