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This challenge problem set concerns finding particular solutions of higher order –third order in

this case – solutions of inhomogeneous linear equations.

Consider the third order linear equations

yx′′(t) + P (t)x′′(t) + Q(t)x′(t) + R(t)x(t) = f(t) (0.1)

for given continuous functions P (t), Q(t), R(t) and f(t).

(1). Introduce the vector variable x(t) = (x(t), x′(t), x′′(t)). Find a 3× 3 matrix A(t) so that (0.1)

is equivalent to the first order linear system

x′(t) = A(t)x(t) + (0, 0, f(t)) . (0.2)

(2). Now suppose that you can find 3 solutions x1(t), x2(t) and x3(t) of (0.1). Define the matrix

M(t) =

 x1(t) x2(t) x3(t)

x′1(t) x′2(t) x′3(t)

x′′1(t) x′′2(t) x′′3(t)

 .

Suppose that for some t, M(t) is invertible. Show that then M(t) is invertible for all t, and that

with [Φt,s] is the 3 × 3 matrix defined by

[Φt,s] = M(t)M−1(s) ,

The solution of (0.2) with x(t0) = x0 is

x(t) = [Φt,t0 ]x0 +

∫ t

t0

[Φt,s](0, 0, f(s))ds .

(3). When we apply the result of Exercise (2) to solve (0.1), we only need the particular solution∫ t

t0

[Φt,s](0, 0, f(s))ds

corresponding to x0 = 0 since we have the general solution to the homogeneous equation at hand

already. (It is ax1(t) + bx2(t) + cx3(t) for arbitrary a, b and c. ) Since we are only interested
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in the first component of this solution, and since only the third entry in the inhomogeous term is

non-zero,, we only need concern ourselves with the upper-right entry of the matrix [Φt,s].

Show that if K(t, s) = [Φt,s]1,3, then

x(t) =

∫ t

t0

K(t, s)f(s)

solves (0.1) with x(t0) = x′(t0) = x′′(t0) = 0.

(4). Consider the equation

t2x′′′ + 2tx′′ − 4x′(t) +
4

t
x = 0 .

Look for solutions of the form x(t) = tα. You will find three of them.

Then use the results derived above to find a function K(t, s) so that

x(t) =

∫ t

t0

K(t, s)f(s)ds

solves (0.1) with x(t0) = x′(t0) = x′(t0) = 0.

Apply this to find the general solution of

t2x′′′ + 2tx′′ − 4x′(t) +
4

t
x = t4 .

Finally, find the solution of the boundary value problem

t2x′′′ + 2tx′′ − 4x′(t) +
4

t
x = t4 with x(1) = 1, x′(1) = 0, x(2) = 2 .


