Test 1, Math 292 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

March 7, 2013
(1) Find the general solution of the equation

$$
x^{\prime}(t)=-\cot (t) x(t)+2 t \csc (t),
$$

and the particular solution with $x(\pi / 2)=1$.
(2.) Consider the two differential equations:
(i) $x^{\prime}(t)=\sqrt{1-x(t)} \quad x(0)=0$
and
(ii) $y^{\prime}(t)=(1-y(t))^{2} \quad y(0)=0$.

One of the two solutions reaches 1 in a finite time; i.e., there is a finite T so that $x(T)=1$ or $y(T)=1$. Which one is it, and what is T.
(3.) Find the general solution of the differential equation

$$
t x^{2}(t) x^{\prime}(t)+x^{3}(t)=t \cos t
$$

(4.) Consider the vectorfield

$$
\mathbf{v}(x, y)=\left(-y^{3}-x, x^{3}+y\right) .
$$

(a) Find all equilibrium points, and determine which are Lyapunov stable, which are asymptotically stable, and which are unstable.
(b) Find a function $U(x, y)$ so that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} U(\mathbf{x}(t))=0
$$

for all solutions of $\mathbf{x}^{\prime}(t)=\mathbf{v}(\mathbf{x}(t))$. Does this equation have periodic solutions?
(5.) Consider the driving force $\mathbf{f}=3 \cos (\omega t)(1,2)$, where $\omega>0$. Find the resonant frequencies of the system governed by

$$
\begin{equation*}
M \mathbf{x}^{\prime \prime}=-A \mathbf{x}+\mathbf{f} \quad \text { with } \quad \mathbf{x}(0)=\mathbf{0}, \quad \mathbf{x}^{\prime}(0)=\mathbf{0} \tag{0.1}
\end{equation*}
$$

where

$$
M=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cc}
12 & 2 \\
2 & 3
\end{array}\right]
$$

For which values of ω will resonance occur?

[^0]
[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

