Practice Test 1B, Math 292 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

March 11, 2013
(1) Find the general solution of the equation

$$
x^{\prime}(t)=x^{2}(t)+t x(t)-(1+t),
$$

and the particular solution with $x(0)=1$.
SOLUTION Trying for a solution of the form $x_{1}=C t^{\alpha}$, we find $\alpha=0$ and $c=1$ works; i.e., $x_{1}(t)=1$ is a solutions of the equations.

We now define $y(t)=x(t)-1$. Then $y(t)$ satisfies

$$
y^{\prime}=(2+t) y+y^{2} .
$$

This is a Bernoulli equation with $n=2$, so we put $z=y^{1-2}=1 / y$. Then

$$
-\frac{1}{z^{2}} z^{\prime}=(2+t) \frac{1}{z}+\frac{1}{z^{2}},
$$

or

$$
z^{\prime}=-(2+t) z+1
$$

This is a linear first order equation. The integrating factor is $e^{2 t+t^{2} / 2}$, so

$$
\left(z e^{2 t+t^{2} / 2}\right)^{\prime}=e^{2 t+t^{2} / 2}
$$

Thus,

$$
z(t) e^{2 t+t^{2} / 2}=z(0)+\int_{0}^{t} e^{2 s+t^{s} / 2} \mathrm{~d} s
$$

so that

$$
x(t)=1+\left(C+\int_{0}^{t} e^{2 s+t^{s} / 2} \mathrm{~d} s\right)^{-1}
$$

is the general solution, and the solution with $x(0)=1$ is $x(t)=1$; i.e., the particular solution x_{1}, which one obtains from the general solutions in the limit $C \rightarrow \infty$.
(2.) Let $v(x)=4 x-x^{2}$.
(a) Show that for each $x_{0} \in(0,4)$ there exist a unique solution of

$$
\begin{equation*}
x^{\prime}(t)=v(x) \quad \text { with } \quad x(t)=x_{0} . \tag{*}
\end{equation*}
$$

[^0](b) How long does it take the solution of $(*)$ with $x_{0}=1$ to reach $x=3$?
(c) Find an explicit formula for the flow transformation φ_{t} such that for each $x_{0} \in(0,4), x(t)=$ $\varphi_{t}\left(x_{0}\right)$ is the solution to $(*)$. Compute $\varphi_{t}^{\prime}(1)$.
SOLUTION Noe that $v>0$ on $(0,4)$ and since v^{\prime} is bounded on this interval, v is Lipschitz. Thus, the equation has a unique global (valid for all t) solution for each $x_{0} \in(0,4)$. This answers (a). Let us find the solutions: The solution is strictly monotone increasing, and its inverse function $t(x)$ is given by
$$
t(x)=\int_{x_{0}}^{x} \frac{1}{z(4-z)} \mathrm{d} z=\frac{1}{4} \ln \left(\frac{x}{4-x}\right)-\frac{1}{4} \ln \left(\frac{x_{0}}{4-x_{0}}\right) .
$$

Solving for x, we find

$$
x(t)=\frac{4 x_{0} e^{4 t}}{\left(4-x_{0}\right)+x_{0} e^{4 t}} .
$$

We can now read off the answer to (c): Replacing x_{0} be x, we have

$$
\varphi_{t}(x)=\frac{4 x e^{4 t}}{(4-x)+x e^{4 t}} .
$$

Finally, for (b),

$$
t(3)=\int_{1}^{3} \frac{1}{z(4-z)} \mathrm{d} z=\frac{\ln 3}{2} .
$$

(3.) Let

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-2 & 5
\end{array}\right] \quad \text { and } \quad B:=\left[\begin{array}{rr}
0 & -2 \\
1 & -2
\end{array}\right] .
$$

(a) Compute $e^{t A}$ and $e^{t B}$.
(b) Find all \mathbf{x}_{0}, if any, so that the solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ with $\mathbf{x}(0)=\mathbf{x}_{0}$ satisfies $\lim _{t \rightarrow \infty} \mathbf{x}(t)=0$.
(c) Find all \mathbf{x}_{0}, if any, so that the solution of $\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)$ with $\mathbf{x}(0)=\mathbf{x}_{0}$ satisfies $\lim _{t \rightarrow \infty} \mathbf{x}(t)=0$.
(d) Let $\mathbf{f}(t)=(1, t)$, and let $\mathbf{x}_{0}=(2,1)$. Find the solution of

$$
\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)+\mathbf{f}(t)
$$

with $\mathbf{x}(0)=\mathbf{x}_{0}$.
SOLUTION For A, the characteristic polynomial is $(t-3)^{2}$, so the only eigenvalue is 3 . In this case $(A-3 I)^{2}=0$, so we easily compute

$$
e^{t A}=e^{3 t}\left[\begin{array}{cc}
2 t-1 & 2 t \\
-2 t & 2 t+1
\end{array}\right] .
$$

For B, the eigenvalues are $-1 \pm i$, and from a single eigenvector we get two solutions and then

$$
e^{t B}=e^{-t}\left[\begin{array}{cc}
\cos t+\sin t & -\sin t \\
-\sin t & \cos t-\sin t
\end{array}\right]
$$

This takes care of (a). For (b) and (c), since all eigenvalues of A are positive, the only such \mathbf{x}_{0} is $\mathbf{x}_{0}=\mathbf{0}$, while since all eigenvalues of B have a negative real part, every $\mathbf{x}_{0} \in \mathbb{R}^{2}$ has this property.

Finally, for (d), by the Duhamel formula,

$$
\begin{aligned}
\mathbf{x}(t) & =e^{t B} \mathbf{x}_{0}+\int_{0}^{t} e^{(t-s) B} \mathbf{f}(s) \mathrm{d} s \\
& =e^{-t}(2 \cos t, \cos t+\sin t)+\left(2-t-2 e^{-t} \cos t, 1-e^{-t} \cos t-e^{-t} \sin t\right) \\
& =(2-t, 1)
\end{aligned}
$$

which you can easily check.
(4.) Consider the driving force $\mathbf{f}=3 \cos (\omega t)(1,2)$, where $\omega>0$. Find the solution of

$$
\begin{equation*}
M \mathbf{x}^{\prime \prime}=-A \mathbf{x}+\mathbf{f} \quad \text { with } \quad \mathbf{x}(0)=\mathbf{0}, \quad \mathbf{x}^{\prime}(0)=\mathbf{0} \tag{0.1}
\end{equation*}
$$

where

$$
M=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cc}
12 & 2 \\
2 & 3
\end{array}\right] .
$$

SOLUTION As in the online notes.

[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

