Practice Test 1B, Math 292 Spring 2013

Eric A. $Carlen^1$

Rutgers University

March 10, 2013

(1) Find the general solution of the equation

$$x'(t) = x^{2}(t) + tx(t) - (1+t) ,$$

and the particular solution with x(0) = 1.

(2.) Let $v(x) = 4x - x^2$.

(a) Show that for each $x_0 \in (0, 4)$ there exist a unique solution of

$$x'(t) = v(x)$$
 with $x(t) = x_0$. (*)

(b) How long does it take the solution of (*) with $x_0 = 1$ to reach x = 3?

(c) Find an explicit formula for the flow transformation φ_f such that for each $x_0 \in (0, 4)$, $x(t) = \varphi_t(x_0)$ is the solution to (*). Compute $\varphi'_t(1)$.

(3.) Let

$$A = \begin{bmatrix} 1 & 2 \\ -2 & 5 \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} 0 & -2 \\ 1 & -2 \end{bmatrix}$$

(a) Compute e^{tA} and e^{tB} .

(b) Find all x₀, if any, so the the solution of x'(t) = Ax(t) with x(0) = x₀ satisfies lim_{t→∞} x(t) = 0.
(c) Find all x₀, if any, so the the solution of x'(t) = Bx(t) with x(0) = x₀ satisfies lim_{t→∞} x(t) = 0.
(d) Let f(t) = (1, t), and let x₀ = (2, 1). Find the solution of

$$\mathbf{x}'(t) = B\mathbf{x}(t) + \mathbf{f}(t)$$

with $\mathbf{x}(0) = \mathbf{x}_0$.

Find all \mathbf{x}_0 , if any, so the the solution of $\mathbf{x}'(t) = B\mathbf{x}(t)$ with $\mathbf{x}(0) = \mathbf{x}_0$ satisfies $\lim_{t\to\infty} \mathbf{x}(t) = 0$. (4.) Consider the *driving force* $\mathbf{f} = 3\cos(\omega t)(1,2)$, where $\omega > 0$. Find the solution of

$$M\mathbf{x}'' = -A\mathbf{x} + \mathbf{f}$$
 with $\mathbf{x}(0) = \mathbf{0}$, $\mathbf{x}'(0) = \mathbf{0}$. (0.1)

where

$$M = \left[\begin{array}{cc} 4 & 0 \\ 0 & 1 \end{array} \right] \quad \text{and} \quad A = \left[\begin{array}{cc} 12 & 2 \\ 2 & 3 \end{array} \right]$$

 $^{^{1}}$ © 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.