Practice Test 1B, Math 292 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

March 10, 2013
(1) Find the general solution of the equation

$$
x^{\prime}(t)=x^{2}(t)+t x(t)-(1+t),
$$

and the particular solution with $x(0)=1$.
(2.) Let $v(x)=4 x-x^{2}$.
(a) Show that for each $x_{0} \in(0,4)$ there exist a unique solution of

$$
\begin{equation*}
x^{\prime}(t)=v(x) \quad \text { with } \quad x(t)=x_{0} . \tag{*}
\end{equation*}
$$

(b) How long does it take the solution of $(*)$ with $x_{0}=1$ to reach $x=3$?
(c) Find an explicit formula for the flow transformation φ_{f} such that for each $x_{0} \in(0,4), x(t)=$ $\varphi_{t}\left(x_{0}\right)$ is the solution to $(*)$. Compute $\varphi_{t}^{\prime}(1)$.
(3.) Let

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-2 & 5
\end{array}\right] \quad \text { and } \quad B:=\left[\begin{array}{rr}
0 & -2 \\
1 & -2
\end{array}\right]
$$

(a) Compute $e^{t A}$ and $e^{t B}$.
(b) Find all \mathbf{x}_{0}, if any, so the the solution of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ with $\mathbf{x}(0)=\mathbf{x}_{0}$ satisfies $\lim _{t \rightarrow \infty} \mathbf{x}(t)=0$.
(c) Find all \mathbf{x}_{0}, if any, so the the solution of $\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)$ with $\mathbf{x}(0)=\mathbf{x}_{0}$ satisfies $\lim _{t \rightarrow \infty} \mathbf{x}(t)=0$.
(d) Let $\mathbf{f}(t)=(1, t)$, and let $\mathbf{x}_{0}=(2,1)$. Find the solution of

$$
\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)+\mathbf{f}(t)
$$

with $\mathbf{x}(0)=\mathbf{x}_{0}$.
Find all \mathbf{x}_{0}, if any, so the the solution of $\mathbf{x}^{\prime}(t)=B \mathbf{x}(t)$ with $\mathbf{x}(0)=\mathbf{x}_{0}$ satisfies $\lim _{t \rightarrow \infty} \mathbf{x}(t)=0$.
(4.) Consider the driving force $\mathbf{f}=3 \cos (\omega t)(1,2)$, where $\omega>0$. Find the solution of

$$
\begin{equation*}
M \mathbf{x}^{\prime \prime}=-A \mathbf{x}+\mathbf{f} \quad \text { with } \quad \mathbf{x}(0)=\mathbf{0}, \quad \mathbf{x}^{\prime}(0)=\mathbf{0} \tag{0.1}
\end{equation*}
$$

where

$$
M=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cc}
12 & 2 \\
2 & 3
\end{array}\right]
$$

[^0]
[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

