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1. The differential equation

t2x′′(t)− 3tx′(t) + 4x(t) = 0

has polynomial coefficients.

(a) Find one polynomial solution to this equation.

(b) Find the general solution of this equation.

(c) Find the general solution of

t2x′′(t)− 3tx′(t) + 4x(t) = t2 ln t .

SOLUTION: (a) We look for a solution of the form y = tα. Putting this into the equation, we

find it is satisfied in case

α(α− 1)− 3α+ 4 = 0 ,

which is (α− 2)2. There is thus only one solution of this form, namely

y1(t) = t2 .

(b) We get a second solution

y2(t) = v(t)y1(t) where v(t) =

∫
1

y21
e
∫
3/tdt .

This works out to

v(t) =

∫
1

t4
e3 ln tdt =

∫
1

t
dt = ln(t) .

Hence our second solution is

y2(t) = t2 ln(t)

and the general solution of the homogeneous equation is

c1t
2 + c2t

2 ln(t) .

(c) We use the variation of constants formula

yp = −y1
∫

y2r

W (y1, 22)
dt+ y2

∫
y1r

W (y1, 22)
dt ,
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where

W (y1, y2) = y1y
′
2 − y2y′1 = t3

in this case. Thus,

yp = −t2
∫

(ln(t))2

t
dt+ t2 ln(t)

∫
(ln(t)

t
dt =

t2

6
(ln(t))3 .

Thus the general solution is

c1t
2 + c2t

2 ln(t) +
t2

6
(ln(t))3 .

2. Consider the differential equation

y′(x) = f(x, y) where f(x, y) = − 1

x3
− 2

x
y + xy2 . (0.1)

Consider also the change of variables

h(x, y) = (u(x, y), v(x, y)) = (− lnx, x2y). (0.2)

(a) Compute the transformed slope field h∗(1, f)(u, v), and find the general solution of the trans-

formed equation.

(b) Find the general solution of the equation (0.1).

SOLUTION (a) We compute

(1.f) ◦ h−1(u, v) = −e−3u(1 + 2v − v2) ,

and

[Jh(x, y)]−1 =

[
−eu 0

2euv e−2u

]
.

Multiplying, we get−e−u(1, 1−v2), hence the transformed slope field is (1, 1−v2), and the equivalent

equation is

v′ = 1− v2 .

Separating variables ∫
dv

1− v2
= u+ c ,

and so

v(u) = tanh(u+ c) .

(b) Transforming back to x and y, we find

y(x) =
1

x2
tanh(− lnx+ c) .

3. Consider the equation

y′′(x)− xy′(x) +
x2

2
y(x) = 0 . (0.3)



(a) Find a function q(x) so that whenever y(x) is a solution of (0.3), there is a solution z(x) of

z′′(x) + q(x)z(x) = 0 (0.4)

that has the same set of zeros as y(x).

(b) Find a number L > 0 so that if y(x) solves (0.3) and satisfies y(0) = 0 and y′(0) = 1, then for

some x1 with 0 < x1 < L, y(x1) = 0. Justify your answer.

SOLUTION(a) To transform the equation

y′′ + Py′ +Qy = 0

into its normal form

u′′ + qu = 0 ,

we define

v = exp(

(
−1

2

∫
Pdx

)
,

and put y = uv. Then u satisfies u′′ + qu = 0 with

q = Q− 1

4
P 2 − 1

2
P ′ .

Since the exponential function is never zero, v(x) 6= 0 for any x, and so y(x) = 0 if and only if

u(x) = 0. In this case, we find v(x) = ex
2/2 and

q(x) =
1

2
+

1

4
x2 .

(b) Since q(x) ≥ 1/2 everywhere on [0, 1], any solution to u′′ + qu = 0 with u(0) = 0, u′(0) 6= 0, is

oscilating at least as fast as the solutions of

z′′ +
1

2
z = 0 .

The solutions of this equation are multiples of

z(x) = sin(x/
√

2) .

The first zero of this equation is at x =
√

2π. Then by the Sturm Comparison Theorem, u(x), and

hence y(x), has a zero in (0, L) where L
√

2π.

4. Find the continuously differentiable curve y(x) such that y(0) = 1 and y(1) = 0 that minimizes

the functional

I[y] =

∫ 1

0
[|y′(x)|2 + |y(x)|2]dx .

Justify your answer.

SOLUTION The Euler-Lagange equation works out to be

y′′ − y = 0 .



This has the general solution

y(x) = c1e
x + c2e

−x .

From the boundary conditions

1 = c1 + c2

0 = c1e+ c2e
−1

Solving, we find

c2 =
e2

e2 − 1
and c1 =

1

1− e2
.

Thus,

y(x) =
1

1− e2
ex +

e2

e2 − 1
e−x

is a solution of the Euler-Lagrange equation that satisfies the boundary conditions. Since the

functional is quadratic with strictly positive coefficients, and such solution is the unique minimizer.


