Practice Test for Test 2, Math 292, April 25, 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

April 28, 2013

1. The differential equation

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=0
$$

has polynomial coefficients.
(a) Find one polynomial solution to this equation.
(b) Find the general solution of this equation.
(c) Find the general solution of

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=t^{2} \ln t
$$

SOLUTION: (a) We look for a solution of the form $y=t^{\alpha}$. Putting this into the equation, we find it is satisfied in case

$$
\alpha(\alpha-1)-3 \alpha+4=0
$$

which is $(\alpha-2)^{2}$. There is thus only one solution of this form, namely

$$
y_{1}(t)=t^{2} .
$$

(b) We get a second solution

$$
y_{2}(t)=v(t) y_{1}(t) \quad \text { where } \quad v(t)=\int \frac{1}{y_{1}^{2}} e^{\int 3 / t} \mathrm{~d} t
$$

This works out to

$$
v(t)=\int \frac{1}{t^{4}} e^{3 \ln t} \mathrm{~d} t=\int \frac{1}{t} \mathrm{~d} t=\ln (t)
$$

Hence our second solution is

$$
y_{2}(t)=t^{2} \ln (t)
$$

and the general solution of the homogeneous equation is

$$
c_{1} t^{2}+c_{2} t^{2} \ln (t)
$$

(c) We use the variation of constants formula

$$
y_{p}=-y_{1} \int \frac{y_{2} r}{W\left(y_{1}, 2_{2}\right)} \mathrm{d} t+y_{2} \int \frac{y_{1} r}{W\left(y_{1}, 2_{2}\right)} \mathrm{d} t
$$

[^0]where
$$
W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=t^{3}
$$
in this case. Thus,
$$
y_{p}=-t^{2} \int \frac{(\ln (t))^{2}}{t} \mathrm{~d} t+t^{2} \ln (t) \int \frac{(\ln (t)}{t} \mathrm{~d} t=\frac{t^{2}}{6}(\ln (t))^{3} .
$$

Thus the general solution is

$$
c_{1} t^{2}+c_{2} t^{2} \ln (t)+\frac{t^{2}}{6}(\ln (t))^{3} .
$$

2. Consider the differential equation

$$
\begin{equation*}
y^{\prime}(x)=f(x, y) \quad \text { where } \quad f(x, y)=-\frac{1}{x^{3}}-\frac{2}{x} y+x y^{2} . \tag{0.1}
\end{equation*}
$$

Consider also the change of variables

$$
\begin{equation*}
h(x, y)=(u(x, y), v(x, y))=\left(-\ln x, x^{2} y\right) . \tag{0.2}
\end{equation*}
$$

(a) Compute the transformed slope field $h_{*}(1, f)(u, v)$, and find the general solution of the transformed equation.
(b) Find the general solution of the equation (0.1).

SOLUTION (a) We compute

$$
(1 . f) \circ h^{-1}(u, v)=-e^{-3 u}\left(1+2 v-v^{2}\right),
$$

and

$$
\left[J_{h}(x, y)\right]^{-1}=\left[\begin{array}{cc}
-e^{u} & 0 \\
2 e^{u} v & e^{-2 u}
\end{array}\right] .
$$

Multiplying, we get $-e^{-u}\left(1,1-v^{2}\right)$, hence the transformed slope field is $\left(1,1-v^{2}\right)$, and the equivalent equation is

$$
v^{\prime}=1-v^{2} .
$$

Separating variables

$$
\int \frac{\mathrm{d} v}{1-v^{2}}=u+c
$$

and so

$$
v(u)=\tanh (u+c) .
$$

(b) Transforming back to x and y, we find

$$
y(x)=\frac{1}{x^{2}} \tanh (-\ln x+c) .
$$

3. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(x)-x y^{\prime}(x)+\frac{x^{2}}{2} y(x)=0 . \tag{0.3}
\end{equation*}
$$

(a) Find a function $q(x)$ so that whenever $y(x)$ is a solution of (0.3), there is a solution $z(x)$ of

$$
\begin{equation*}
z^{\prime \prime}(x)+q(x) z(x)=0 \tag{0.4}
\end{equation*}
$$

that has the same set of zeros as $y(x)$.
(b) Find a number $L>0$ so that if $y(x)$ solves (0.3) and satisfies $y(0)=0$ and $y^{\prime}(0)=1$, then for some x_{1} with $0<x_{1}<L, y\left(x_{1}\right)=0$. Justify your answer.
SOLUTION(a) To transform the equation

$$
y^{\prime \prime}+P y^{\prime}+Q y=0
$$

into its normal form

$$
u^{\prime \prime}+q u=0,
$$

we define

$$
v=\exp \left(\left(-\frac{1}{2} \int P \mathrm{~d} x\right)\right.
$$

and put $y=u v$. Then u satisfies $u^{\prime \prime}+q u=0$ with

$$
q=Q-\frac{1}{4} P^{2}-\frac{1}{2} P^{\prime} .
$$

Since the exponential function is never zero, $v(x) \neq 0$ for any x, and so $y(x)=0$ if and only if $u(x)=0$. In this case, we find $v(x)=e^{x^{2} / 2}$ and

$$
q(x)=\frac{1}{2}+\frac{1}{4} x^{2}
$$

(b) Since $q(x) \geq 1 / 2$ everywhere on $[0,1]$, any solution to $u^{\prime \prime}+q u=0$ with $u(0)=0, u^{\prime}(0) \neq 0$, is oscilating at least as fast as the solutions of

$$
z^{\prime \prime}+\frac{1}{2} z=0 .
$$

The solutions of this equation are multiples of

$$
z(x)=\sin (x / \sqrt{2}) .
$$

The first zero of this equation is at $x=\sqrt{2} \pi$. Then by the Sturm Comparison Theorem, $u(x)$, and hence $y(x)$, has a zero in $(0, L)$ where $L \sqrt{2} \pi$.
4. Find the continuously differentiable curve $y(x)$ such that $y(0)=1$ and $y(1)=0$ that minimizes the functional

$$
I[y]=\int_{0}^{1}\left[\left|y^{\prime}(x)\right|^{2}+|y(x)|^{2}\right] \mathrm{d} x .
$$

Justify your answer.
SOLUTION The Euler-Lagange equation works out to be

$$
y^{\prime \prime}-y=0 .
$$

This has the general solution

$$
y(x)=c_{1} e^{x}+c_{2} e^{-x}
$$

From the boundary conditions

$$
\begin{aligned}
& 1=c_{1}+c_{2} \\
& 0=c_{1} e+c_{2} e^{-1}
\end{aligned}
$$

Solving, we find

$$
c_{2}=\frac{e^{2}}{e^{2}-1} \quad \text { and } \quad c_{1}=\frac{1}{1-e^{2}} .
$$

Thus,

$$
y(x)=\frac{1}{1-e^{2}} e^{x}+\frac{e^{2}}{e^{2}-1} e^{-x}
$$

is a solution of the Euler-Lagrange equation that satisfies the boundary conditions. Since the functional is quadratic with strictly positive coefficients, and such solution is the unique minimizer.

[^0]: ${ }^{1}$ 2013 by the author.

