Practice Test for Test 2, Math 292, April 25, 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

April 27, 2013

1. The differential equation

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=0
$$

has polynomial coefficients.
(a) Find one polynomial solution to this equation.
(b) Find the general solution of this equation.
(b) Find the general solution of

$$
t^{2} x^{\prime \prime}(t)-3 t x^{\prime}(t)+4 x(t)=t^{2} \ln t
$$

2. Consider the differential equation

$$
\begin{equation*}
y^{\prime}(x)=f(x, y) \quad \text { where } \quad f(x, y)=-\frac{1}{x^{3}}-\frac{2}{x} y+x y^{2} . \tag{0.1}
\end{equation*}
$$

Consider also the change of variables

$$
\begin{equation*}
h(x, y)=(u(x, y), v(x, y))=\left(-\ln x, x^{2} y\right) . \tag{0.2}
\end{equation*}
$$

(a) Compute the transformed slope field $h_{*}(1, f)(u, v)$, and find the general solution of the transformed equation.
(b) Find the general solution of the equation (0.1).
3. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(x)-x y^{\prime}(x)+\frac{x^{2}}{2} y(x)=0 . \tag{0.3}
\end{equation*}
$$

(a) Find a function $q(x)$ so that whenever $y(x)$ is a solution of (0.2), there is a solution $z(x)$ of

$$
\begin{equation*}
z^{\prime \prime}(x)+q(x) z(x)=0 \tag{0.4}
\end{equation*}
$$

that has the same set of zeros as $y(x)$.
(b) Find a number $L>0$ so that if $y(x)$ solves (0.3) and satisfies $y(0)=0$ and $y^{\prime}(0)=1$, then for some x_{1} with $0<x_{1}<L, y\left(x_{1}\right)=0$. Justify your answer.
4. Find the continuously differentiable curve $y(x)$ such that $y(0)=1$ and $y(1)=0$ that minimizes the functional

$$
I[y]=\int_{0}^{1}\left[\left|y^{\prime}(x)\right|^{2}+|y(x)|^{2}\right] \mathrm{d} x
$$

Justify your answer.

[^0]
[^0]: ${ }^{1}$ © 2013 by the author.

