Practice Final Exam, Math 292, Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

May 5, 2013

The question on this practice exam cover only material from the first half of the semester. This is what I will review in the final class, Monday May 6. The actual final exam ail be twice as long, covering material from the second half as well, which we have recently reviewed.

1. Find the general solution of the differential equation

$$
x^{3} y^{\prime}+x^{2} y-y^{2}=2 x^{4} .
$$

2. Consider the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t} y(t)=-y(t)+\sin (t)
$$

(a) Find the general solution of this equation.
(b) There is a unique periodic solution of this equation, $y_{p}(t)$. Find $y_{p}(t)$.
(c) Show that for all initial data y_{0}, the solution $y(t)$ with $y(0)=y_{0}$ satisfies

$$
\lim _{t \rightarrow \infty}\left(y(t)-y_{p}(t)\right)=0
$$

where y_{p} is the unique periodic solution.
3. Consider the two equations

$$
\text { I. } \quad\left(y^{\prime}\right)^{2}+y^{2}=1 \quad \text { II. }\left(y^{\prime}\right)^{2}-y^{2}=1 .
$$

Let $-1<y_{0}<1$.
(a) One of these equations has a unique solution $y(t)$ with $y(0)=y_{0}$, and the other has infinitely many such solutions. Which one has unique solutions? Justify your answer.
(b) For each $-1<y_{0}<1$, find infinitely many solutions of the equations for which there is no uniqueness.
4.

Let

$$
A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
0 & -2 \\
1 & 2
\end{array}\right]
$$

[^0](a) Compute $e^{t A}$, and find the solution of
\[

$$
\begin{aligned}
x^{\prime} & =3 x+y \\
y^{\prime} & =-x+5 y
\end{aligned}
$$
\]

with $x(0)=1$ and $y(0)=2$.
(b) Compute $e^{t B}$, and find the solution of

$$
\begin{aligned}
x^{\prime} & =-2 y \\
y^{\prime} & =x+2 y
\end{aligned}
$$

with $x(0)=1$ and $y(0)=2$.
(c) Solve

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+(t, t) \quad \text { with } \quad \mathbf{x}(0)=(1,2)
$$

5. Let

$$
\mathbf{v}(x, y)=\left(x y+12, x^{2}+y^{2}-25\right)
$$

(a) Find all equilibrium points of \mathbf{v}.
(b) Which, if any, of these points are Lyapunov stable, asymptotically stable, or unstable? Justify your answer.

[^0]: ${ }^{1}$ (c) 2013 by the author.

