Problem Set 6 for Math 292, April 16, 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

April 22, 2013

1. Solve the wave equation

$$
\frac{\partial^{2}}{\partial t^{2}} h(t, x)=4 \frac{\partial^{2}}{\partial x^{2}} h(t, x)
$$

subject to

$$
h(t, 0)=h(t, 1)=0 \quad \text { for all } t,
$$

and

$$
h(t, x)=h_{0}(x):=\sin ^{3}(2 \pi x) \quad \text { and } \quad \frac{\partial}{\partial t} h(0, x)=v_{0}(x):=\sin ^{2}(\pi x)
$$

for all $0 \leq x \leq 1$.
(a) Do this first by first expanding $h_{0}(x)$ and $v_{0}(x)$ in the form

$$
h_{0}(x)=\sum_{n=1}^{\infty} \alpha_{n} \sin (n \pi x) \quad \text { and } \quad v_{0}(x)=\sum_{n=1}^{\infty} \beta_{n} \sin (n \pi x)
$$

The coefficients α_{n} will be non-zero for only finitely many values of n, and there is an easy way to find them. The coefficients β_{n} will be non-zero for infinitely many n, but there is an easy way to find them all. Use Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$.
(b) Next do this by constructing appropriate extensions of the initial data to the whole real line, and using the fact that for g twice continuously differentiable, $g(x-c t)$ and $g(x+t c)$ satisfy the wave equation.
2. Find a non-zero function $v(x)$ and a function $q(x)$ so that if $y(x)=v(x) u(x)$,

$$
\left(1+x^{2}\right) y^{\prime \prime}-x y^{\prime}+x^{3} y=0
$$

if and only if

$$
u^{\prime \prime}+q u=0 .
$$

3. Let $y(x)$ solve

$$
y^{\prime \prime}(x)+q(x) y(x)=0,
$$

and suppose that

$$
y(2)=y(4)=y(8)=0
$$

and that $y(x) \neq 0$ for any other values of x with $0 \leq x \leq 16$.

[^0](a) Find a number A such that necessarily
$$
\min \{q(x): 0 \leq x \leq 16\} \leq A .
$$
(b) Find a number B such that necessarily
$$
\max \{q(x): 0 \leq x \leq 16\} \geq B .
$$
4. Let λ_{7} be the 7 th positive number λ such that
$$
y^{\prime \prime}+\left(\lambda+\frac{x^{2}}{1+x^{2}}\right) y=0
$$
with $y(0)=y(1)=0$.
Find numbers a and b such that $a \leq \lambda_{7} \leq b$ with $b-a<1 / 10$, and justify your answer. How small can you make $b-a$?

[^0]: ${ }^{1}$ (C) 2013 by the author.

