Problem Set 6 for Math 292, April 16, 2013

Eric A. Carlen¹ Rutgers University

April 22, 2013

1. Solve the wave equation

$$\frac{\partial^2}{\partial t^2}h(t,x) = 4\frac{\partial^2}{\partial x^2}h(t,x)$$

subject to

$$h(t,0) = h(t,1) = 0$$
 for all t ,

and

$$h(t,x) = h_0(x) := \sin^3(2\pi x)$$
 and $\frac{\partial}{\partial t}h(0,x) = v_0(x) := \sin^2(\pi x)$

for all $0 \le x \le 1$.

(a) Do this first by first expanding $h_0(x)$ and $v_0(x)$ in the form

$$h_0(x) = \sum_{n=1}^{\infty} \alpha_n \sin(n\pi x)$$
 and $v_0(x) = \sum_{n=1}^{\infty} \beta_n \sin(n\pi x)$.

The coefficients α_n will be non-zero for only finitely many values of n, and there is an easy way to find them. The coefficients β_n will be non-zero for infinitely many n, but there is an easy way to find them all. Use Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$.

(b) Next do this by constructing appropriate extensions of the initial data to the whole real line, and using the fact that for g twice continuously differentiable, g(x - ct) and g(x + tc) satisfy the wave equation.

2. Find a non-zero function v(x) and a function q(x) so that if y(x) = v(x)u(x),

$$(1+x^2)y'' - xy' + x^3y = 0$$

if and only if

$$u'' + qu = 0 .$$

3. Let y(x) solve

$$y''(x) + q(x)y(x) = 0 ,$$

and suppose that

$$y(2) = y(4) = y(8) = 0$$

and that $y(x) \neq 0$ for any other values of x with $0 \leq x \leq 16$.

 $^{^{1}}$ © 2013 by the author.

(a) Find a number A such that necessarily

$$\min\{ q(x) : 0 \le x \le 16 \} \le A .$$

(b) Find a number B such that necessarily

$$\max\{ q(x) : 0 \le x \le 16 \} \ge B .$$

4. Let λ_7 be the 7th positive number λ such that

$$y'' + \left(\lambda + \frac{x^2}{1+x^2}\right)y = 0$$

with y(0) = y(1) = 0.

Find numbers a and b such that $a \leq \lambda_7 \leq b$ with b - a < 1/10, and justify your answer. How small can you make b - a?